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Cosmological N-Body simulation: Techniques, Scope and Status
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Cosmological N-Body simulations have become an essential tool for studying formation of large
scale structure. These simulations are computationally challenging even though the available com-
puting power gets better every year. A number of efficient algorithms have been developed to run
large simulations with better dynamic range and resolution. We discuss key algorithms in this
review, focusing on techniques used and their efficacy. N-Body simulations solve a model that is
an approximation of the physical model to be simulated, we discuss limitations arising from this
approximation and techniques employed for solving equations. Apart from simulating models of
structure formation, N-Body simulations have also been used to study aspects of gravitational clus-
tering. Simulating formation of galaxies requires us to take many physical process into account; we
review numerical implementations of key processes.

I. INTRODUCTION

Large scale structures like galaxies and clusters of
galaxies are believed to have formed by amplification of
small perturbations [1, 2, 3, 4, 5, 6, 7, 8, 9]. Galaxies are
highly over-dense systems, matter density ρ in galaxies
is thousands of times larger than the average density ρ̄
in the universe. Typical density contrast (δ ≡ ρ/ρ̄ − 1)
in matter at these scales in the early universe, e.g. at
the time of decoupling of matter and radiation was much
smaller than unity. Thus the problem of galaxy formation
and the large scale distribution of galaxies is essentially
one of evolving density perturbations from small initial
values to the large values we encounter today.

The universe is assumed to be homogeneous and
isotropic at large scales and this assumption is consis-
tent with observations and there are strong limits on
departures from homogeneity and isotropy [10]. A ho-
mogeneous and isotropic universe is described by Fried-
man equations in the general theory of relativity. As
long as perturbations in the gravitational potential are
small, we can treat density fluctuations as perturbations
about a Friedman universe. If perturbations are in non-
relativistic matter, as appears to be the case in our uni-
verse, we can work in the Newtonian limit for studying
their evolution. The back reaction of perturbations on
the universe is not taken into account, i.e., we do not
worry about the effect of perturbations on the average
global properties of the universe. Studies have shown
that this back-reaction is ignorable in most cases [11, 12].
Local variations in density, etc. can lead to dispersion in
values of cosmological parameters determined through lo-
cal observations [13] but this problem can be controlled
by making measurements at larger scales.

Gravity is the dominant force at large scales and is be-
lieved to drive growth of perturbations. Magnetic field
is the only other interaction that can lead to formation

∗Electronic address: Email: jasjeet@mri.ernet.in

of large scale structures, this leads to very distinct sig-
natures and does not appear to be the dominant factor
in our universe [14, 15, 16]. We will assume that gravity
is the only interaction responsible for growth of pertur-
bations at large scales. Equations that describe the evo-
lution of density perturbations in non-relativistic matter
due to gravitational interaction in an expanding universe
have been known for a long time [17]. These equations
can be solved analytically for small density contrasts, and
for highly symmetric situations. But apart from such spe-
cial cases, few solutions are known. Many approximate
solutions are known [9, 18, 19, 20, 21, 22, 23, 24, 25] and
are useful in understanding the evolution of perturba-
tions in the quasi-linear regime, these fail when density
contrast becomes large (δ ≫ 1). Cosmological N-Body
simulations are an essential tool for evolving density per-
turbations in the non-linear regime. Fluctuations in the
gravitational potential do not grow by a large amount
even as density contrast increases by several orders of
magnitude [22, 23], therefore the Newtonian approxima-
tion continues to be a valid framework. At galactic scales,
gas dynamical and other effects play an important role
and need to be taken into account for a detailed solution
of the problem.

N-Body simulations are used for a variety of applica-
tions. Simulations of specific models of dark matter allow
us to make predictions for these models and compare with
observations. Simulations allow us to carry out numerical
experiments with initial conditions that have little to do
with the real universe. The purpose of such experiments
is to understand the physics of gravitational collapse in
an expanding universe. Simulations are also used for test-
ing approximate solutions for growth of density pertur-
bations, comparisons with N-Body simulations allow us
to validate these approximations and understand when
these approximations are useful. Lastly, we can calibrate
methods for analysing observations on mock catalogues
made from N-Body simulations. We can test whether a
particular method works or not because in N-Body all
the details are known whereas the same is not true of the
real universe.

The physical parameters of the problem make cosmo-
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logical simulations a challenging task. Unlike simulations
of systems like globular clusters that can be treated as
(relatively) isolated systems, the universe does not have a
boundary. Therefore cosmological simulations need to be
run with periodic boundary conditions. An exception are
simulations of large spherical volumes that do not suffer
significant deformation during the course of evolution.

Observations suggest that density perturbations are
present at all scales that have been probed by observa-
tions. Amplitude of fluctuations at small scales is large
and it drops at large scales (l ≫ 10 Mpc where 1 Mpc =
3.08 × 1024 cm.). Figure 1 shows the root mean square
fluctuations in mass as a function of length scale for one of
the popular models. Fluctuations at scales much larger
than 100 Mpc are generally not relevant for structure
formation at the scale of galaxies. Thus the physical size
corresponding to the periodic simulation box should be
at least 100 Mpc, unless these are meant for studying
large scale structure at early times when the amplitude
of fluctuations is small and a smaller simulation box is
acceptable. We will revisit this issue and discuss it more
quantitatively but this approximate figure will suffice at
present.

If we wish to study the distribution of galaxies in detail
then the mass of each particle in the simulation should
be much smaller than the mass of a typical galaxy. This,
with the requirement that the simulation box should be
more than 100 Mpc across implies that the N-Body sim-
ulation must be done with at least 108 particles. The
large number of particles required is one of the things
that makes cosmological simulations challenging.

