Physics 224 - Spring 2010

Week 2 GENERAL RELATIVISTIC COSMOLOGY

Joel Primack University of California, Santa Cruz New observations hit the theory like an ice cold shower. They show that cold dark matter has too little large scale power. Says Peebles: "Cold dark matter? My feeblest innovation. An overly aesthetic, theoretical abberation. Our theories must have firmer empirical foundation. Shed all this extra baggage, including the carry-ons. Use particles we know, i.e., the baryons. Others aren't convinced, and a few propose a mixture of matter hot and cold, perhaps with strings or texture. And nowadays some physicists are beginning to wonder if it's time to resurrect Einstein's "greatest blunder." Why seek exotic particles instead of just assume that the dark matter's all around us -- it's what we call the vacuum?

Who's right? It's hard to know, 'til observation or experiment gives overwhelming evidence that relieves our predicament. The search is getting popular as many realize that the detector of dark matter may well win the Nobel Prize.

So now you've heard my lecture, and it's time to end the session with the standard closing line: Thank you, any questions?

SUMMARY

• We now know the cosmic recipe. Most of the universe is invisible stuff called "nonbaryonic dark matter" (25%) and "dark energy" (70%). Everything that we can see makes up only about 1/2% of the cosmic density, and invisible atoms about 4%. The earth and its inhabitants are made of the rarest stuff of all: heavy elements (0.01%).

• The ACDM Cold Dark Matter Double Dark theory based on this appears to be able to account for all the large scale features of the observable universe, including the details of the heat radiation of the Big Bang and the large scale distribution of galaxies.

 Constantly improving data are repeatedly testing this theory. The main ingredients have been checked several different ways. There exist no convincing disagreements, as far as I can see. Possible problems on subgalactic scales may be due to the poorly understood physics of gas, stars, and massive black holes.

 But we still don't know what the dark matter and dark energy are, nor really understand how galaxies form and evolve. There's lots more work for us to do!

Modern Cosmology

A series of major discoveries has laid a lasting foundation for cosmology. Einstein's general relativi (1916) provided the conceptual foundation for the modern picture. Then Hubble discovered that "spiral nebulae" are large galaxies like our own Milky Way (1925), and that distant galaxies are receding from the Milky Way with a speed proportional to their distance (1929), which means that we live in an expanding universe. The discovery of the cosmic background radiation (1965) showed that the universe began in a very dense, hot, and homogeneous state: the Big Bang. This was confirmed by the discovery that the cosmic background radiation has exactly the same spectrum as heat radiation (1989), and the measured abundances of the light elements agree with the predictions of Big Bang theory if the abundance of ordinary matter is about 4% of critical density. Most of the matter in the universe is invisible particles which move very sluggishly in the early universe ("Cold Dark Matter"

General Relativity

GRAVITY

ACCORDING TO GENERAL RELATIVITY

PRINCIPLE OF EQUIVALENCE

CURVED SPACE TELLS MATTER HOW TO MOVE.

ACCELERATION

EINSTEIN FIELD EQUATIONS MATTER TELLS SPACE HOW TO CURVE.

MASS + ENERGY $R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = 8\pi G T_{\mu\nu}$ CURVATURE CONSTANT

DENSITYZ COSMOLOGICAL

CURVED SPACE-TIME IS NOT JUST AN ARENA IN WHICH THINGS MOVE, IT IS DYNAMIC. CURVATURE CAN CAUSE HORIZONS, BEYOND WHICH INFORMATION CANNOT BE SENT.

General Relativity

GR follows from the principle of equivalence and Einstein's equation $G_{\mu\nu} \equiv R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = -8\pi GT_{\mu\nu}$.* Einstein had intuited the local equivalence of gravity and acceleration in 1907 (Pais, p. 179), but it was not until November 1915 that he developed the final form of the GR equation.

It can be derived from the following assumptions (Weinberg, p. 153): 1. The l.h.s. $G_{\mu\nu}$ is a tensor 2. $G_{\mu\nu}$ consists only of terms linear in second derivatives or quadratic in first derivatives of the metric tensor $g_{\mu\nu}$ ($\Leftrightarrow G_{\mu\nu}$ has dimension L⁻²) 3. Since $T_{\mu\nu}$ is symmetric in $\mu\nu$, so is $G_{\mu\nu}$ 4. Since $T_{\mu\nu}$ is conserved (covariant derivative $T^{\mu}_{\nu;\mu}=0$) so also $G^{\mu}_{\nu;\mu}=0$ 5. In the weak field limit where $g_{00} \approx -(1+2\phi)$, satisfying the Poisson equation $\nabla^2\phi=4\pi G\rho$ (i.e., $\nabla^2 g_{00}=-8\pi GT_{00}$), we must have $G_{00}=\nabla^2 g_{00}$

^{*}Note: we're here using the metric -1, 1, 1, 1 as in Dodelson, Weinberg.

