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Several mechanisms have been proposed to understand the baryon asymmetry:

1. GUT Baryogenesis. Grand Unified Theories unify the gauge interactions of the strong,
weak and electromagnetic interactions in a single gauge group. They inevitably violate
baryon number, and they have heavy particles, with mass of order Mcut = 10'® GeV, whose
decays can provide a departure from equilibrium. The main objections to this possibility come
from issues associated with inflation. While there does not exist a compelling microphysical
model for inflation, in most models, the temperature of the universe after reheating is well
below Mgut. But even if it were very large, there would be another problem. Successful
unification requires supersymmetry, which implies that the graviton has a spin-3/2 partner,
called the gravitino. In most models for supersymmetry breaking, these particles have
masses of order TeV, and are very long lived. Even though these particles are weakly
interacting, too many gravitinos are produced unless the reheating temperature is well below
the unification scale -- too low for GUT baryogenesis to occur.

2. Electroweak baryogenesis. The Standard Model satisfies all of the conditions for
baryogenesis, but any baryon asymmetry produced is far too small to account for
observations. In certain extensions of the Standard Model, it is possible to obtain an
adequate asymmetry, but in most cases the allowed region of parameter space is very small.

3. Leptogenesis. The possibility that the weak interactions will convert some lepton number
to baryon number means that if one produces a large lepton number at some stage, this will
be processed into a net baryon and lepton number at the electroweak phase transition. The
observation of neutrino masses makes this idea highly plausible. Many but not all of the
relevant parameters can be directly measured.

4. Production by coherent motion of scalar fields (the Affleck-Dine mechanism), which
can be highly efficient, might well be operative if nature is supersymmetric.




2. Electroweak baryogenesis.

Below the electroweak scale of ~ 100 GeV, the sphaleron quantum tunneling
process that violates B and L conservation (but preserves B - L) in the Standard
Model is greatly suppressed, by ~ exp(-21/aw) ~ 1065, But at T ~ 100 GeV this
process can occur. It can satisfy all three Sakharov conditions, but it cannot
produce a large enough B and L for baryogenesis. However, it can easily convert L
into a mixture of B and L (Leptogenesis). Here's an introduction to sphalerons:

When one quantizes the Standard Model, one finds that the baryon number current is
not exactly conserved, but rather satisfies
~ 1 .4)’ “\a ra j B n ~
(_/“__}g, = 16;._2}““,1‘“” = &?TI}';“,}“H.
The same parity-violating term occurs in the divergence of the lepton number
current, so the difference (the B - L current) is exactly conserved. The parity-
violating term is a total divergence
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j=3jg — 32 K* is conserved. In perturbation theory (i.e., Feynman diagrams)

K* falls to zero rapidly at infinity, so B and L are conserved.




In abelian -- i.e. U(1) -- gauge theories, this is the end of the story. In non-abelian
theories, however, there are non-perturbative field configurations, called instantons,
which lead to violations of B and L. They correspond to calculation of a tunneling
amplitude. To understand what the tunneling process is, one must consider more
carefully the ground state of the field theory. Classically, the ground states are field
configurations for which the energy vanishes. The trivial solution of this condition is

A = 0, where A is the vector potential, which is the only possibility in U(1). But a “pure
gauge” is also a solution, where
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where g is a gauge transformation matrix. There is a class of gauge transformations

g, labeled by a discrete index n, which must also be considered. These have the form
Gn(B) = eI EET/2 where f(x) — 2m as ¥ — o0, and f(¥) — 0 as ¥ — 0.

The ground states are labeled by the index n. If we evaluate the integral of the

current K'# we obtain a quantity known as the Chern-Simons number

| g ) 2/3 |
s / Bk =g / d*rvegpTr(g~" 0:99~ 05997 Org). For g = gn,nys =n.

S~ 16m2 ~ 1672




Schematic Yang-Mills vacuum structure. At
zero temperature, the instanton transitions
between vacua with different Chern-Simons
numbers are suppressed. At finite
temperature, these transitions can proceed
via sphalerons.

In tunneling processes which change the Chern-Simons number, because of the
anomaly, the baryon and lepton numbers will change. The exponential suppression
found in the instanton calculation is typical of tunneling processes, and in fact

the instanton calculation is nothing but a field-theoretic WKB calculation. The
probability that a single proton has decayed through this process in the history of the
universe is infinitesimal. But this picture suggests that, at finite temperature, the rate
should be larger. One can determine the height of the barrier separating
configurations of different ncs by looking for the field configuration which corresponds
to sitting on top of the barrier. This is a solution of the static equations of motion with
finite energy. It is known as a “sphaleron”. It follows that when the temperature is of
order the ElectroWeak scale ~ 100 GeV, B and L violating (but B - L conserving)
processes can proceed rapidly.




This result leads to three remarks:

1. If in the early universe, one creates baryon and lepton number, but no net
B - L, B and L will subsequently be lost through sphaleron processes.

2. If one creates a net B — L (e.g. creates a lepton number) the sphaleron
process will leave both baryon and lepton numbers comparable to the original
B — L. This realization is crucial to the idea of Leptogenesis.

3. The Standard Model satisfies, by itself, all of the conditions for baryogenesis.
However, detailed calculations show that in the Standard Model the size of the

baryon and lepton numbers produced are much too small to be relevant for
cosmology, both because the Higgs boson is more massive than ~ 80 GeV and
because the CKM CP violation is much too small. In supersymmetric
extensions of the Standard Model it is possible that a large enough matter-
antimatter asymmetry might be generated, but the parameter space for this is
extremely small. (See Dine and Kusenko for details and references.)

This leaves Leptogenesis and Affleck-Dine baryogenesis as the two most
promising possibilities. What is exciting about each of these is that, if they are
operative, they have consequences for experiments which will be performed at
accelerators over the next few years.