Observations show that the dominant component of
matter in the universe does not radiate light and thus
cannot be seen, except through its gravitational effect
on visible matter [26]. Observational evidence points
towards non-relativistic dark matter [27, 28, 29]. This
makes our task simple as motions of non-relativistic mat-
ter can be studied in the fluid limit at large scales.
(Relativistic dark matter will have significant pres-
sure/velocity dispersion and one cannot take the fluid
limit. In such a case one needs to solve the Boltzmann
equation in order to correctly model the effects of free
streaming[30].) Little is known about what constitutes
this dark matter though it is often assumed to be made of
Weakly Interacting Massive Particles (WIMP). There are
strong limits on the interaction cross section of WIMPs
from astrophysical considerations [34]. Non-relativistic,
non-interacting (collisionless) dark matter is known as
Cold Dark Matter (CDM) [31, 32, 33]. Dark matter in-
teracts only through gravity and that makes simulating
growth of perturbations somewhat simpler.

Dark matter dominates over normal matter in terms
of density by a large factor [28], therefore N-Body sim-
ulations with the entire matter density in dark matter
provide a good first approximation for the distribution
of matter. In any case, gravity is the dominant interac-
tion and normal matter is expected to follow dark matter
at large scales.

Cosmological simulations differ from other types of N-
Body simulations as the background is not static and ex-
pansion of the universe has to be taken into account. It is
convenient to work in comoving coordinates that expand
with the universe. Equations in comoving coordinates
deal with the evolution of perturbations and the average
quantities (density, velocity, etc.) are scaled out. We will
discuss this in greater detail in the following section.

In N-Body simulations, each particle represents a very
large number of dark matter particles and interaction of
two particles in N-Body simulations should mimic the
interaction of two “fluid elements”. The fluid elements
being simulated have a physical size and at scales com-
parable to this, the fluid elements should feel much less
force than two point particles. This is done by assuming
that the particles have a finite size and density profile,
this leads to an effective softening of force at small scales.
Clearly, the force should be softened at scales compara-
ble to the (local) average inter-particle separation in the
N-Body simulation. A much smaller softening length can
lead to unwanted two body relaxation [35, 36]. The form
of force softening also plays an important role, force soft-
ened in such a way that it matches inverse square force
beyond the softening length is better [37, 38]. If the soft-
ened force approaches inverse square force only asymp-
totically then the difference is equivalent to error in force
at large separations and can lead to spurious effects.

This ends the overview of the physical requirements
and associated approximations for cosmological simula-
tions. The next section contains a detailed discussion
of cosmological N-Body simulations that take only grav-
itational interaction into account. It is very important
to understand limitations of N-Body simulations as us-
ing simulations outside the domain of validity can easily
lead to incorrect results. Limitations of N-Body simu-
lations are discussed in the following section. N-Body
simulations have been used to further our understand-
ing of gravitational clustering in the non-linear regime,
we discuss some relevant issues. This is followed by an
overview of other processes that must be taken into ac-
count for a complete study of galaxy formation, we also
discuss numerical implementations of these physical pro-
cesses in N-Body simulations.

II. GRAVITY ONLY SIMULATIONS

In this section we discuss N-Body simulations where
only gravitational interaction is taken into account. In
an N-Body simulation a given density-velocity field is rep-
resented by a set of particles [39]. Density as a function
of position is obtained by averaging over this distribution
of particles.

Evaluation of force and solving the equation of motion
are two key components of N-Body simulations. Setting
up relevant initial conditions for cosmological simulations
is another important aspect. We discuss the equation of
motion and its integration in the following subsection.
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This is followed by a discussion of algorithms for force
calculations. We end this section with a discussion on
setting up the initial conditions.

A. Equation of Motion

The equations that govern the evolution of a given
distribution of particles are obtained by starting with
the standard (Newtonian) equation of motion for a
set of gravitationally interacting particles in the physi-
cal/proper coordinates. Transforming to comoving co-
ordinates allows us to focus on perturbations in density
and velocity. Information about expansion of the uni-
verse appears in these equations through the scale factor
a(t), obtained as a solution to the Friedman equations
[1, 2, 3, 4, 5, 6, 7, 8]. The scale factor and other cosmo-
logical parameters in these equations carry information
about the average quantities that are scaled out in the
coordinate transformation.

ẍ + 2
ȧ

a
ẋ = − 1

a2
∇φ (1)

∇2φ = 4πGρ̄(t)a2δ =
3

2
H2

0Ω0

δ

a
(2)

Here x is the comoving position of a particle and is re-
lated to the physical/proper position r = a(t)x, with a(t)
being the scale factor. φ is the gravitational potential
due to density perturbations, H0 is the Hubble’s con-
stant and Ω0 is the density parameter of non-relativistic
matter at the present epoch [1, 2, 4, 5, 6, 9]. It is as-
sumed that the relativistic components do not cluster, or
are negligible in our universe. These equations are valid
for non-relativistic matter (v ≪ c, φ ≪ c2) at scales that
are much smaller than the Hubble radius (l ≪ c/H0)
[1, 2].

The expansion of the universe acts as a viscous force
in comoving coordinates. This drag opposes gravitational
infall and as a result the growth of density perturbations
is slower in an expanding universe. The time scale over
which gravitational infall occurs (in absence of expan-
sion) is comparable with the expansion time scale (a/ȧ),
therefore velocities of particles do not become very large
during infall. As a result integrating equation of motion
is simpler in cosmological N-Body simulations.

The basic idea for numerical integration is as follows.
The equation of motion expresses the second derivative
of position in terms of position, velocity and time. Posi-
tion and velocity at later times are expressed in terms of
position and velocity at earlier times using a truncated
Taylor series. The simplest truncation is not sufficiently
accurate and the resulting error is of order h2 in one
time step, where h is the time step [39, 40, 41]. The key
constraint in cosmological simulations is that force evalu-
ation is very time consuming and one wishes to minimise
the number of force evaluations per time step. Mainly
due to this reason, cosmological N-Body simulations use
the Leap-Frog method [39, 40, 41] for integrating the

equation of motion as it requires only one evaluation of
force and the error is of order h3. Performance of the
Leap-Frog integrator can be improved considerably by
making small modifications [42], but such modifications
are often more useful in non-cosmological N-Body simu-
lations.

