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General Relativity
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General Relativity

GR follows from the principle of equivalence and Einstein’s equation
G, =R, —"2Rg ,=-8nGT .* Einstein had intuited the local
equivalence of gravity and acceleration in 1907 (Pais, p. 179), but 1t
was not until November 1915 that he developed the final form of the
GR equation.

It can be derived from the following assumptions (Weinberg, p. 153):

1. The Lh.s. G, 1s a tensor

2. G, consists only of terms linear in second derivatives or quadratic in
first derivatives of the metric tensor g, (& G, has dimension L%)

3. Since T, 1s symmetric in [Lv, so 1s G

4. Since T, 1s conserved (covariant derivative T+ =0) so also G*, =0
5. In the weak field limit where g,, ® —(1+20), satisfying the Poisson
equation V20=4nGp (1.e., V2g,,= — 8nGT,,), we must have G,,= V-g,,

*Note: we’re here using the metric —1, 1,1,1 as in Dodelson, Weinberg.




Einstein’s equation can also be derived from an action principle,

varying the total action / = I, + I, where I, 1s the action of matter
and / 1s that of gravity:

I =——=[R(z)\/g(z)d's

(see, e.g., Weinberg, p. 364). The curvature scalar R= R, g"V1s the
obvious term to insert in / since a scalar connected with the metric 1s
needed and it is the only one, unless higher powers R?, R3 or higher
derivatives LR are used, which will lead to higher-order or higher-
derivative terms 1n the gravity equation.

Einstein realized in 1916 that the 5™ postulate above isn’t strictly
necessary — merely that the equation reduce to the Newtonian Poisson
equation within observational errors, which allows the inclusion of a
small cosmological constant term. In the action derivation, such a
term arises 1f we just add a constant to R.




General Relativity:
Observational Implications & Tests
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General Relativity:
Observational Implications & Tests

GRAVITATIONAL REDSHIFT
Signals dake at e h/e famToR
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Note that we are using Einstein’s Principle of Equivalence:
locally, gravitation has exactly the same effect as acceleration
(“strong” EEP version: this applies to all physical phenomena)




One elementary equivalence principle is the kind Newton had in mind when he stated that
the property of a body called “mass” is proportional to the “weight”, and is known as the weak
equivalence principle (WEP). An alternative statement of WEP is that the trajectory of a freely
falling “test” body (one not acted upon by such forces as electromagnetism and too small to be
affected by tidal gravitational forces) is independent of its internal structure and composition. In
the simplest case of dropping two different bodies in a gravitational field, WEP states that the
bodies fall with the same acceleration (this is often termed the Universality of Free Fall, or UFF).

The Einstein equivalence principle (EEP) is a more powerful and far-reaching concept; it states
that:

1. WEP is valid.

2. The outcome of any local non-gravitational experiment is independent of the velocity of the
freely-falling reference frame in which it is performed.

3. The outcome of any local non-gravitational experiment is independent of where and when in
the universe it is performed.

The second piece of EEP is called local Lorentz invariance (LLI), and the third piece is called
local position invariance (LPI).

For example, a measurement of the electric force between two charged bodies is a local non-
gravitational experiment; a measurement of the gravitational force between two bodies (Cavendish
experiment) is not.

The Einstein equivalence principle is the heart and soul of gravitational theory, for it is pos-
sible to argue convincingly that if EEP is valid, then gravitation must be a “curved spacetime”
phenomenon, in other words, the effects of gravity must be equivalent to the effects of living in a
curved spacetime. As a consequence of this argument. the only theories of gravity that can fully
embody EEP are those that satisfy the postulates of “metric theories of gravity”, which are:

1. Spacetime is endowed with a symmetric metric.
2. The trajectories of freely falling test bodies are geodesics of that metric.

3. In local freely falling reference frames, the non-gravitational laws of physics are those written
in the language of special relativity.