3. Leptogenesis.

There is now compelling experimental evidence that neutrinos have mass, both from
solar and atmospheric neutrino experiments and accelerator and reactor
experiments. The masses are tiny, fractions of an eV. The “see-saw mechanism” is
a natural way to generate such masses. One supposes that in addition to the
neutrinos of the Standard Model, there are some SU(2)xU(1)-singlet neutrinos, N.
Nothing forbids these from obtaining a large mass. This could be of order Mgur, for
example, or a bit smaller. These neutrinos could also couple to the left handed
doublets vi, just like right handed charged leptons. Assuming that these couplings
are not particularly small, one would obtain a mass matrix, in the {N, v.} basis, of the
form

M= (e W)

This matrix has an eigenvalue Miv
T

The latter number is of the order needed to explain the neutrino anomaly for

M ~ 1073 or so, i.e. not wildly different than the GUT scale and other scales which
have been proposed for new physics. For leptogenesis (Fukugita and Yanagida,
1986), what is important in this model is that the couplings of N break lepton number.
N is a heavy particle; it can decay both to h + v and h + v-bar, for example. The
partial widths to each of these final states need not be the same. CP violation can
enter through phases in the Yukawa couplings and mass matrices of the N’s.




As the universe cools through temperatures of order the of masses of the N’s, they
drop out of equilibrium, and their decays can lead to an excess of neutrinos over
antineutrinos. Detailed predictions can be obtained by integrating a suitable set of
Boltzmann equations. These decays produce a net lepton number, but not baryon
number (and hence a net B — L). The resulting lepton number will be further processed
by sphaleron interactions, yielding a net lepton and baryon number (recall that
sphaleron interactions preserve B — L, but violate B and L separately). Reasonable
values of the neutrino parameters give asymmetries of the order we seek to explain.

It is interesting to ask: assuming that these processes are the source of the observed
asymmetry, how many parameters which enter into the computation can be measured,
i.e. can we relate the observed number to microphysics. It is likely that, over time,
many of the parameters of the light neutrino mass matrices, including possible CP-
violating effects, will be measured. But while these measurements determine some of
the couplings and masses, they are not, in general, enough. In order to give a precise
calculation, analogous to the calculations of nucleosynthesis, of the baryon number
density, one needs additional information about the masses of the fields N. One either
requires some other (currently unforseen) experimental access to this higher scale
physics, or a compelling theory of neutrino mass in which symmetries, perhaps,
reduce the number of parameters.




4. Production by coherent motion of scalar fields (the Affleck-Dine mechanism)

The formation of an AD condensate can occur quite generically in cosmological
models. Also, the AD scenario potentially can give rise simultaneously to the ordinary
matter and the dark matter in the universe. This can explain why the amounts of
luminous and dark matter are surprisingly close to each other, within one order of
magnitude. If the two entities formed in completely unrelated processes (for example,
the baryon asymmetry from leptogenesis, while the dark matter from freeze-out of
neutralinos), the observed relation Qpm ~ Qbaryon is fortuitous.

In supersymmetric theories, the ordinary quarks and leptons are accompanied by
scalar fields. These scalar fields carry baryon and lepton number. A coherent field, i.e.,
a large classical value of such a field, can in principle carry a large amount of baryon
number. As we will see, it is quite plausible that such fields were excited in the early
universe. To understand the basics of the mechanism, consider first a model with a
single complex scalar field. Take the Lagrangian to be
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This Lagrangian has a symmetry, ¢ — €'%?, and a corresponding conserved current,
which we will refer to as baryon current:

_;;3 = 2( &"Hod— odto’ ).

It also possesses a “CP” symmetry: @ «— @+. With supersymmetry in mind, we will
think of m as of order Mw.




Let us add interactions in the following way, which will closely parallel what happens in
the supersymmetric case. Include a set of quartic couplings:

= /\\0’4 + ed®0* + do* + c.c.

These interactions clearly violate B. For general complex € and 9, they also violate
CP. In supersymmetric theories, as we will shortly see, the couplings will be extremely
small. In order that these tiny couplings lead to an appreciable baryon number, it is
necessary that the fields, at some stage, were very large.

To see how the cosmic evolution of this system can lead to a non-zero baryon
number, first note that at very early times, when the Hubble constant, H » m, the mass

of the field is irrelevant. It is thus reasonable to suppose that at this early time ¢ = o
» 0. How does the field then evolve? First ignore the quartic interactions. In the

expanding universe, the equation of motion for the field is as usual
o+ 3Ho + ’j" = 0.

o

At very early times, H » m, and so the system is highly overdamped and essentially
frozen at @o. At this point, B = 0.




Once the universe has aged enough that H « m, @ begins to oscillate. Substituting H
=1/2 tor H = 2/3 t for the radiation and matter dominated eras, respectively, one finds

that '
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In either case, the energy behaves, in terms of the scale factor, R(t), as
R,

E == m? H t—'
R‘

Now let’s consider the effects of the quartic couplings. Since the field amplitude
damps with time, their significance will decrease with time. Suppose, initially, that ¢ =
(o is real. Then the imaginary part of ¢ satisfies, in the approximation that € and & are
small,

i + 3HD; + m*o; =~ Im(e + 9 _,u(;;?,,

For large times, the right hand falls as t-92, whereas the left hand side falls off only as
t=3/2, As a result, baryon number violation becomes negligible. The equation goes over
to the free equation, with a solution of the form

Im(e 4+ )3 Im(e + &)

$i = @r—7—1372 sin(mt + d,) (radiation), i = Qm & — sin(mt + &) (matter),
m=(mt)°/ m-t

The constants can be obtained numerically, and are of order unity
a. =08 a,=08 4,=-091 I,, =1.54.




But now we have a non-zero baryon number; substituting in the expression for the
current, 2

ng = 2arIm(e + §)——— =

, sin(d, + 7/8) (radiation)
mimit)=

F = (j)g
”B — 2(17111111[6 + f) l ; O
m(mt )=

siNn(dmy, ) (matter).