Time step h is typically chosen so that momentum is
conserved and energy evolves according to the Irvine-
Layzer equation [43, 44, 45]. Monitoring consistency with
the Irvine-Layzer equation requires care and adds signif-
icantly to the number of operations to be carried out in
an N-Body simulation [46], hence it is usual to carry out
test runs and fix the value of h. Additional tests can be
devised, e.g. we can require that the clustering of power
law models evolves in a scale invariant manner even in
the strongly non-linear regime.

Optimum value of time step h depends on the dis-
tribution of particles and it changes as this distribution
evolves. It is common to use a time step that varies with
time so that the N-Body code does not use too small a
time step when a larger value will do, or use too large an
h when a smaller value is required for conserving integrals
of motion. It is possible to generalise even further and
choose a different h for each particle as well, motivation
for this being that a few particles in a very dense regions
require a small h whereas most particles are not in such
regions. There are several methods of implementing this
in N-Body simulations, e.g. see [47]. Main considera-
tion is to ensure that the positions and velocities of all
particles are synchronised at frequent intervals. Using
individual time steps can speed up N-Body simulations
by a significant amount.

B. Calculating Force

Gravitational force in the Newtonian limit falls as 1/r2,
hence it is a long range force and we cannot ignore force
due to distant particles. This makes calculation of force
the most time consuming task in N-Body simulations.
As a result, a lot of attention has been focused on this
aspect and many algorithms and optimising schemes have
been developed. We will discuss the major algorithms in
some detail and briefly summarise other developments.
We refer the reader to [48] for a detailed review. In the
following discussion, we also review some algorithms that
are not used in cosmological N-Body simulations as these
can be used in hybrid algorithms.

1. Direct Summation or Particle-Particle Method

The most obvious approach to the problem of force
calculation is to carry out a direct pairwise summation
over all particles. This is also called the Particle-Particle
(PP) method and this works very well for a small number
of particles. Most early simulations used this method,
see [49] for an early approach, [50] for a discussion of
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characteristics of this method, and, [51] for an overview
of the direct summation method. Earliest cosmological
simulations also used this method [52]. The number of
terms in the pairwise summation increases in proportion
with N2, where N is the number of particles. This rapid
variation limited the early cosmological simulations to
about 103 particles. Limitations of the PP approach were
realised as focus shifted to other methods.

The last decade has seen a revival of sorts for this
method with the advent of the GRAPE chip [53]. With
the latest version of GRAPE [54] it is possible to simulate
systems with more than 106 particles. Development of ef-
ficient parallel algorithms [55] has also made this method
competitive.

It is difficult to implement periodic boundary condi-
tions in the PP method. The only optimised method
available for this is the Ewald summation [56]. One of
the first concrete proposals to use this method in cosmo-
logical N-Body simulations is [57], though Ewald sum-
mation had been used for testing other methods [46].
Adding periodic boundary conditions to a PP code re-
mains a difficult proposition and this method is not used
very often for cosmological N-Body simulations.

2. Tree Method

The key limitation of the PP method is the rapid in-
crease in computational load with the number of parti-
cles in the N-Body simulation. This in turn arises from
adding individual contribution to the force due to each
particle. The force of a distant group of particles can be
approximated by the force due to a single pseudo parti-
cle located at the centre of mass of the group, with mass
equal to the total mass of the group of particles. This
approximation changes the scaling of the number of cal-
culations from N2 to N log N .

Efficient division of particles into groups can be done
by arranging particles in a tree structure [58, 59]. The
simulation volume is taken to be a cube and is divided
into smaller cubes with 1/8 the volume each at every
stage till the smallest cells have only one particle in them.
Larger cells serve as groups of particles for a rapid calcu-
lation of force. An essential ingredient is the criterion for
deciding whether a group of particles can be considered
distant or not. This is called the cell acceptance crite-
rion and the error in approximation is controlled by the
choice of this criterion [47, 58, 60] See [47, 60, 61, 62]
for a detailed study of characteristics of the tree code,
in particular of errors and timing as a function of the
distribution of particles and the cell acceptance criteria.

Accuracy of the tree approximation can be improved
by retaining information about moments of the particle
distribution in the group, e.g. the quadruple moment.

The tree code can be optimised by vectorising the cal-
culation of force [63, 64]. The set of acceptable distant
groups of particles is almost the same for neighbouring
particles and sharing of interaction lists amongst neigh-

bouring particles can further improve the performance
of the tree code [65]. The tree code can be parallelised
efficiently [66], and a parallel tree code has also been
implemented using the GRAPE chip [67]. The parallel
algorithm divides the simulation box into domains with
equal number of particles and calculations for each do-
main are done by a different processor. This scheme can
be improved by dividing into domains with equal com-
putational load [66].

Periodic boundary conditions are difficult to imple-
ment with tree codes, the level of difficulty being similar
to that with the PP codes. Some innovative schemes have
been tried [68]. Implementations using the Ewald sum-
mation [56] add a large computational overhead [47, 69].
But in spite of these difficulties, tree codes have been used
very effectively for cosmological N-Body simulations.

3. Fast Multipole Method

The performance of tree codes can be improved upon
by using including higher moments of mass distribu-
tion in cells. These and use of some other optimisation
schemes leads to the fast multipole method. The number
of computational operations in the fast multipole method
[70] scales as N , the number of particles.

Inclusion of higher moments can be also modelled in
terms of pseudo-particles for easy implementation on the
GRAPE chip [71, 72].

An explicitly momentum conserving extension of the
tree code has also been proposed and implemented
[73, 74], here the number of computations required scales
linearly with the number of particles.