Renaissance of General Relativity 1960-

1960 OUASARS 1967 PULSARS
1974 BINARY PULSAR

1965 COSMIC BACKGROUND RADIATION

R : WMAP 2003
1971 BLACK HOLE CANDIDATES Cygnus X1...

1980 GRAVITATIONAL LENSES




Experimental Tests of General Relativity
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Experimental Tests of General Relativity

Early 1960-70 1970- frontier
| Mavs lander
Coust.‘m (,‘fa/(a\ <\ far)
s binary pulsar Antennas,
Gf"h'y w0t Lasers
M (LIGO,LISA)
Droging o nerkel Gyro Satellite
Lyapacts
Anti-proton
Anhwelier WAS .
Lellg u.\»? EINSTEIN experiment
- " IGHT?
F vw.¢ (S‘hm ) g{mj 1/r? >mm
the Test
see Clifford Will, Was Einstein Right | i

2nd Edition (Basic Books, 1993)




TESTS OF THE
WEAK EQUIVALENCE PRINCIPLE

Clifford M. Will UL |
“The Confrontation 107 FEstios i
Between General oo _I Renner Free—fall i
Relativity and I I N
Experiment” 107100~ Y S
Living Reviews in M orinceton I _ -
Relativity (2001) o I I 7
_19l Moscow ) Ebt-Wash _
www.livingreviews.org N e
-13}— —
and his latest update N e B
gr-qc/0510072 = “:1*"2’:2 S _

D% %% % % Y
YEAR OF EXPERIMENT

Figure 1: Selected tests of the weak eguivalence principle, showing bounds on
1. which measures fractional difference in acceleration of different materials or
bodies. The free-fall and Eot-Wash experiments were originally performed to
search for a fifth force. The blue band shows current bounds on 1 for gravitating
bodies from lunar laser ranging (LURE).




GRAVITATIONAL REDSHIFT TESTS

TESTS OF
LOCAL POSITION INVARIANCE

I I |
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Figure 3: Selected tests of local position mueariance via gravidational redshift experiments, showing
bounds on @, which measures degree of deviation of redshift from the formula Av/v = AU/,
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Figure 5: Measurements of the coefficient (1 +7)/2 from light deflection and time delay measure-
ments. Jts GR value 8 unity. The arrows at the top denote anomalously lamge values from early
eclipse expeditions. The Shapiro time-delay measurements using the Cassini spacecmft yielded an
agreement with GR to 10~% percent, and VLBI light deflection measurements have reached 0.02
percent. Hipparcos denotes the optical astrometry satellite, which reached 0.1 percent.
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In 1993, the Nobel Prize in Physics was awarded to
BI N A RY P U LS A R Russell Hulse and Joseph Taylor of Princeton

University for their 1974 discovery of a_pulsar,

designated PSR1913+16, in orbit with another star

around a common center of mass.
A

1 1

Shift in Periastron Time
I
|

-3 T T T T T T T g
1974 1975 1976 1977 1978 1979 1980 1981 1982

Figure 10.29. The decrease of the orbital period of the bjnary
pulsar. This decrease is consistent with gravitational radiation
causing a slow decay of the orbital separation as the two stars
spiral slowly toward one another.

The pulsar is a rapidly rotating, highly magnetized
neutron star which rotates on its axis 17 times per

Figure 10.28. The rotation of the line of apsides in the binary second. The pulsar is in a binary orbit with another
pulsar amounts to 4.2 degrees per year. This effect has been in- t ith 10d of 7.75 h
terpreted to arise because the gravitational attraction of the star with a period ol /. ours.

companion deviates from a 1/r? force law because of general-
relativistic corrections.




BINARY PULSAR test of gravitational radiation
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Figure 7: Plot of the cumulative shift of the periastron time from 1975-2005. The points are data,
the curve is the GR prediction. The gap during the middle 1990s was caused by a closure of Arecibo

for upgrading [243].