Einstein's equation can also be derived from an action principle, varying the total action $I = I_M + I_G$, where I_M is the action of matter and I_G is that of gravity:

$$I_G = -\frac{1}{16\pi G} \int R(x) \sqrt{g(x)} \, d^4x$$

(see, e.g., Weinberg, p. 364). The curvature scalar $R \equiv R_{\mu\nu} g^{\mu\nu}$ is the obvious term to insert in I_G since a scalar connected with the metric is needed and it is the only one, unless higher powers R^2 , R^3 or higher derivatives $\Box R$ are used, which will lead to higher-order or higher-derivative terms in the gravity equation.

Einstein realized in 1916 that the 5th postulate above isn't strictly necessary – merely that the equation reduce to the Newtonian Poisson equation within observational errors, which allows the inclusion of a small cosmological constant term. In the action derivation, such a term arises if we just add a constant to R.

General Relativityand CosmologyGR: MATTER TELLS SPACECURVED SPACE TELLSHOW TO CURVEMATTER HOW TO MOVE

 $R^{\mu\nu} - \frac{1}{2}Rg^{\mu\nu} = 8\pi G T^{\mu\nu} + \Lambda g^{\mu\nu}$

$$\frac{\mathrm{d}u^{\mu}}{\mathrm{d}s} + \Gamma^{\mu}{}_{\alpha\beta} u^{\alpha} u^{\beta} = 0$$

Cosmological Principle: on large scales, space is uniform and isotropic. COBE-Copernicus Theorem: If all observers observe a nearly-isotropic Cosmic Background Radiation (CBR), then the universe is locally nearly homogeneous and isotropic – i.e., is approximately described by the Friedmann-Robertson-Walker metric

$$ds^{2} = dt^{2} - a^{2}(t) \left[dr^{2} (1 - kr^{2})^{-1} + r^{2} d\Omega^{2} \right]$$

with curvature constant k = -1, 0, or +1. Substituting this metric into the Einstein equation at left above, we get the Friedmann eq.

$${\rm H}^2 \equiv \frac{{\dot a}^2}{a^2} = \frac{8\pi}{3} G\rho - \frac{k}{a^2} + \frac{\Lambda}{3}$$

Experimental and Historical Sciences

Physics, Chemistry Astronomy, Geology, Evolutionary Biology

both make predictions about new knowledge, whether from experiments or from the past

Historical Explanation Is Always Inferential

Our age cannot look back to earlier things Except where reasoning reveals their traces Lucretius

Patterns of Explanation Are the Same in the Historical Sciences as in the Experimental Sciences

Specific conditions + General laws \Rightarrow Particular event

In history as anywhere else in empirical science, the explanation of a phenomenon consists in subsuming it under general empirical laws; and the criterion of its soundness is ... exclusively whether it rests on empirically well confirmed assumptions concerning initial conditions and general laws.

C.G. Hempel, Aspects of Scientific Explanation (1965), p. 240.

Successful Predictions of the Big Bang

First Prediction

First Confirmation

Expansion of the Universe Friedmann 1922, Lemaitre 1927 Hull based on Einstein 1916

Hubble 1929

Cosmic Background Radiation

Existence of CBR Gamow, Alpher, Hermann1948

CBR Thermal Spectrum Peebles 1966

CBR Fluctuation Amplitude Cold Dark Matter theory 1984

CBR Acoustic Peak

Light Element Abundances Peebles 1966, Wagoner 1967 Penzias & Wilson 1965

COBE 1989

COBE 1992

BOOMERANG 2000 MAXIMA 2000

D/H Tytler et al.1997

Three Pillars of the Big Bang

A modern illustration of Hubble's Law, displaying the increase of recession speed of galaxies growing in direct proportion to their distance.

Big Bang Nucleosynthesis

The detailed production of the lightest elements out of protons and neutrons during the first three minutes of the universe's history. The nuclear reactions occur rapidly when the temperature falls below a billion degrees Kelvin. Subsequently, the reactions are shut down, because of the rapidly falling temperature and density of matter in the expanding universe.

Caution: ⁷Li may now be discordant

The variation of the intensity of the microwave background radiation with its frequency, as observed by the COBE satellito from above the Earth's atmosphere. The observations (boxes) display a perfect fit with the (solid) curve expected from pure heat radiation with a temperature of 2.73°K.

Dynamical effects of the cosmological constant

Figure 1. The phase-space of the density parameter Ω_0 and the cosmological constant $\lambda_0 \equiv \Lambda/(3H_0^2)$ with various fundamental constraints. The dashed-dotted line indicates an inflationary (i.e. flat) universe. Note that some open models will have a Big Crunch, while some closed models will expand forever. The solid lines show 4 values for the age of the universe $H_0 t_0$, and the dashed line is the constraint of Gott *et al.* (1989) from a normally lensed quasar at z = 3.27. The boundary (λ_s) of the shaded 'No Big Bang' region corresponds to a coasting phase in the past, while the boundary of the 'Big Crunch' (for $\Omega_0 > 1$) region corresponds to a coasting phase in the future. We see that the permitted range in the $(\lambda_0 - \Omega_0)$ phase-space is fairly small, but allows values different from the popular point $(\Omega_0 = 1, \lambda_0 = 0)$.