These codes also suffer from the problem of open
boundary conditions and cannot be adapted very easily
to cosmological problems.

4. Particle-Mesh Method

Particle-Mesh (PM) method [39, 46, 75, 76, 77, 78, 79]
has been used extensively for cosmological simulations
and was the first method to be used for “large” (N ∼ 105)
simulations [75]. In PM codes, the fact that the Poisson’s
equation (eqn.2) is a simple algebraic equation in Fourier
space is combined with Fast Fourier Transforms (FFT)
[40, 41]. FFT requires sampling of functions at uniformly
spaced points, and a grid/mesh is used for this. Usually
the simulation volume is taken to be a cube with equal
number of grid/mesh points along each axis.

Particles are used for representing the density and ve-
locity field and we compute density at grid points by
using weight functions [39]. Density contrast δ and the
potential φ is defined on the grid for solving the Poisson
equation. Use of particles and a mesh gives this method
the very appropriate name.

By using Fourier methods we get periodic boundary
conditions for free. The use of a mesh also softens the
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force naturally at small scales, though this softening leads
to underestimation of force to fairly large scales [77, 78].
Thus it would seem that PM codes are ideal for cosmo-
logical N-Body simulations if we wish to study the large
scale structure of the universe.

The PM algorithm has been parallelised [80], typically
this involves using parallel FFT [81]. The computational
load is divided amongst processors by dividing the simu-
lation box into slabs of equal size.

Softening at the mesh scale ensures collisionless evolu-
tion, but this also means that PM codes cannot resolve
structure at length scales smaller than a mesh. Even in
dense regions force softening is at the grid scale. This se-
riously limits the effective dynamic range of simulations
run with PM codes. A related problem is that the use of
mesh makes force of a particle anisotropic at small scales.

Improving force resolution in high density regions can
improve the effectiveness of PM codes. Several tech-
niques have been proposed for achieving this as poor
resolution is the main shortcoming of PM codes for cos-
mological N-Body simulations.

5. Adaptive Mesh Refinement

In Adaptive Mesh Refinement (AMR) the grid is re-
fined in high density regions. A new mesh with smaller
spacing is introduced and the low resolution force calcu-
lated using the coarse global grid is improved upon using
the refined mesh [82, 83, 84, 85]. Several levels of refine-
ment can be introduced; indeed are required in order to
resolve substructure in dense haloes [84, 85]. Care is re-
quired to ensure conservation of momentum and angular
momentum in AMR codes.

6. P3M: Particle-Particle + Particle-Mesh

The basic idea here is to add a “correction” to the
force computed using the PM method. This correction
is computed by summing the contribution of close neigh-
bours using the particle-particle method, hence the name
PP+PM = P3M. It is assumed that this correction de-
pends only on the distance, i.e., it is assumed to be
isotropic, and is generally added out to a distance of
about 1.5 − 2 times the distance between neighbouring
mesh points[46, 86]. P3M was the first method to be used
for high resolution cosmological N-Body simulations.

The PP part of the calculation can also be done with
the GRAPE chip [87], though it requires some innovation
as the chip is designed to return the force and not the
short range correction.

The P3M has been parallelised, though load balanc-
ing for such a code is not very simple as the overdense
regions that require more CPU time are not distributed
uniformly [88, 89, 90] (see below).

The P3M has some undesirable features.

• The correction for the force is assumed to be
isotropic, whereas the standard PM force has
anisotropies at grid scale due to the anisotropic
mesh structure. Thus the resulting force (long
range + short range correction) must be anisotropic
at the grid scale.

• The short range correction in force is added only
up to 1.5−2 grid lengths, whereas the PM method
underestimates the force out to a much larger
distance[78].

• The refined inter-particle force is softened at scales
much smaller than the average inter-particle sep-
aration, this can lead to two body scattering and
relaxation [35, 36]. Results of astrophysical interest
like the correlation function may also get modified
in the process [91].

• P3M simulations slow down at late times when the
distribution of particles becomes highly clustered.
At this stage computation of the short range cor-
rection of force dominates the total number of com-
pute operations required.

While the last item here relates to the efficiency of
the code, other items in the list are far more serious as
these raise doubts about the accuracy with which force is
calculated. In order to retain the good features of P3M
codes and address some of the issues listed above, several
variations on the theme have been suggested.

7. Tree + PM = TPM, GOTPM, TreePM . . .

In this section we discuss a series of hybrid codes that
combine the PM and the tree method in the same spirit
as the PP and PM methods are combined in the P3M
code. We will discuss these in order of the significance of
departure from the P3M method.

• The Grid Of Trees PM (GOTPM) code [92] re-
places the PP part of P3M codes with a local tree in
each region. This speeds up calculation of the short
range force correction and the time taken for this
calculation is less sensitive to the degree of clus-
tering. This code takes care of the last undesirable
feature listed for P3M codes but it does not address
any of the other issues. GOTPM is a parallel code
where multiple levels of decomposition is used to
achieve load balance [92].

• The TPM code [93, 94, 95] also addresses the prob-
lem of two body scattering in P3M codes. In this
code the short range correction to force is added
only if the particle is in a high density region. Den-
sity is computed at the position of each particle and
a local tree is constructed in high density regions
for computing the short range correction to the long
range PM force. If the high density regions have a
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large number of particles then the region is frag-
mented into sub-regions. TPM is a parallel code,
ideally suited for distributed parallel computing.