Data on the PSR B1913+16 system:

Right ascension 19h13m12.4655s
Declination +16°01'08.189"
Distance 21,000 light years
Mass of detected pulsar 1.441 MSun
Mass of companion 1.387 MSun

Rotational period of detected pulsar 59.02999792988 sec

Diameter of each neutron star 20 km

Orbital period 7.751939106 hr
Eccentricity 0.617131
Semimajor axis 1,950,100 km
Periastron separation 746,600 km
Apastron separation 3,153,600 kim

Orbital velocity of stars at periastron 300 kim/sec

Orbital velocity of stars at apastron 75 kin/sec

Rate of decrease of orbital period 0.0000765 sec per year
Rate of decrease of semimajor axis 3.5 meters per year

Calculated lifetime (to final inspiral) 300,000,000 years

Periastron advance per day = Mercury perihelion advance
per century!

Center of Mass

(1 / Comparion Star \ \ | | | ‘J

. \
H “ L | -+ 250 MillionVears | | ‘ Now

T — Diameter
ofthe sun

Weisberg et al. Sci Am Oct 1981




7 Conclusions

We find that general relativity has held up under extensive experimental scrutiny. The question
then arises, why bother to continue to test it? One reason is that gravity is a fundamental
interaction of nature, and as such requires the most solid empirical underpinning we can provide.
Another is that all attempts to quantize gravity and to unifv it with the other forces suggest that
the standard general relativity of Einstein is not likely to be the last word. Furthermore, the
predictions of general relativity are fixed; the theory contains no adjustable constants so nothing
can be changed. Thus every test of the theorv is either a potentially deadly test or a possible probe
for new physics. Although it is remarkable that this theory, born 90 vears ago out of almost pure
thought. has managed to survive every test, the possibility of finding a discrepancy will continue
to drive experiments for vears to come.

Clifford Will, gr-qc/0510072




Einstein Passes New Tests

Sky & Telescope, March 3, 2005, by Robert Naeye -
A binary pulsar system provides an excellent laboratory for testing \ /‘
some of the most bizarre predictions of general relativity. The two
pulsars in the JO737-3039 system are actually very far apart
compared to their sizes. In a true scale model, if the pulsars were the
sizes of marbles, they would be about 750 feet (225 meters) apart.

B 2005 Sky & Telescope
Albert Einstein's 90-year-old general theory of relativity has just been put through a series of some of its
most stringent tests yet, and it has passed each one with flying colors. Radio observations show that a
recently discovered binary pulsar is behaving in lockstep accordance with Einstein's theory of gravity in
at least four different ways, including the emission of gravitational waves and bizarre effects that occur
when massive objects slow down the passage of time.

An international team led by Marta Burgay (University of Bologna, Italy) discovered the binary pulsar,
known as JO737-3039 for its celestial coordinates, in late 2003 using the 64-meter Parkes radio
telescope in Australia. Astronomers instantly recognized the importance of this system, because the two
neutron stars are separated by only 800,000 kilometers (500,000 miles), which is only about twice the
Earth—Moon distance. At that small distance, the two 1.3-solar-mass objects whirl around each other at
a breakneck 300 kilometers per second (670,000 miles per hour), completing an orbit every 2.4 hours.

General relativity predicts that two stars orbiting so closely will throw off gravitational waves — ripples in
the fabric of space-time generated by the motions of massive objects. By doing so, they will lose orbital
energy and inch closer together. Radio observations from Australia, Germany, England, and the United
States show that the system is doing exactly what Einstein's theory predicts. "The orbit shrinks by 7
millimeters per day, which is in accordance with general relativity," says Michael Kramer (University of
Manchester, England), a member of the observing team.