Two features of these results should be noted. First, if € and © vanish, ng vanishes.
If they are real, and @o is real, ng vanishes. It is remarkable that the Lagrangian
parameters can be real, and yet @, can be complex, still giving rise to a net baryon
number. Supersymmetry breaking in the early universe can naturally lead to a very
large value for a scalar field carrying B or L. Finally, as expected, ng is conserved at

late times.

This mechanism for generating baryon number could be considered without
supersymmetry. In that case, it begs several questions:

« What are the scalar fields carrying baryon number?
« Why are the ¢* terms so small?
* How are the scalars in the condensate converted to more familiar particles?

In the context of supersymmetry, there is a natural answer to each of these
questions. First, there are scalar fields (squarks and sleptons) carrying baryon and
lepton number. Second, in the limit that supersymmetry is unbroken, there are
typically directions in the field space in which the quartic terms in the potential
vanish. Finally, the scalar quarks and leptons will be able to decay (in a baryon and
lepton number conserving fashion) to ordinary quarks.




In addition to topologically stable solutions to the field equations such as strings or
monopoles, it is sometimes also possible to find non-topological solutions, called Q-
balls, which can form as part of the Affleck-Dine condensate. These are usually
unstable and could decay to the dark matter, but in some theories they are stable and
could be the dark matter. The various possibilities are summarized as follows:

Affleck—Dine condensate

T TR

Possible e
baryons baryonic Q-balls

explanation

i -
for wh
/ / \ unstable _ stable

QDA&( ~ Qbaryon
~ - \& *
—>» dark matter

The parameter space of the MSSM consistent with LSP dark matter is very different,
depending on whether the LSPs froze out of equilibrium or were produced from the
evaporation of AD baryonic Q-balls. If supersymmetry is discovered, one will be able
to determine the properties of the LSP experimentally. This will, in turn, provide some
information on the how the dark-matter SUSY particles could be produced. The
discovery of a Higgsino-like LSP would be a evidence in favor of Affleck—Dine
baryogenesis. This is a way in which we might be able to establish the origin of
matter-antimatter asymmetry.




Review of mechanisms that have been proposed to generate the baryon asymmetry:

1. GUT Baryogenesis. Grand Unified Theories unify the gauge interactions of the strong,
weak and electromagnetic interactions in a single gauge group. They inevitably violate
baryon number, and they have heavy particles, with mass of order Mcut = 10'® GeV, whose
decays can provide a departure from equilibrium. The main objections to this possibility come
from issues associated with inflation. While there does not exist a compelling microphysical
model for inflation, in most models, the temperature of the universe after reheating is well
below Mgut. But even if it were very large, there would be another problem. Successful
unification requires supersymmetry, which implies that the graviton has a spin-3/2 partner,
called the gravitino. In most models for supersymmetry breaking, these particles have
masses of order TeV, and are very long lived. Even though these particles are weakly
interacting, too many gravitinos are produced unless the reheating temperature is well below
the unification scale -- too low for GUT baryogenesis to occur.

2. Electroweak baryogenesis. The Standard Model satisfies all of the conditions for
baryogenesis, but any baryon asymmetry produced is far too small to account for
observations. In certain extensions of the Standard Model, it is possible to obtain an
adequate asymmetry, but in most cases the allowed region of parameter space is very small.

3. Leptogenesis. The possibility that the weak interactions will convert some lepton number
to baryon number means that if one produces a large lepton number at some stage, this will
be processed into a net baryon and lepton number at the electroweak phase transition. The
observation of neutrino masses makes this idea highly plausible. Many but not all of the
relevant parameters can be directly measured.

4. Production by coherent motion of scalar fields (the Affleck-Dine mechanism), which
can be highly efficient, might well be operative if nature is supersymmetric.
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Gravitational instability

small-amplitude fluctuations:
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FLUCTUATIONS: LINEAR THEORY
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CDM Structure Formation: Linear Theory

L radiation dominates | matter dominates
-

Cluster and smaller-scale
v fluctuations damp
"~ because of “free- streamlng
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tog & Primack & Blumenthal 1983

Matter fluctuations that enter the horizon
during the radiation dominated era, with
masses less than about 10%5y,, grow only
o< log a, because they are not in the
gravitationally dominant component. But
matter fluctuations that enter the horizon in
the matter-dominated era grow e a. This
explains the characteristic shape of the CDM 108 M/Mog | umenthal. Faber.
fluctuation spectrum, with 8(k) = k -2 log k for k==k,. Primack. & Rees 1984




The Initial Fluctuations

At Inflation: Gaussian, adiabatic

Fourier transform:

Power Spectrum: P(k)=<|8 (k) [*> o< k"

kmax
: 2 _1/2 3 ~(n+3)/6
rms perturbation: [ESERIUNE NN ) (n+3)
k=0

Correlation function:
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Gravitational Instability

Small fluctuations: [INANENI] comoving coordinates
Continuity: DA EAZNIEL
. matter era
Euler:
Poisson: Vip = (3/2)H*Qd

Linear approximation: [RElelRCIRIVCSL

growing mode:
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Thus far, we have considered only the evolution of fluctuations in the dark matter.
But of course we have to consider also the ordinary matter, known in cosmology as
“pbaryons” (implicitly including the electrons). See Madau’s lectures “The Astrophysics
of Early Galaxy Formation (http:/arxiv.org/abs/0706.0123v1 ) for a recent summary. We have
already seen that the baryons are primarily in the form of atoms after z ~ 1000, with a
residual ionization fraction of a few x 10-4. They become fully reionized by z ~ 6, but
they were not reionized at z~20 since the COBE satellite found that “Compton
parameter” y < 1.5 x 107, where

/° * kpTe dre .
Yy = iz
|
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This implies that {x.T.}[(1 + 2)*/* — 1] < 4 x 107 K. Thus, for example, a universe that

was reionized and reheated at z =20 to (Xe, Te) = (1, > 4x10° K) would violate the
COBE y-limit. b e

The figure at right shows the 3 i
evolution of the radiation (dashed
line, labeled CMB) and matter
(solid line, labeled GAS)
temperatures after recombination,
in the absence of any reheating
mechanism.