• The Tree + PM (TreePM) code [96] makes sig-
nificant changes to the P3M approach. The force
is partitioned between a short range and a long
range component instead of using the force com-
puted with a PM code as the long range force. In
the TreePM code the long range force is truncated
below a certain scale rs and the long range force
becomes very small below this scale. In particular
the long range force is small at grid scale if rs is
chosen appropriately and therefore anisotropies in
the long range force are also less important com-
pared to the P3M, GOTPM and TPM codes. The
short range force is computed using a global tree.
The short range force has to be taken into account
out to larger distances than in a typical P3M code.
By tuning the model parameter rs and a few other
parameters in the code, it is possible to keep er-
ror in force below 1% for most of the particles [97].
The TreePM code is fairly simple to implement as
the mathematical model of this method is well de-
fined [97, 98, 99]. This code has been parallelised
in a manner similar to that used for tree codes with
some provision for the long range force calculation
[100]. The TreePM code solves all the other prob-
lems of a P3M code but it does not address the
issue of two body scattering and relaxation.

• The Adaptive TreePM (ATreePM) code [101] ad-
dresses the problem of two body scattering in
TreePM code by using an adaptive softening length
instead of a constant softening length. This can be
thought of as an equivalent of AMR without using
a refined grid. Local number density of particles is
used to determine the softening length for particles.
In order to ensure momentum conservation, force is
symmetrised for particles that are closer than the
softening length of either one of the two particles.
Determination of local density and explicit sym-
metrisation add a computational overhead. This is
offset to some extent by the speedup at early times
when the softening length is large for all the parti-
cles. Using a hierarchy of time steps optimises this
method further.

The variety of techniques used for computing gravita-
tional force discussed above is evidence of the work being
done in developing better algorithms. It is also evident
that full use has been made of parallel computing in order
to achieve good performance.

It is important to construct ways of comparing perfor-
mance of different N-Body codes. We list some sugges-
tions here.

1. Dynamic range: The range of scales over which in-
teraction force is computed reliably. There is rarely
any problem at larger scales so the dynamic range

is typically determined by the smallest separations
over which the force errors are small. A useful unit
for this scale is the average inter-particle separa-
tion. We can fix this scale by requiring that at all
larger scales error in force due to one particle be
less than 1%. For good codes, this scale should
coincide with the softening length.

2. Trajectories of particles: The code should integrate
the equation of motion in a reproducible manner
and momentum should be conserved. The N-Body
code should reproduce well known results about the
correlation function and other statistical measures
in the quasi-linear regime. Time step should be
much smaller than the crossing time of particles in
dense haloes, the ratio of time step to the smallest
crossing time is a good estimate and this number
should be smaller than 10−1.

3. Efficiency: The N-Body code should be efficient
and we should be able to run large simulations in
as little time as possible. This requirement is likely
to conflict with the first two requirements, and one
should compare both the dynamic range and effi-
ciency. It has been proposed that error in force
should be plotted against time taken for comput-
ing force for comparing codes [47], we believe this
to be the correct approach.

4. Resource requirement: The N-Body code must
store positions and velocities of all the particles,
i.e., at least 6 numbers per particle. Most advanced
codes discussed here store many more numbers per
particle in order to speed up force calculation. This
requirement can restrict our ability to run large
simulations as the memory on computers is limited.
In case of parallel codes, the relevant quantity is the
maximum memory utilisation per particle for one
processor.

This ends the discussion of different algorithms for
computing force in cosmological N-Body simulations.

C. Setting up Initial Conditions

N-Body simulations are generally started from fairly
homogeneous initial conditions, i.e. the density contrast
is much smaller than unity at all scales of interest in the
simulation. In this regime we can use linear perturbation
theory to compute all quantities of interest. In linear the-
ory, the evolution of density contrast can be described as
a combination of a growing and a decaying mode. At
late times only the growing mode survives and hence we
must choose the initial density and velocity field to put
the system in the growing mode. Density contrast δ is re-
lated to φ through eqn.2, and in linear theory the velocity
field can also be expressed in terms of the gravitational
potential φ in the growing mode. Therefore our problem
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reduces to generating the gravitational potential and us-
ing it to set up the density contrast and velocity field.
The relation between the velocity and the potential in
Zel’dovich approximation [18] is the same as that in the
linear theory, therefore it is often said that the Zel’dovich
approximation is used to set up the initial conditions for
N-Body simulations [102].

Given an initial gravitational potential φin, there are
two schemes for generating the initial density field.

• The particles are distributed uniformly and their
masses are chosen so that M = ρ̄(tin)(1 + δin)dV ,
where δin is evaluated at the position of the parti-
cle. Here dV is the volume in the simulation box
per particle and ρ̄(tin) is the average density at
time tin. We can either start with zero velocities,
in which case we have to increase the amplitude
of φin by a factor 5/3 to account for the presence
of decaying mode. Alternatively we can choose to
put the system in the growing mode and assign the
appropriate velocity to each particle.

• Starting with a uniform distribution the particles
are displaced using the velocity in linear theory
for the growing mode. It is important to ensure
that the maximum displacement is smaller than the
average inter-particle separation in the simulation
box. It can be shown that the resulting distribu-
tion of particles will represent the required density
field [79] if the initial distribution did not have any
inhomogeneities. We can retain the initial velocity
field used to displace particles. If the amplitude
of displacements used is larger than the average
inter-particle separation, it becomes necessary to
recompute the potential from displaced positions
and assign initial velocities with this potential [46].
Such large displacements can lead to an incorrect
realisation of the power spectrum.

Schemes outlined above require an initial uniform dis-
tribution of particles. This is important as any inhomo-
geneities present in the initial distribution will combine
with the density perturbations that are generated by dis-
placing particles and will modify the initial conditions.

• The commonly used solution is to place particles
on a cubic grid, this is a uniform but not a random
distribution.

• An intuitive solution is to put particles at random
inside the simulation box. This distribution has

√
n

fluctuations which result in spurious clustering that
tend to dominate over the fluctuations we wish to
simulate.

• Particles are placed in lattice cells but at a random
displacement from the centre of the cell [79]. This
removes the regularity of grid without sacrificing
uniformity. The amplitude of fluctuations can be
controlled by reducing the amplitude of displace-
ment about the centre of the cell.