Chin. J. Astron. Astrophys. Vol. 6 (2006), Suppl. 2, 162-168
A Review of The Double Pulsar - PSR J0737—-3039

A. G. Lyne *

Table 1 Basic Observed Parameters of PSRs JO0737—3039A and B

Pulsar

PSR JO737—3039A PSR JO737—-3039B

Pulse period P

Period derivative P

Orbital period P4,
Eccentricity e

Orbital inclination
Projected semi-major axis x
Stellar mass M

Mean orbital velocity V.1,
Characteristic age 7
Magnetic field at surface B
Radius of Light cylinder Ry,c
Spin-down luminosity E

22.7 ms 2.77 s
1.7 x 1018 0.88 x 10~ 1°

2.45 hours

0.088
~88 deg

1.42 sec 1.51 sec
1.337(5) Mg 1.250(5) Mg
301 kms—?! 323 kms—!
210 Myr 50 Myr
6.3 x 10 G 1.2 x 1012 G
1080 km 132 000 km

6000 x 1039 ergs™1 1.6 x 103 erg s~




2 TESTS OF GRAVITATIONAL THEORY

Non-relativistic binary systems are usually precisely described by the five Keplerian parameters, P, asing,
e, w and T, and these are all accurately measured when one object is a pulsar. However, a number of
general relativistic corrections to this classical description of the orbit - the so-called post-Keplerian (PK)
parameters - are needed if the gravitational fields are sufficiently strong. In only a few months, using the
Parkes Telescope, the Lovell Telescope at Jodrell Bank and the Green Bank Telescope, it was possible to
measure several general relativistic effects in 6 months that took years to measure with the Hulse-Taylor
binary pulsar, PSR B1913+16.

The following five PK relativistic parameters have already been measured in A, all causing small, but
highly significant, modifications to the arrival times of the pulsars’ radio pulses:

Relativistic periastron advance, w. This is the rotation of the line connecting the two pulsars at their
closest approach to one another. It arises from the distortion of space-time caused by the two stars, but
can also be understood as the result of the finite time needed for the gravitational influence of one star
to travel to another. This causes a time delay, during which the stars move so that the attractive force is
no longer radial.

Gravitational redshift and time dilation, 7. The redshift results in clocks appearing to run slowly in a
gravitational potential well and time dilation is the special relativistic effect which results in moving
clocks appearing to run slowly. Both effects cause clocks close to a neutron star to tick more slowly
than those further away. In other words the apparent pulse rate for A will slow down when it is close to
B, and vice versa.

Shapiro delay,  and s. Radiation passing close to a massive body is delayed because its path length is
increased by the curvature of space-time, an effect that Einstein overlooked but that was discovered in
1964 by Irwin Shapiro (Shapiro 1964) from radar measurements in the Solar System. Signals from A
are measured after they have passed through the distorted space-time of B (in principle the effect could
also be measured for the signals from B but its pulses are much broader and do not provide sufficient
temporal resolution). The signal delay is essentially a function of two parameters: s, the shape, and
r, the range, of the delay experienced by the pulses (with s being dependent on the inclination of the
orbital plane and r on the mass of B).




Gravitational radiation and orbital decay, dP’,,/dt. Almost every theory of gravitation predicts that the
movement of massive bodies around one another in a binary system will result in the emission of
gravitational waves. This emission causes the bodies to lose energy and hence to spiral into one another,
so that they will eventually merge, creating a burst of gravitational waves when they do so. The rate of
decrease of the orbital period, dP}, /dt, indicates that orbits of the pulsars are currently shrinking by
about 7 mm per day.

S CONCLUSION

Several fortunate circumstances have come together to make these studies possible. Not only is this a
double-neutron-star system, but

— It has a very compact orbit, giving rise to intense gravitational fields and accelerations and hence abun-
dant post-Keplerian gravitational effects

One pulsar 1s a millisecond pulsar which enables these effects to be measured with high precision
Both neutron stars are visible, allowing the mass-ratio to be determined

Both pulsars have large flux densities, giving high-precision measurements

The orbit 1s nearly edge on, so that the Shapiro delay can be measured with high precision.

All these properties enhance the quality and speed of the tests of gravitation theories in the strong-field
regime. Furthermore, the last three also enable the investigations of the interactions between the stars and
the probing of the magnetospheric properties.

