09PHYSICS 80C - HOMEWORK 1 - ANSWERS TO NUMERICAL OUESTIONS

- 1. Work out how many meters there are in a light year.
 - (a) What is the speed of light, in meters per second? $\underline{3 \times 10^8}$
 - (b) How many seconds are there in a year? 3×10^7
 - (c) Multiply to get the answer: 9×10^{15} meters
 - (d) Convert your answer above to miles, using 1.61 km = 1 mile.

km mile

$$9 \times 10^{15}$$
 meters $\times 10^{-3}$ ----- \times ----- = $\underline{6} \times 10^{12}$ miles
meter 1.61 km

- 2. Ratios of big numbers. To find out how much bigger the cosmic horizon (10^{29} cm) is than the earth (10^7 cm) , divide: $10^{29} \text{ cm} / 10^7 \text{ cm} = 10^{29-7} = 10^{22} \text{ times bigger}$.
 - (a) How much bigger is a galaxy (10^{23} cm) than a person $(1 \text{ m})? \underline{10^{21}}$
 - (b) How much bigger is a person than an atom (10^{-8} cm) ? ____10^{10}____
- 3. (a) Multiply 5×10^{28} times 2×10^7 10^{36}
 - (b) Divide 6×10^8 by $10^7 6 \times 10^1 = 60$
- 4. The amount of energy E in a kilogram of matter is given by Einstein's famous formula $E = mc^2$, where m is the mass in kilograms and $c = 3 \times 10^8$ m/s is the speed of light (in meters per second) and E is the energy in Joules.
 - (a) How much energy is in a kilogram of matter? 9×10^{16} Joules
 - (b) You are billed for electric power at around 10 cents per kilowatt-hour (kwh), and $1 \text{ kwh} = 3.6 \times 10^6 \text{ Joules}$. How much is the energy in a kilogram of matter worth at that rate? $\$3 \times 10^9 = 3 \text{ billion dollars}$

In more detail, using the same approach as for problem 1,

1 kg =
$$(9 \times 10^{16} \text{ Joules})$$
 ($\underline{1 \text{ kwh}}$) ($\underline{\$0.10}$) = $\$2.5 \times 10^9$
3.6 × 10⁶ Joules 1 kwh
and I rounded up 2.5 to 3.