• The Glass initial conditions are obtained by evolv-
ing an arbitrary distribution of particles in an N-
Body simulation with a repulsive force. It can be
shown that the amplitude of perturbations oscil-
lates and decreases as a−1/4 [79].

1. The Initial Gravitational Potential

The initial density field is taken to be a Gaussian ran-
dom field in most models. Linear evolution does not
modify the statistics of density fields except for evolv-
ing the amplitude of perturbations. As the potential and
density contrast are related through a linear equation, it
follows that the gravitational potential is also a Gaussian
random field. A Gaussian random field is completely de-
scribed in terms of its power spectrum [103]. The Fourier
components of a Gaussian random field (both the real
and the imaginary part) are random numbers with a nor-
mal distribution with variance proportional to the power
spectrum of the random field. This property is used to
generate the Gaussian random field in Fourier space and
an inverse transform gives us the initial potential in real
space.

If some special features are required in the initial con-
ditions, e.g., if we want a large planar perturbation, then
we need to impose constraints on the Gaussian random
field to be generated [104, 105, 106, 107]. Gaussian ran-
dom fields with a variable resolution [108] are needed for
adaptive mesh refinement codes.

III. LIMITATIONS OF N-BODY SIMULATIONS

Here we discuss the scope and limitations of N-Body
simulations. We will consider several issues concerning
the domain of validity for N-Body simulations.

N-Body simulations take initial density fluctuations
over a finite range of scales into account. Do the fluctu-
ations that are not taken into account make a difference
to results of N-Body simulations?

Several N-Body studies have shown that fluctuations
at small scales do not affect structure that forms at large
scales [109, 111, 112, 113] in a significant manner. Effects
are of course there if larger scales are in linear regime
but by the time larger scales reach δ ∼ 1, influence of
smaller scales is ignorable. These studies used power
spectrum, correlation function and visual appearance to
reach this conclusion. Therefore in any N-Body simu-
lations that are used, the scale where root mean square
fluctuations are unity should be clearly resolved for re-
sults to be reliable and independent of the small scale
cutoff. On the other hand we expect some effect of small
scale fluctuations on how larger density perturbations re-
lax [114, 115, 116, 117, 118]. We can conclude that small
scale fluctuations do not influence large scales in a sig-
nificant manner but it is an important issue and further
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FIG. 1: Root mean square fluctuations in mass σ are shown
as a function of scale. The amplitude of σ is for the ΛCDM
model with ΩΛ = 0.7, ΩB = 0.05, h = 0.7 and n = 1.0.
The linearly extrapolated amplitude is plotted here and no
non-linear corrections have been included in generating this
plot.

studies are required to make the effect or the lack of it
more quantitative.

N-Body simulations assume that the density in the
simulation box is same as the average density in the uni-
verse. Therefore we must choose a simulation box such
that the amplitude of fluctuations in the universe (or
the model being simulated) at that scale is ignorable.
Studies have shown that violating this requirement leads
to an underestimate of correlation function though the
mass function of small mass haloes does not change by
much [119, 120]. Effects at large scales can be signifi-
cant [121, 122]. In other words, the formation of small
haloes is not disturbed but their distribution is affected
by non-inclusion of long wave modes. One way of quan-
tifying fluctuations at large scales, and hence their effect
on structure formation at small scales is the amplitude of
fluctuations at the scale of the simulation box. Figure 2
shows lines of constant root mean square fluctuations in
mass σ. These lines are plotted as a function of scale
and redshift for the ΛCDM model (ΩΛ = 0.7, ΩB = 0.05,
h = 0.7 and n = 1.0). Curves are for σ = 0.1, 0.05, 0.025
and 0.01 in ascending order. We can find out the lowest
redshift up to which a given simulation box may be used
once we fix σ that is considered acceptable at the box
size.

However, a threshold in σ does not carry any infor-
mation about the shape of the power spectrum and that
is extremely relevant here. We find that the best way

FIG. 2: Lines of constant root mean square fluctuations in
mass σ are plotted as a function of scale and redshift for the
ΛCDM model (see text for details). Curves are for σ = 0.1,
0.05, 0.025 and 0.01 in ascending order. We can find out
the lowest redshift up to which a given simulation box may
be used once we fix σ that is considered acceptable at the
box size. Such a threshold does not carry any information
about the shape of the power spectrum. Comparing with an
approach based on convergence of collapsed mass, we find that
σ = 0.025 is a reasonable choice at low redshifts [123].

of quantifying the effect of long wave modes is to check
whether including them in the simulation will change the
number of massive haloes or not [123]. This can be es-
timated using the Press-Schechter mass function [124].
If there is a measurable effect on the number of haloes
and collapsed mass, the long wave modes are relevant
and must be considered. The large scale structure in N-
Body simulations does not converge until all such modes
are taken into account [123]. Our results for the ΛCDM
model are:

• A box size of 150h−1Mpc is needed for simulations
that are evolved to the present epoch (z = 0).

• Simulations that are evolved up to z ∼ 3 should be
50h−1Mpc across for generic applications.

• Simulations for studying early reionisation (z ≃ 10)
should be at least 20h−1Mpc across if these are to
have a representative density field.

Comparing these with the curves in figure 2, we find that
σ = 0.025 is a reasonable choice except at very high
redshifts. σ = 0.01 is a better choice at higher redshifts,
and this variation in the threshold value is indicative of
the dependence on the shape of the power spectrum [123].
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The effect of a finite simulation box on modes com-
parable with the box size can be estimated analytically
[125] and this can also be used to check whether the cho-
sen physical size of the simulation box is sufficiently large
or not.