Future observations of binary systems like PSR J0737—3039 promise to greatly increase our knowledge
of strong-field gravity, but finding these systems will be a challenge. This is because double pulsars are
extremely rare and, more importantly, because the Doppler effect causes their pulse periods to vary rapidly
even during a short observation. It therefore becomes more difficult to detect the pulsars’ periodicity using
normal Fourier techniques and more sophisticated and computationally challenging search algorithms will
have to be employed to uncover them.




General Relativity and Cosmology

GR: MATTER TELLS SPACE  CURVED SPACE TELLS

HOW TO CURVE MATTER HOW TO MOVE
R ViRgH = 8nGTH + Agh W54 D putuP =0

Cosmological Principle: on large scales, space 1s uniform and
1sotropic. COBE-Copernicus Theorem: If all observers observe a
nearly-isotropic Cosmic Background Radiation (CBR), then the
universe 1s locally nearly homogeneous and 1sotropic —1.e., 1s
approximately described by the Friedmann-Robertson-Walker

metric
ds? = dt* —a?(t) [dr? (1 —kr?)! + r? dQQ7]

with curvature constant k =— 1, 0, or +1. Substituting this metric
into the Einstein equation at left above, we get the Friedmann eq.




g kLA
Friedmann- mweo) &-%6-% 42 « Friedmann equation
= FRW E(ii) 2—a+“— — —87Gp — £+A
2 .
a a Ho = 100hkms™ Mpc ™
Walker oo i = 70hsokms "Mpc~?
Framework g @ 1= gt O =4 a0=1, 0= 0= gy,
(homogeneous peo = $5 = 1.36 x 1011hZ Mo Mpe™
b
. : 2% 8 2
isotropic  E(i) - B(00) = — = ——-Gp—8Gp+ A
1 .. 2
unlverse) Divide by 2E(00) = ¢y = — (E a_z) = o _ Qa
a a/, 2
N lda [ B
B0 =t = [ L[S, L A o [,
to = Hy ' f(Q0, Q) Hy' =978 'Gyr f(1,0) = §
0,0) =1
=13.97 h,,"! Gyr ;go 13 o
0.3, 0.7) = 0.964
[E(00)a®]" vs. E(i1) = %(p(ﬁ) = —3pa? (“continuity”)

Given eq. of state p = p(p),

Matter:
Radiation:

integrate to determine p(a),
integrate F(00) to determine a(t)

0= p = poa? (assumed above in qo, ty eqs.)
—4

p

g, k=0=pxa




k

Note: the formula 1 = Qg — —
0 H é

+ Qa

on the previous page is correct since agp = 1




Measuring Distances In the Universe

Primary Distance Indicators

Trigonometric parallax

a Centauri 1.35 pc - first measured by Thomas Henderson 1832
61 Cygni 3.48 pc - by Friedrich Wilhelm Bessel in 1838
Only a few stars to < 30 pc, until the Hipparcos satellite 1997 measured

distances of 118,000 stars to about 100 pc, about 20,000 stars to <10%.
Proper motions

Moving cluster method
Mainly for the Hyades, at about 100 pc. Now supplanted by Hipparcos.

Distance to Cepheid { Geminorum = 336 + 44 pc

Using Doppler to measure change of diameter, and interferometry to
measure change of angular diameter.

Similar methods for Type Il SN, for stars in orbit about the Sagittarius A*

SMBH (gives distance 8.0 = 0.4 kpc to Galactic Center), for radio maser in
NGC 4258 (7.2 £ 0.5 Mpc), etc.




Apparent Luminosity of various types of stars
L =1072M5 3,02x103° erg sec™! where Myis = + 4.82 for the sun

Apparent luminosity ¢ = L (4mmd?)™" for nearby objects,
related to apparent magnitude m by ¢ = 1072M5 (2.52x107° erg cm™2 s~ 1)

Distance modulus m - M related to distance by d = 101+ (m-M/5 p¢

Main sequence stars were calibrated by Hipparchos distances

and the Hubble Space Telescope Fine Guidance Sensor

Red clump (He burning) stars.