(From Madau’s lectures.)
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http://arxiv.org/abs/0706.0123v1
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The linear evolution of sub-horizon density perturbations in the dark matter-baryon
fluid is governed in the matter-dominated era by two second-order differential equations:

ddm + 2H ddm = _H—-)m (fdmddm + fodb) (1)

for the dark matter, and / ‘Hubble friction”

e pet -3 . - i
o + 2H oy = —H-.';,, (fdmddm + fods) — - k5

for the baryons, where dm(k) and b(k) are the Fourier components of the density
fluctuations in the dark matter and baryons,{ fam and f, are the corresponding mass
fractions, cs is the gas sound speed, k is the (comoving) wavenumber, and the derivatives
are taken with respect to cosmic time. Here

0 =8wGp(t)/3H? = Qm(1+2)3/[Qm(1+2)3+ €2,

is the time-dependent matter density parameter, and p(t) is the total background

matter density. Because there is ~5 times more dark matter than baryons, it is the former
that defines the pattern of gravitational wells in which structure formation occurs. In
the case where f, = 0 and the universe is static (H = 0), equation (1) above becomes

T For each fluid component (i = b, dm) the real space fluctuation in the density field,
d;(x) = dpi(x)/ps, can be written as a sum over Fourier modes,

di(x) = fd'?‘k (27) 3 8;(k) exp ik-x.
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where tq, denotes the dynamical timescale. This equation admits solution
ddm = Ajexp(t/tayn) + A2 exp(—t/tayn).

After a few dynamical times, only the exponentially growing term is significant: gravity
tends to make small density fluctuations in a static pressureless medium grow
exponentially with time. Sir James Jeans (1902) was the first to discuss this.

The additional term # Hédm present in an expanding universe can be thought as a
“Hubble friction” term that acts to slow down the growth of density perturbations.
Equation (1) admits the general solution for the growing mode:

5 ‘Zn da’
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so that an Einstein-de Sitter universe gives the familiar scaling dam(a) = a with
coefficient unity. The right-hand side of equation (3) is called the linear growth factor
D(a) = D.(a). Different values of C2., Q24 lead to different linear growth factors.

Growing modes actually decrease in density, but not as fast as the average universe.
Note how, in contrast to the exponential growth found in the static case, the growth of
perturbations even in the case of an Einstein-de Sitter (€2, =1) universe is just
algebraic. This was discovered by the Russian physicist Lifshitz (1946).




Since cosmological curvature 1s at most marginally important at the present
epoch, it was negligible during the radiation-dominated era and at least the begin-
ning of the matter-dominated era. But for k = —1, 1.e. < 1, the growth of §
slows for (R/R,) = Q. as gravity becomes less important and the universe begins
to expand freely. To discuss this case, 1t 1s convenient to introduce the variable

c=0"1(¢) —1=(Q;! - 1)R(t)/R,. (2.55)

(Note that Q(f) — 1 at early times.) The general solution in the matter-
dominated era is then (Peebles, 1980, §11)

6 = ADy(t) + BDa(t), (2.56)
where the growing solution is

3 3(14z)/2

_ b 1/2 1/2] s
Di=1+>+=——In [(1+:c) z (2.57)
and the decaying solution is

Dy = (1 +z)4/2 /232, (2.58)

These agree with the Einstein-de Sitter results (2.53) at early times (¢ < t,, x < 1).
For late times (¢ = ¢,,x = 1) the solutions approach

Di=1,Dy =21, (2.59)

in this limit the universe is expanding freely and the amplitude of fluctuations
stops growing.
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The consequence is that dark matter
fluctuations grow proportionally to the scale
factor a(t) when matter is the dominant
component of the universe, but only
logarithmically when radiation is dominant. ., _
Thus there is not much difference in the _g_'
amplitudes of fluctuations of mass M < 101>
MGun, Which enter the horizon before zmn: ~ 4
x103, while there is a stronger dependance on
M for fluctuations with M > 1015 M.

radiation dominates | matter dommates

L Dﬂ;ﬂ Primack & Blumenthal 1983
There is a similar suppression of the growth of matter fluctuations once the gravitationally
dominant component of the universe is the dark energy, for example a cosmological constant.
Lahav, Lilje, Primack, & Rees (1991) showed that the growth factor in this case is well
approximated by

I.- - : .IE 1.
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Here ()} isagain givenby 5, =87Gp(t)/3H? = Qm(14+2)%/[Qm(142 )7+ Q4]




Scale-Invariant Spectrum (Harrison-Zel'dovich)
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Formation of Large-Scale Structure
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Fluctuation growth in the linear regime: 0 <<1 =3 § xt
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The observed uniformity of the CMB gnarantees that density fluctuations must have
been quite small at decoupling, implying that the evolution of the density contrast can
be studied at z = zgec using linear theory, and each mode 4(k) evolves independently.
The inflationary model predicts a scale-invariant primordial power spectrum of density
fluctuations P(k) = (|d(k)|*) = k", with n = 1 (the so-called Harrison-Zel’dovich spec-
trum). It is the index n that governs the balance between large and small-scale power.
In the case of a Gaussian random field with zero mean. the power spectrum contains
the complete statistical information about the density inhomogeneity. It is often more
convenient to use the dimensionless quantity A7 = [k*P(k)/27?%], which is the power
per logarithmic interval in wavenumber £. In the matter-dominated epoch, this quantity
retains its initial primordial shape (A7 o k"*3) only on very large scales. Small wave-
length modes enter the horizon earlier on and their growth is suppressed more severely
during the radiation-dominated epoch: on small scales the amplitude of A% is essentially
suppressed by four powers of k (from A"+3 to k*~1). If n = 1, then small scales will have
nearly the same power except for a weak. logarithmic dependence. Departures from the
initially scale-free form are described by the transfer function 7'(k), defined such that

S N D ( 0) )

where A is the normalization.