Methods have been developed to take the missing long
wave modes into account [126, 127], these are wave modes
larger than the simulation box. These methods evolve a
realisation of long wave modes independently and their
effect is combined with the evolution of small scales in the
N-Body simulation. This allows one to work with smaller
simulation boxes, but the methods have limitations and
cannot be used for simulating very small regions. Indeed,
the criterion based on convergence of collapsed mass can
be used to fix the smallest box size for which these meth-
ods can be employed [123].

Other limitations relate to two body relaxation, poor
accuracy in force calculation and discreteness. It has
been asserted that in collisionless simulations forces are
not required to be very accurate as the discreteness noise
dominates over errors in force [128, 129]. This is more
relevant for non-cosmological simulations, where many of
these tests were carried out. More recent studies of force
softening have pointed out that the form of softening
can be very important [37] in controlling the discreteness
noise.

Tests that are specific for cosmological simulations [91]
show that unless mass and force resolution are compa-
rable, two body relaxation can leave detectable signa-
tures. Thus it is important to avoid discreteness effects
and maintain parity between mass and force resolution
in N-Body codes.

IV. NON-LINEAR GRAVITATIONAL

CLUSTERING

N-Body simulations have been used extensively to un-
derstand aspects of gravitational clustering. Of the four
fundamental interactions, gravity is the weakest and it is
impossible to carry out laboratory experiments in grav-
itational dynamics of a many body system as other in-
teractions overwhelm gravity at these scales. N-Body
simulations can be used as a test-bed for doing numer-
ical experiments in order to understand various aspects
of non-linear gravitational clustering. Indeed, we cannot
claim to have understood the process of structure for-
mation till we develop sufficient insight so as to make
N-Body simulations redundant except for the purpose of
computing detailed predictions for models of structures
formation.

Considerable progress has been made using quasi-
linear approximations, non-linear scaling relations and
N-Body simulations, though many important questions
are yet to be settled. Basic premise here is that if we are
interested in only a limited amount of information about
the final state then it should be possible to simplify the
calculation by making an ansatz that captures the essen-

tial physical process at work. One can also invert this
and find out which physical process dominates in a given
situation. We review some of the issues that have been
studied in detail.

The distribution of matter is very close to homogeneous
at early times, how is it confined to central region of
potential wells at late times?

• Infall is described very well by first order La-
grangian perturbation theory. This, extrapolated
to mildly non-linear density contrasts is called the
Zel’dovich approximation [18]. This approximation
suggests that the first structures to form as a re-
sults of collapse are typically surfaces of high den-
sity, the so called pancakes. Comparisons with N-
Body simulations show this to be a very good ap-
proximation up to this stage [130]. However, these
surfaces of high density thicken and disappear if
we extrapolate the approximation scheme to late
times, whereas these pancakes do not thicken in N-
Body simulations. Clearly, the Zel’dovich approxi-
mation and even higher order Lagrangian perturba-
tion theory [131, 132, 133] lacks the key ingredient
that helps confine matter to potential wells.

• An artificial viscosity term can be added to the
equation of motion, eqn.(1), and it can be trans-
formed into Burger’s equation [19]. This prevents
interpenetration of infalling streams and pancakes
remain thin, this is called the Adhesion approxi-
mation [19, 20]. The approximation puts matter in
the right place but fails to find a physical reason
for the viscosity term.

• The equation of motion, eqn.(1), contains a velocity
dependent term where the expansion of the uni-
verse acts as a viscous drag. Further, it can be
shown that the gravitational potential φ varies very
slowly. If we assume that the potential changes
at the rate expected in the linear theory while re-
taining its initial spatial dependence then the drag
force is sufficient to confine matter to the central
regions of potential wells [22, 23]. This approxi-
mation (Linear Evolution of Potential (LEP), aka

Frozen Potential Approximation (FPA)) compares
well with N-Body simulations. We can conclude
that the drag term in the equation of motion plays
an important role in confining matter to potential
wells and the interaction of infalling particles plays
a less significant role.

How strongly do density fluctuations at small scales in-
fluence density perturbations at large scales? This is
relevant as N-Body simulations ignore perturbations at
scales smaller than those probed in the simulation.

• If there are no perturbations at large scales then
small scale fluctuations generate a P (k) ∝ k4 spec-
trum at small k, this effect can be derived in the
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second order perturbation theory as well as from
the full set of equations [1]. Amplitude of this limit-
ing spectrum increases rapidly at early times [111].
This effect of course cannot be seen if there are fluc-
tuations at large scales with P (k) ∝ kn with n < 4
at small k.

• If there are small density perturbations present at
large scales then there is a discernable visual ef-
fect of small scales on perturbations at large scales
[109, 110, 111, 112, 113] for generic initial condi-
tions. Small scales can influence the power spec-
trum and higher moments of particle distribution
at these scales, the detailed effect depends on the
form of fluctuations at small scales [134].

• If there are non-linear density perturbations
present at large scales then there is no discern-
able visual effect of small scales on perturbations
at large scales [109, 110, 111, 112, 113] for generic
initial conditions. There is no significant effect in
the power spectrum or the two point correlation
function [109, 111] in such a case. If the small
scales and the scale of non-linearity are well sep-
arated then there is no effect in higher moments
either [134].

• Clearly, non-linear gravitational clustering works to
remove the effect of perturbations at large scales.

• For special initial conditions, it has been found that
collisions between clumps formed due to small scale
perturbations can lead to a faster relaxation of per-
turbations at large scales. E.g., if larger scales are
modelled as a single plane wave then the result-
ing pancake is thinner in presence of significant
small scale fluctuations [118]. It remains to be seen
whether this is an important effect for generic ini-
tial conditions.

Does gravitational clustering erase memory of initial con-
ditions? Is there a one to one correspondence between
some characterisation of initial perturbations and the fi-
nal state? Note that this is different from removing ef-
fects of perturbations at scales much smaller than the
scale of non-linearity. Clearly, if the answer to the first
question is yes then we cannot recover any information
about the initial density perturbations from determina-
tion of density perturbations in the non-linear regime.