RR Lyrae Stars - variables with periods 0.2 - 0.8 days

Eclipsing binaries - v from Doppler, ellipticity from v(t), radius of primary
from duration of eclipse, T from spectrum, gives L = o T4 TTR?

Cepheid variables - bright variable stars with periods 2 - 45 days

Henrietta Swan Leavitt in 1912 discovered
the Cepheid period-luminosity relation in the
SMC, now derived mainly from the LMC.
This was the basis for Hubble’s 1923 finding
that M31 is far outside the Milky Way. Best
value today for the LMC distance modulus
m - M = 18.50 (see Weinberg, Cosmology,
p. 25), or dumc = 50.1 kpc.
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Secondary Distance Indicators

Tully-Fisher relation - spiral galaxies: L«V¢ a =4
Faber-Jackson relation - elliptical galaxies: L e« g®

Fundamental plane - elliptical galaxies

Type la supernovae - “normalizable standard candle”

Surface brightness fluctuations




The Age of the Universe

In the mid-1990s there was a crisis in cosmology, because the age of the old
Globular Cluster stars in the Milky Way, then estimated to be 16£3 Gyr, was
higher than the expansion age of the universe, which for a critical density
(Q,, = 1) universe is 9+2 Gyr (with the Hubble parameter h=0.72+0.07).

But when the
data from the
Hipparcos
astrometric
satellite became
available in
1997, it showed
that the distance
to the Globular
Clusters had
been
underestimated,
which implied
that their ages
are 1213 Gyr.

HR Diagram for Two Globular Clusters

M 67
NGC 188

Absolute magnitude —
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The Age of the Universe

In the mid-1990s there was a crisis in cosmology, because the age of the old
Globular Cluster stars in the Milky Way, then estimated to be 16£3 Gyr, was
higher than the expansion age of the universe, which for a critical density
(Q,, = 1) universe is 9+2 Gyr (with the Hubble parameter h=0.72+0.07). But

when the data from the Hipparcos astrometric satellite became available in
1997, it showed that the distance to the Globular Clusters had been
underestimated, which implied that their ages are 12+3 Gyr.

Several lines of evidence now show that the universe does not have Q_ =1

but rather Q, ., = Q_ + Q,=1.0 with Q_= 0.3, which gives an expansion age
of about 14 Gyr.

Moreover, a new type of age measurement based on radioactive decay of
Thorium-232 (half-life 14.1 Gyr) measured in a number of stars gives a
completely independent age of 1413 Gyr. A similar measurement, based on
the first detection in a star of Uranium-238 (half-life 4.47 Gyr), gives 12.5+3
Gyr.

All the recent measurements of the age of the universe are thus in excellent
agreement. It is reassuring that three completely different clocks — stellar
evolution, expansion of the universe, and radioactive decay — agree so well.
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LCDM Benchmark Cosmological Model

Ingredients & Epochs

List of Ingredients
photons: Q,0=35.0x 10—
neutrinos: Q0 =34 x 1073

total radiation:

Q0=84x107°

baryonic matter: Qpary,0 = 0.04

nonbaryonic dark matter: Q23gm.0 = 0.26

total matter: Q2.0 =030

cosmological constant: Qa0 070

Important Epochs

radiation-matter equality: arm = 2.8 x 1074 trm = 4.7 x 10* yr
matter-lambda equality: ampa = 0.75 tmA = 9.8 Gyr
Now: ag =1 to = 13.5 Gyr

Barbara Ryden, Introduction to Cosmology (Addison-Wesley, 2003)




Evolution of Densities of Radiation, Matter, & A
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Figure 1.3. Energy density vs scale factor for different constituents of a flat universe. Shown DOd@lSOl’l
are nonrelativistic matter, radiation, and a cosmological constant. All are in units of the critical >
density today. Even though matter and cosmological constant dominate today, at early times, Chapter 1
the radiation density was largest. The epoch at which matter and radiation are equal is acq.