An approximate fitting function for T(k) in a ACDM universe is (Bardeen et al. 1986)

In(1 + 2.34q)
Hei 2.34q

where (Sugayama 1995)

[1+3.80 + (16.1g) + (5.46¢)° + (6.71¢)*] ",

k/Mpe—1
!.w.).n; ]22 “Xl)l: _!Zb s SZb ,.""Sflm ' :

q=

For accurate work, for example for starting high-resolution N-body simulations, it is
best to use instead of fitting functions the numerical output of highly accurate
integration of the Boltzmann equations, for example from CMBFast

http://cfa-www.harvard.edu/~mzaldarr/CMBFAST/cmbfast.html

Welcometothe CMBFAST Website!

This is the most extensively used code for computing cosmic microwave background
anisotropy, polarization and matter power spectra. The code has been tested over a wide
range of cosmological parameters. We are continuously testing and updating the code based
on suggestions from the cosmological community. Do not hesitate to contact us if you have
any questions or suggestions.

U. Seljak & M. Zaldarriaga



http://cfa-www.harvard.edu/~mzaldarr/CMBFAST/cmbfast.html
http://cfa-www.harvard.edu/~mzaldarr/CMBFAST/cmbfast.html
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Fig.7.3. Growth factor D, for three different cosmological
models, as a function of the scale factor a (left panel) and
of redshift (right panel). It is clearly visible how quickly
Dy decrecases with increasing redshift in the EAS model, in
comparison to the models of lower density

From Peter Schneider, Extragalactic
Astronomy and Cosmology (Springer, 2006)
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Fig. 7.6. The current power spectrum of density (luctuations

for CDM models. The wave number & is given in units of Hyp/c. (dHo) K

and (Ho/c)® P(k) is dimensionless. The various curves have

different cosmological parameters: EdS: 2, =1, 24 =0:

OCDM: 2, =0.3, 241 =0; ACDM: 2, =03, 2, =0.7.

The values in parentheses specify (og, I'), where oy is the

normalization of the power spectrum (which will be discussed From Peter Schneider,
below), and where I is the shape parameter. The thin curves :
correspond to the power spectrum Py(k) linearly extrapolated Extragalactic AS. tronomy and
to the present day, and the bold curves take the non-linear Cosmology (Springer, 2006)
evolution into account




On large scales (k small), the gravity of the dark matter dominates. But on small
scales, pressure dominates and growth of baryonic fluctuations is prevented. Gravity
and pressure are equal at the Jeans scale

ky = —/4xGp.

Ca

-

The Jeans mass is the dark matter + baryon mass enclosed within a sphere of
radius ma/ky,

59 3 sy 3/2 ) 3/2
\[J s i/) wa o 4;& ‘_)I‘-]lBTC - S_\ 3 104 I\I UTC
3 LJ T 12G pmp e T

where 1 1s the mean molecular weight. The evolution of My is shown below, assuming
that reionization occurs at z=135:

L = o

perature (K)

log Jeans Mass (M)

log Tem

—A A A ALl " S U - " - - WEEN N WUV ——— _A.,JJIAIL e h o bd

10 50100 5 £ 50 100
(1+42) (1+2)
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Jeans-type analysis for HDM, WDM, and CDM




GRAVITY - The Ultimate Capitalist Principle

Astronomers say that a region of the universe with more matter is “richer.”
Gravity magnifies differences—if one region 1s slightly denser than average,
it will expand slightly more slowly and grow relatively denser than its
surroundings, while regions with less than average density will become
increasingly less dense. The rich always get richer, and the poor poorer.

The early universe expands
almost perfectly uniformly.
But there are small
differences in density from
place to place (about 30
parts per million).

Because of gravity, denser
regions expand more
slowly, less dense regions
more rapidly. Thus gravity
amplifies the contrast
between them, until...

Temperature map at 380,000 years after the
Big Bang. Blue (cooler) regions are slightly
denser. From NASA’s WMAP satellite, 2003.




Structure Formation by Gravitational Collapse

When any region
becomes about
twice as dense as
typical regions its
size, 1t reaches a
maximum radius,
stops expanding,

and starts falling Through Violent

together. The forces
between the
subregions generate
velocities which
prevent the material
from all falling
toward the center.

Relaxation the dark
matter quickly reaches
a stable configuration
that’s about half the
maximum radius but
denser 1n the center.

Simulation of top-hat collapse:
P.J.E. Peebles 1970, Apl, 75, 13.
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Growth and Collapse of
Fluctuations

Schematic sketches of radius, density, and density
contrast of an overdense fluctuation. It initially
expands with the Hubble expansion, reaches a
maximum radius (solid vertical line), and undergoes
violent relaxation during collapse (dashed vertical
line), which results in the dissipationless matter
forming a stable halo. Meanwhile the ordinary matter
pb continues to dissipate kinetic energy and contract,
thereby becoming more tightly bound, until dissipation
is halted by star or disk formation, explaining the
origin of galactic spheroids and disks.

(This was the simplified discussion of ; the
figure 1s from my 1984 lectures at the Varenna school.
Now we take into account halo growth by accretion,
and the usual assumption is that spheroids form mostly
as a result of galaxy mergers )




Halo and Galaxy
Merging and
Spheroid Formation

dynamical
friction

mergers can trigger starburst, subsequent cooling forms disk
forming spheroid




Filamentary Structure: Zel dovich Approximation

displacement from initial position: RYCRIEREIISRR 1)

o : ) Growth Factor
continuity: pxt)d’x=p,d°q —

— p(x,t)=p,/| 0x/0q|

Pg
~ (1-D(@)A4)(1 - D(1)A,)(1 - D(1) ;)




N-body simulation
ACDM
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H. J. Mo, S.D.M. White The abundance and clustering of dark haloes in
MNRAS 336 (2002) 112 the standard Lambda CDM cosmogony

We define the characteristic properties of a dark halo within a sphere of radius 200 chosen so that the mean enclosed density
is 200 times the mean cosmic value. Then

B GM i . (CM\? (M \"* 1 [ (u

According to the argument first given by Press & Schechter (1974, hereafter PS), the abundance of haloes as a function
of mass and redshift, expressed as the number of haloes per unit comoving volume at redshift z with mass in the interval
(M, M + dM ). may be written as