• N-Body simulations show that gravitational clus-
tering does not erase memory of initial conditions
[135, 136, 137, 138, 139, 140]. The final power spec-
trum is a function of the initial power spectrum and
this relationship can be written as a one step map-
ping.

• The functional form of this mapping depends on
the initial power spectrum [140].

• An analytical understanding of some aspects of this
mapping can be developed using simple models and
approximations [141, 142].

• It is found that density profiles of massive haloes
have a form independent of initial conditions [143,
144, 145]. It is important to note that there is
considerable scatter in density profiles obtained
from N-Body simulations and it is difficult to state
whether a given functional form is always the best
fit or not. There are a large number of recent stud-
ies (e.g. see [146, 147]) but most of these focus on
the ΛCDM model and do not explore other initial
conditions.

Is it possible to predict the masses and distribution of
haloes that form as a result of gravitational clustering?

• The initial density field is taken to be a Gaussian
random field, and for hierarchical models [1] the
simple assumption that each peak undergoes col-
lapse independent of the surrounding density dis-
tribution can be used to estimate the mass function
[124, 148] and several related quantities.

• N-Body simulations show that this simple set of
approximations is incorrect, however the resulting
mass function is fairly accurate over a wide range
of masses.

• Merger rates can be computed using the extended
Press-Schechter formalism [148], these are useful for
many applications [149, 150, 151]. It is also possi-
ble to estimate clustering properties of haloes using
this formalism [152, 153].

• Modifying some of these assumptions can lead to
improved predictions [154, 155, 156].

We have highlighted some of the key issues in non-
linear gravitational clustering in this section and re-
viewed how N-Body simulations and various approxima-
tions have been used to develop insight. N-Body simula-
tions have been and are being used for a variety of other
applications, the most notable being computing detailed
predictions for models of structure formation.

V. GASTROPHYSICAL EFFECTS

N-Body simulations that take only gravitational in-
teractions into account can be used to obtain the large
scale distribution of galaxies and clusters. Further details
can only be obtained using simulations with gas physics.
There are two very different approaches to including gas
physics in N-Body simulations.

The classical approach is to use a grid to solve fluid
equations [157, 158, 159, 160, 162, 163, 164, 165, 166,
167, 168]. Fluid interactions are short range and infor-
mation from nearby grid points is sufficient to evolve fluid
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properties at any grid point. Of course, fluids must re-
spond to gravitational field of the matter distribution.
This type of a code is well adapted for capturing shocks
and discontinuities. Resolution of the code can be en-
hanced in high density regions by using mesh refinement.
In cosmological simulations it is important to improve
the mass resolution of dark matter particles along with
an enhancement in resolution for hydrodynamics. Grid
codes can be easily generalised to include other effects
such as magnetohydrodynamics [169, 170]. Such codes
have been used effectively for cosmological applications
[157, 162, 164, 165, 166, 167, 168].

The Smooth Particle Hydrodynamics (SPH) [171, 172]
where particles are assigned fluid properties is a very dif-
ferent approach to the same problem. The fluid prop-
erties like pressure, density, temperature, etc. at any
point can be found by averaging over particles in the re-
gion using a weight function. Use of interpolation for
determining fluid properties makes it impossible to re-
solve shocks and discontinuities in SPH codes. There
are several known limitations [173, 174, 175] that one
should be aware of. SPH codes are relatively easy to im-
plement and several implementations are in use. Several
implementations for cosmological simulations are in use
[176, 177, 178]. Variations of SPH with focus on entropy
equation [179, 180] or on simulation of multi-phase media
[181, 182] have been developed.

Both types of codes have been compared and give sim-
ilar results [183, 184] for astrophysical applications.

Effects other than hydrodynamics can also be incor-
porated in a similar fashion in both types of codes. For
example elementary chemical reactions like formation of
Hydrogen molecules, cooling, heating, etc. are impor-
tant local effects. Key effects like star formation and
feedback from stellar and other sources are difficult to
include as vastly different scales are of relevance. As a re-
sult, much of the treatment of these effects has remained
phenomenological.

Radiation transport is a non-local effect and is difficult
to take into account [185, 186, 187, 188, 189, 190, 191].
The radiation field is either assumed to be isotropic and
homogeneous, or it is assumed to originate at a few point
sources. The time scales over which the radiation field
evolves are much shorter than most other time scales in
the problem. Thus we can assume that the density and
velocity field do not change while studying evolution of
the radiation field.

State of the art simulations can be used for studying a
variety of problems. We summarise three systems here:

• The inter-galactic medium [192, 193, 194, 195, 196,
197] is believed to contain mostly pristine mate-
rial with elements other than Hydrogen and Helium
present in only trace amounts. The radiation field
can be assumed to be isotropic and homogeneous at
z ≤ 3, though at higher redshifts it is patchy. Den-
sities in the inter-galactic medium do not become
very large.

• The intra-cluster medium [99, 184, 198, 199, 200,
201, 202, 203, 204, 205, 206, 207] is believed to
be close to hydro-static equilibrium. Gas in the
intra-cluster medium is so hot that many radiative
processes can be ignored safely. There are several
sources of energy in clusters of galaxies, most of
these are distributed uniformly with some contri-
bution from a central AGN. Magnetic fields may
be important enough to make the physics of the
problem more complicated.

• Formation of first stars [208, 209, 210, 211,
212, 213, 214, 215] requires simulating cooling
of Hydrogen (mainly) through various processes
till molecules form and lead to temperatures low
enough for formation of stars.

Focus in future will be on incorporating further effects
so that more complex problems like galaxy formation
can be studied in full detail. N-Body simulations are
useful not only as tools for evolving complex systems,
these can also be used to understand which effects play a
more important role in different phases of this evolution.
Next decade holds the promise of understanding physics
of galaxy formation with help of N-Body simulations.
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