Benchmark Model: Scale Factor vs. Time
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Important Epochs
2 [ radiation-matter equality: arm = 2.8 x 107% trm = 4.7 x 10* yr
matter-lambda equality: ama = 0.75 tma = 9.8Gyr
Now: ag =1 tg = 13.5Gyr a o eKt _
ﬂ
log (a)
p—

log (H 1)

FIGURE 6.5 The scale factor a as a function of time ¢ (measured in units of the Hubble
time), computed for the Benchmark Model. The dotted lines indicate the time of radiation-
matter equality, @y, = 2.8 x 1074, the time of matter-lambda equality, ¢, o = 0.75, and
the present moment, ag = 1. Barbara Ryden, Introduction to Cosmology (Addison-Wesley, 2003)




Age of the Universe t, in FRW Cosmologies
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(a) Evolution of the scale factor a(t) plotted vs. the time after the present
(t — to) 1n units of Hubble time tg = Ho_l = 9.78h~! Gyr for three different
cosmologies: Einstein-de Sitter (2 = 1,24 = 0 dotted curve), negative curvature
(Q = 0.3,24 = 0: dashed curve), and low-Qq flat (s = 0.3, Q4 = 0.7: solid
curve). (b) Age of the universe today ¢y in units of Hubble time ¢ g as a function
of Qp for A = 0 (dashed curve) and flat Qg + Q4 = 1 (solid curve) cosmologies.
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Age of the Universe and Lookback Time
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These are for the Benchmark Model €, ,=0.3, Q, ,=0.7, h=0.7.




Age t, of the Double Dark Universe

W77
7 /fV /
s

0.2 1
Qm 0 Calculated for k=0 and h O /. For any other value of
the Hubble parameter, multiply the age by (h/0.7).




History of Cosmic Expansion for General Q, & €2,
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History of Cosmic Expansion for Q,= 1- Qy

With Q, =0 the age of the

decelerating universe
would be only 9 Gyr, but
Q,=0.7, Q2 =0.3 gives an

age of 14Gyr, consistent
with stellar and radioactive

decay ages

Figure 4. The history of cosmic
expansion, as measured by the
high-redshift supernovae (the black
data points), assuming flat cosmic
geometry. The scale factor R of the
universe is taken to be 1 at pres-
ent, so it equals 1/(1 + z). The
curves in the blue shaded region
represent cosmological models in
which the accelerating effect of
vacuum energy eventually over-
comes the decelerating effect of
the mass density. These curves as-
sume vacuum energy densities
ranging from 0.95 p_ (top curve)
down to 0.4 p_. In the yellow
shaded region, the curves repre-
sent models in which the cosmic
expansion is always decelerating
due to high mass density. They as-
sume mass densities ranging (left to
right) from 0.8 p_up to 1.4 p_. In
fact, for the last two curves, the ex-
pansion eventually halts and re-
verses into a cosmic collapse.
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Brief History of the Universe

Cosmic Inflation generates density fluctuations
Symmetry breaking: more matter than antimatter

All antimatter annihilates with almost all the matter (1s)
Big Bang Nucleosynthesis makes light nuclei1 (10 min)
Electrons and light nuclei combine to form atoms

and the cosmic background

radiation fills the newly

transparent universe (380,000 yr) _

Galaxies and larger structures form (~1 Gyr)

Carbon, oxygen, iron, ... are made 1n stars
Earth-like planets form around 2" generation stars
Life somehow starts (~4 Gyr ago) and evolves on earth




Picturing the History of the Universe:
The Backward Lightcone
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(Cambridge UP, 2000).
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Time

Picturing the History of the Universe:
The Backward Lightcone

observable
universe

particle

horizon
unobservable

universe

Time

worldline of galaxy

beginning

beyond particle horizon

Figure 21.11. At the instant labeled “now’ the
particle horizon is at worldline X. In a big bang
universe, all galaxies at the particle horizon have

infinite redshift.
From E. Harrison, Cosmology (Cambridge UP, 2000).