AT A AT po dv ﬁ )
n(M.Q.)d.\I—\/-MnIc\p( 2)d.\!. (9)

Here v = é./[D(z)a(M)], where 6. =~ 1.69 and the growth factoris D(z) = g(z)/[g(0)(1 + z)] with

w) A 5 /7 ! ol -1 - 5 _ Q‘\ 0
g(¢)~§Qm [Qm — A +(14+O0m/2)(1 +QA/IO)] y Om =0m(z), QA =04 (2)= EQ( )
E(z) = [0+ (1 — Q0)(1+2)? + Om,o(1 + 3,3]!' _ Lahav, Lilje, Primack, & Rees 1991

Press & Schechter derived the above mass function from the Ansatz that the fraction F of all cosmic mass which at
redshift z is in haloes with masses exceeding M is twice the fraction of randomly placed spheres of radius R(M) which have
linear overdensity at that time exceeding 4., the value at which a spherical perturbation collapses. Since the linear fluctuation
distribution is gaussian this hypothesis implies

F(>.-\I.:)=erfc(%). (12)

and equation (9) then follows by differentiation.




. II'_‘! _l ay "2 9
The PS formulais  n(M,z)dM = \'_-' ;-‘rﬁ‘il—{[n-x]»( I—)) d. (9)

Numerical simulations show that although the scaling properties implied by the PS
argument hold remarkably well for a wide variety of hierarchical cosmogonies,
substantially better fits to simulated mass functions are obtained if the error

function in equation (12) is replaced by a function of slightly different shape. Sheth &
Tormen (1999) suggested the following modification of equation (9)

1-1(‘31;?]:;}{131;?':;1(' =) 2L axp -2 ) an (14)

where ' = Jav, a = 0.707, A = 0.322 and q = 0.3.

[See Sheth, Mo & Tormen (2001) and Sheth & Tormen (2002) for a justification of this
formula in terms of an ellipsoidal model for perturbation collapse.] The fraction of all
matter in haloes with mass exceeding M can be obtained by integrating equation (14).

To good approximation,

0.4 (.35
Fi>M,z)=~04 (1+ c-i)l':l'ft:( iy)
T V2

In a detailed comparison with a wide range of simulations, Jenkins et al. (2001)
confirmed that this model is indeed a good fit provided haloes are defined at the
same density contrast relative to the mean in all cosmologies.




Improved Press-Schechter Halo Number Density

_=0.3, 0,=0.7, h=0.7, d,=0.9
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Comoving Halo Number Density vs. Mass

i B

Al
BV AN

Standard
LCDM

O \

' AW, W

T"‘ T ‘{T “XIINTE

e Fractlon 0% all matt?r
< = 1€ B L

A 1

Al 2
s 'rrf“‘

0 N\ 2.0
LLI.IIA .4
10 15

Dashed red curves: halo number density for log M/Msun




Cosmological Simulation Methods

Dissipationless Simulations
Particle-Particle (PP) - Aarseth NbodyN, N=1,...,6
Particle Mesh (PM) - see Klypin & Holtzman 1997
Adaptive PM (P3M) - Efstathiou et al.
Tree - Barnes & Hut 1986, PKDGRAV Stadel
TreePM - GADGET2, Springel 2005
Adaptive Mesh Refinement (AMR) - Klypin (ART)

Hydrodynamical Simulations

Fixed grid - Cen & Ostriker

Smooth Particle Hydrodynamics (SPH) - GADGETZ2, Springel 2005
- Gasoline, Wadsley, Stadel, & Quinn

Adaptive grid - ART+hydro - Klypin & Kravtsov

Initial Conditions
Standard: Gaussian P(k) realized uniformly, Zel'dovich displacement
Multimass - put lower mass particles in a small part of sim volume
Constrained realization - small scale: simulate individual halos (NFW)
large scale: simulate particular region

Reviews
Bertschinger ARAA 1998, Klypin lectures 2002, U Washington website
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Dark Matter Halo Radial Profile

COMPARISON OF NFW AND MOORE ET AL. PROFILES

Parameter

NFW

Moore et al.

Density

x=7r/rs

Ps
z(1 4 x)*
pox a3 for x> 1
poxztforr <1

p/ps=1/4 atx=1

p:

P= 15 Pe 15
(14 z)™
pox a3 forz>1
pocx 0 forx < 1

p/ps=1/2 atx=1

Mass
M = dmpsr] f(x)

= Myir f(2)/f(C)

_ 4rm 3
Mvir - ?pchO(Stop—hatTVir

f() =In(1+2) - =

1+2x

f(z) = 2In(1 4 2%/2)

Concentration

C = rvir/rs

C1NFVV — 1'7201\/[001‘6

for halos with the same M., and rmax
Cr ~ C’NFW
/5™~ 0.86f(Cxrw) + 0.1363

error less than 3% for Cnrw =5-30

Cy=—2 = Cnrw

C’1\/[001"6 — CNFW/172

C(Moore

C:x =
1/ [(14—03/2

Moore
Moore

[C3/10 _ ]2/3
ny——2 — 2 f C11\/1001re
~ 2-83C'Moore

)1/5 _

1]2/3

Circular Velocity

2 _ GMi C f(x)

Clrc T f(Cf)
2 Tmax f(T)

= Vmax T f(xrnax)
GMvir

Tvir

v
Tvir

Tmax ~ 2.15
C

VlI'f(C)
p/ps ~1/21.3 at z = 2.15

02, ~ 0.21602

Tmax ~ 1.25
C

F(C)
p/ps ~1/3.35 at & = 1.25

v2 . ~ 0.46602

Klypin, Kravtsov, Bullock & Primack 2001




Empirical Models for Dark NMatter Halos, 11, Inner profile slopes,
dynamical profiles. and p/o’

Alister Graham. David Merritt. Ben Moore, Jiirg Diemand. Bal$a Terzi¢

Einasto’s model 1s given by the equation

plr) = paexp {—dn [('r/re)l/" - 1] } :

Data on log slopes c

from mnermost

resolved radius of =
. o
observed galaxies, & 0
not corrected for :
observational effects o
-- adapted fromde @_,
Blok (2004). -
-2

T _‘l \ L4 T T r L 4 T L4 T '
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Dependence of Halo Concentration on
Mass and Redshif+

Profiles of dark haloes: evolution, scatter, and environment

J. S. Bullock!2, T. S. Kolatt!3, Y. Sigad®, R.S. Somerville*4, A. V. Kravtsov®°*,
A. A. Klypin®, J. R. Primack!, and A. Dekel®* 2001 MNRAS 321, 559

ADBSTRACT

We study dark-matter halo density profiles in a high-resolution N-body simulation
of a ACDM cosmology. Our statistical sample contains ~ 5000 haloes in the range
10! — 10MA=1M,, and the resolution allows a study of subhaloes inside host haloes.
The profiles are parameterized by an NFW form with two parameters, an inner radius
re and a viral radius Ry, and we define the halo concentration cyiy = Ryic/rs. We
find that, for a given halo mass, the redshift dependence of the median concentration
is cyie (1 4 2)~% This corresponds to ry(z) ~ constant, and is contrary to earlier
suspicions that ¢y, does not vary much with redshift. The implications are that high-
redshift galaxies are predicted to be more extended and dimmer than expected before.
Second, we find that the scatter in halo profiles is large, with a 1o A(logey,) =
0.18 at a given mass, corresponding to a scatter in maximum rotation velocities of
AVaax/ Vinax = 0.12. We discuss implications for modelling the Tully-Fisher relation,
which has a smaller reported intrinsic scatter. Third, subhaloes and haloes in dense
environments tend to be more concentrated than isolated haloes, and show a larger
scatter, These results suggest that ey, 18 an essential parameter for the theory of
galaxy modelling, and we briefly discuss implications for the universality of the Tully-
Fisher relation, the formation of low surface brightness galaxies, and the origin of the
Hubble sequence. We present an improved analytic treatment of halo formation that
fits the measured relations between halo parameters and their redshift dependence,
and can thus serve semi-analytic studies of galaxy formation.
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Figure 1. Maximum velocty versus concentration. The maxi.
mum rotation velocity for an NFW halo in units of the rotation
velocity at its virial radius as a function of halo concentration.
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Figure 4. Concentration versus mass for distinct haloes at > = 0.
The thick solid curve is the median at a given My. The error
bars represent Poisson errors of the mean due to the sampling of a
finite number of haloes per mass bin. The outer dot-dashed curves
encompass 687 of the ¢y, values as measured in the simulations.
The inner dashed curves represent only the true, intrinsic scatter
in ¢yir. after eliminating both the Poisson scatter and the scatter
due to errors in the individual profile fits due, for example, to the
finite number of particles per halo. The central and outer thin
solid curves are the predictions for the median and 68% values by
the toy model outlined in the text, for F' = 0.01 and three different
values of K. The thin dot-dashed line shows the prediction of the
toy model of NFWO7 for f = 0.01 and k = 3.4 x 103,
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Figure 5. Concentration versus mass for sublinloes at 2 = 0. The
curves and errors are the same as in Figure 4.
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Figure 6, Concentrations versus environament. The concentration
at 2 =0 of all hadoes in the s range 0.5 ~ 1.0 « lo”h".\!»:

0s a function of local density in units of the average density of
the universe, The local density was determined within spheres of
radivs 1A~ Mpe. The solid line represents the median oy value,
the ervor bars are Polsson based on the number of haloes, and the
dashed line indicstes our best estimate of the imtrinsic scatter,




Spread of Halo Concentrations
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Figure 7. The probability distributions of distinct haloes (solid
line) and subhaloes (dashed line) at = = 0 within the mass range
(0.5 = 1.0) = 10257 Af;, . The simulated distributions (thick
lines) include, the ~ 2,000 distinct haloes and ~ 200 subhaloes
within this mass range. Log-normal distributions with the same
median and standard deviation as the measured distributions are
shown (thin lines), Subhaloes are, on average, more concentrated
than distinct haloes and they show a larger spread.
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Figure 8. The spread in NFW rotation curves corresponding
to the spread in concentration parameters for distinet haloes of
3% 10"A" M5 at = = 0. Shown are the median (solid), =lo
(long dashed), and +20 (dot-dashed) curves. The corresponding
mexdian rotation curve for subhaloes is comparable to the upper
1o curve of distinct haloes,




Evolution of Halo Concentration with Redshift
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Figure 10. Median cyjy values as a function of My, for distinct
haloes at various redshifts, The error bars are the Poisson errors
due to the finite number of haloes in each mass bin, The thin
solid lines show our toy model predictions,
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Figure 11, Concentration as a function of redshift for distinct
haloes of a fixed mass, My, = 0.5 — 1.0 x 10'2h~"M, . The
median (heavy solid line) and intrinsic 687 spread (dashed line)
are shown. The behavior predicted by the NFWO7 oy modd is
marked. Our revised toy model for the median and spread for
810" A"\ haloes (thin solid lines) reproduces the observed
behavior rather well,




Mer'ger' Tr'ees Based on our ART simulations, Wechsler

created the first structural merger trees

tracing the merging history of thousands

of halos with structural information on

, their higher-redshift progenitors,

including their radial profiles and spins.

This led to the discovery that a halo’s

: ‘ merging history can be characterized by
‘ p a single parameter ac which describes

11 the scale factor at which the halo’s mass

S0P P accretion slows, and that this parameter

D4 correlates very well with the halo
¢ :, 5 concentration, thus showing that the
b 4 1o distribution of dark matter halo
8 “.5 concentrations reflects mostly the
! ® distribution of their mass accretion rates.
OF ? We found that the radius of the inner part
R (1 of the halo, where the density profile is
O, 0 roughly 1/r, is established during the
Risa :, " early, rapid-accretion phase of halo
o op P < growth (a result subsequently confirmed
001 @ o and extended by other groups, e.g.,

Zhao et al. 2003, Reed et al. 2004).