Time

later
particle
horizon

now

Time

beginning
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Figure 21.12. At the instant labeled “later’” the
particle horizon has receded to world line Y. Notice
the distance of the particle horizon is always a
reception distance, and the particle horizon always
overtakes the galaxies and always the fraction of the

universe observed increases.
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Distances in an Expanding Universe

FRW: ds? = -c2dt?2 + a(t)? [dr?2 + r2 d62 + r2 sin20 d¢?] for curvature k=0

t
x(t;) = (comoving distance at time t,) =[dt/a= r
0

adding distances at time t
d(t1) = (physical distance at t1) = a(t1) X (t1) 1
Particle %P = (comoving distance at time ty) =r,

Horizon dy, = (physical distance at time to) = a(to) rp = rp
since a(to) =1

From the FRW metric above, the distance D across a
source at distance r, which subtends an angle do is
D=a(t,) r, d0. The angular diameter distance d, is

defined by d, = D/d6, so
dy=a(ty) ry=r/(1+z,)

In Euclidean space, the luminosity L of a source at distance d

is related to the apparent luminosity ¢ by
¢ = Power/Area = L/4nd?
so the luminosity distance d, is defined by d, = (L/4m¢)"2 .

Weinberg, Cosmology, pp. 31-32, shows that in FRW
¢ = Power/Area = L [a(t,)/a(t,)]? [4na(ty)? r,?]" = L/4nd, 2
Thus fraction of photons reaching unit area at t,

d_=r/a(t,) =r, (1+z) (redshift of each photon)(delay in arrival)




Distances in a Flat (k=0) Expanding Universe
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Figure 2.3. Three distance measures in a flat expanding universe. From top to bottom, the
luminosity distance, the comoving distance, and the angular diameter distance. The pair of
lines in each case is for a flat universe with matter only (light curves) and 70% cosmological
constant A (heavy curves). In a A-dominated universe, distances out to fixed redshift are larger
than in a matter-dominated universe,

Scott Dodelson, Modern Cosmology (Academic Press, 2003)




Distances in the Expanding Universe

D, .. = proper distance, D, = luminosity distance,

= angular diameter distance, D, = c(t; — t,)
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Distances in the Expanding Universe:
Ned Wright’s Javascript Calculator

Enter values, hit a button

o
Omega

83

M

o
N

70| Omega
vac

o

General

Open sets OmegaWIC =0 giving

an open Universe [if you
entered Omem < 1]

Flat sets Omega =1-
vac

Omegal\ I giving a flat Universe.

General uses the Omegavac

that you entered.

ForH =70, 0Omega _=0.300,Omega =0.700,z=0.830
(] - M -V

vac

o It 18 now 13.462 Gyr since the Big Bang.
o The age at redshift z was 6.489 Gyr.
o The light travel tune was 6.974 Gyr.

o The comoving radial distance. which goes into Hubble's law, 15 2868.9 Mpc or 9.357 Gly.

¢ The comoving volume within redshift z 15 98.906 G1)c3.
o The angular size distance D N 18 1567.7 Mpc or 5.1131 Gly.

o This gives a scale of 7.600 kpc/".

s a scale . H,D, (z=0.83)
o The lummosity distance DL 18 5250.0 Mpc or 17.123 Gly.

=17.123/13.97
=1.23

1 Gly=1,000,000,000 light years or 9.461 "‘10‘)'6 cm.
1 Gyr=1.000,000,000 years.

1 Mpc =1,000,000 parsecs = 3.08568*10 cm, or 3,261,566 light years.
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FAQ | Age | Distances | Bibliography | Relativity
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