CONCENTRATIONS OF DARK HALOS FROM THEIR ASSEMBLY HISTORIES

Risa H. WecHsLER', JaMES S. BuLrock?, JoEL R. PriMAcK', ANDREY V. Kravrsov??
Avisuar DexeL®, ApJ 568 (2002) 52-70

s
(r/R) (1 +r/R,)"
where R, is a characteristic

Pupw (1) = (1)
“inner” radius, and p, a corre-
sponding inner density. One of the inner parameters can
be replaced by a “virial” parameter, either the virial ra-
dius (Ryie), mass (Mg ). or velocity (Vi ), defined such
that the mean density inside the virial radius is A, times
the mean universal density p,, at that redshift:
lv—

“l\'ir - \uf' l{\ll’ . (2)

The critical overdensity at virialization, Ay, is motivated
by the spherical collapse model; it has a value ~ 180 for
the Einstein-deSitter cosmology, and =~ 340 for the ACDM
cosmology assumed here. A useful alternative parameter
for describing the shape of the profile is the concentration
parameter ¢y, defined as ¢y, = Ry /R,

(Bryan & Norman 1998) Ay;r ~ (1872
where ¢ = Q(z) = 1

By examining a range of full mass assembly histories for
our sample of halos, we have found a useful parameterized
form that captures many essential aspects of halo growth
over time. Remarkably, we find that both average mass
accretion histories and mass accretion histories for indi-
vidual halos, as observed at = = 0, can be characterized
by a simple function:

M(a) = Mee™*, a=(142)"" (3)

The single free parameter in the model, «, can be related
to a characteristic epoch for formation, a., defined as the
expansion scale factor @ when the logarithmic slope of the
accretion rate, dlog M /dloga, falls below some specified
value, S. The functional form defined mm Eq. 3 implies
a. =a/S. In what follows we have chosen S = 2.
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Average mass accretion
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The three green curves
connect the averages of
M(a)/Mo at each output time.
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the 68% spread about the
middle case. Red dot-dashed
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formers (typically low mass
halos), blue dashed lines to
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mass halos). We see that
massive halos tend to form
later than lower mass halos,
whose mass accretion rate
peaks at an earlier time.
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Springel ] redshift. Dark
= 0 fit i halos are more
z = 1 fit . elongated the
= <t - more massive

they are and the
d earlier they

. form. We found
o that the halo
<s> scales as a
I ¢ i power-law in

A simple formula describes these results, as well dependence on epoch and Mhalo/M*. Halo

~

cosmological parameter oy : shape is also
related to the
N g T e ( M \" Wechsler halo
A el LR formation scale
with best fit values factor ac.

a=0544+0.03. 3=-—0.050 %+ (0.003.

Allgood et al. 2006
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Halo shape
s=c/a vs.
scale factor
a=1/(1+redshift)
for halos of
mass between
3.2and 6.4 x
1012 M, that

form at different
scale factors a...

Halos become
more spherical
after they form,
and those that
form earlier (at
lower a_)

become more
spherical faster.
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Fic. 7.— (s) with radius at z = 0. black: 1.6 x 10!? < M <
3.2 x 10*2, red: 3.2 x 10'? < M < 6.4 x 10'2, blue: 6.4 x 10*? <
M < 1.28 x 10'2, green: 1.28 x 10'> < M < 2.56 x 10*3, orange:
2.56 x 101 < M < 5.12 x 103, violet: 5.12 x 10! < M. These are
the same mass bins as in Figure 3.

Halos become
more spherical at
larger radius and
smaller mass.

As before,

s = short / long
axis. These
predictions can

be tested against
cluster X-ray data
and galaxy weak
lensing data.

[These figures are from
Brandon Allgood’s PhD
dissertation.]
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Particle number in cosmological N-body simulations vs. pub date
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Galaxy 2-point correlation function at the present epoch.

Springel et al. 2005
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Formation of galaxies in a cluster
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Environment of a ‘first
quasar candidate’ at high
and low redshifts. The two
panels on the left show the
projected dark matter
distribution in a cube of
comoving sidelength 10h™"
Mpc, colourcoded
according to density and
local dark matter velocity
dispersion. The panels on
the right show the galaxies
of the semi-analytic model
overlayed on a gray-scale
image of the dark matter
density. The volume of the
sphere representing each
galaxy is proportional to its
stellar mass, and the chosen
colours encode the
restframe stellar B-V colour
index. While at z=6.2 (top)
all galaxies appear blue due
to ongoing star formation,
many of the galaxies that
have fallen into the rich
cluster at z = 0 (bottom)
have turned red.

Springel et al. 2005
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Figure §: Galaxy clustering as a function of luminosity and colour. In the panel on the left, we show
the 2-point correlation function of our galaxy catalogue at = = 0 split by luminosity in the bJ-band
(symbols). Brighter galaxies are more strongly clustered, in quantitative agreement with observations™*
(dashed lines). Splitting galaxies according to colour (right panel). we find that red galaxies are more
strongly clustered with a steeper correlation slope than blue galaxies. Observations® (dashed lines)
show a similar trend. although the difference in clustering amplitude 1s smaller than in this particular
semi-analytic model.

Springel et al. 2005
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Figure 8. Galaxy luminosity functions in the K (left) and by (right) photometric bands, plotted with and without ‘radio mode' feedback
(solid and long dashed lines respectively — see Section 3.4). Symbols indicate observational results as listed in each panel. As can be seen,
the inclusion of AGN heating produces a good fit to the data in both colours. Without this heating source our model overpredicts the
luminosities of massive galaxies by about two magnitudes and fails to reproduce the sharp bright end cut.offs in the observed lumincsity
functions.

Croton et al. 2006
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With AGN heating — brightest galaxies
are red, as observed

Without heating — brightest galaxies
are blue

Croton et al. 2006

(see also Cattaneo et al. 20006)