Evolution of Densities of Radiation, Matter, & Λ

Figure 1.3. Energy density vs scale factor for different constituents of a flat universe. Shown are nonrelativistic matter, radiation, and a cosmological constant. All are in units of the critical density today. Even though matter and cosmological constant dominate today, at early times, the radiation density was largest. The epoch at which matter and radiation are equal is a_{eq} .

z = redshift

Dodelson, Chapter 1

LCDM Benchmark Cosmological Model: Ingredients & Epochs

	List of Ingredients
photons:	$\Omega_{\gamma,0} = 5.0 \times 10^{-5}$
neutrinos:	$\Omega_{\nu,0} = 3.4 \times 10^{-5}$
total radiation:	$\Omega_{r,0} = 8.4 \times 10^{-5}$
baryonic matter:	$\Omega_{\text{bary},0} = 0.04$
nonbaryonic dark matter:	$\Omega_{\rm dm,0} = 0.26$
total matter:	$\Omega_{m,0} = 0.30$
cosmological constant:	$\Omega_{\Lambda,0} \approx 0.70$

Important Epochs		
radiation-matter equality:	$a_{rm} = 2.8 \times 10^{-4}$	$t_{rm} = 4.7 \times 10^4 \mathrm{yr}$
matter-lambda equality:	$a_{m\Lambda} = 0.75$	$t_{m\Lambda} = 9.8 \mathrm{Gyr}$
Now:	$a_0 = 1$	$t_0 = 13.5 \text{Gyr}$

Barbara Ryden, Introduction to Cosmology (Addison-Wesley, 2003)

Benchmark Model: Scale Factor vs. Time

FIGURE 6.5 The scale factor *a* as a function of time *t* (measured in units of the Hubble time), computed for the Benchmark Model. The dotted lines indicate the time of radiation-matter equality, $a_{rm} = 2.8 \times 10^{-4}$, the time of matter-lambda equality, $a_{m\Lambda} = 0.75$, and the present moment, $a_0 = 1$. Barbara Ryden, *Introduction to Cosmology* (Addison-Wesley, 2003)

Earth's motion around Sun

Measuring Distances in the Universe

Primary Distance Indicators

Trigonometric parallax

α Centauri 1.35 pc - first measured by Thomas Henderson 1832
61 Cygni 3.48 pc - by Friedrich Wilhelm Bessel in 1838
Only a few stars to < 30 pc, until the Hipparcos satellite 1997 measured distances of 118,000 stars to about 100 pc, about 20,000 stars to <10%.

Proper motions

Moving cluster method

Mainly for the Hyades, at about 100 pc. Now supplanted by Hipparcos.

Distance to Cepheid ζ Geminorum = 336 ± 44 pc

Using Doppler to measure change of diameter, and interferometry to measure change of angular diameter.

Similar methods for Type II SN, for stars in orbit about the Sagittarius A^{*} SMBH (gives distance 8.0 \pm 0.4 kpc to Galactic Center), for radio maser in NGC 4258 (7.2 \pm 0.5 Mpc), etc.

Apparent Luminosity of various types of stars

L = $10^{-2M/5}$ 3.02×10³⁵ erg sec⁻¹ where M_{vis} = + 4.82 for the sun

Apparent luminosity $\ell = L (4\pi d^2)^{-1}$ for nearby objects,

related to apparent magnitude m by $\ell = 10^{-2m/5} (2.52 \times 10^{-5} \text{ erg cm}^{-2} \text{ s}^{-1})$

Distance modulus m - M related to distance by $d = 10^{1 + (m - M)/5}$ pc

Main sequence stars were calibrated by Hipparchos distances and the Hubble Space Telescope Fine Guidance Sensor Red clump (He burning) stars. RR Lyrae Stars - variables with periods 0.2 - 0.8 days Eclipsing binaries - v from Doppler, ellipticity from v(t), radius of primary from duration of eclipse, T from spectrum, gives L = σ T⁴ π R² Cepheid variables - bright variable stars with periods 2 - 45 days

Henrietta Swan Leavitt in 1912 discovered the Cepheid period-luminosity relation in the SMC, now derived mainly from the LMC. This was the basis for Hubble's 1923 finding that M31 is far outside the Milky Way. Best value today for the LMC distance modulus m - M = 18.50 (see Weinberg, *Cosmology*, p. 25), or d_{LMC} = 50.1 kpc.

Hertzsprung-Russell Diagram

Secondary Distance Indicators

- **Tully-Fisher relation**
- **Faber-Jackson relation**
- **Fundamental plane**
- Type la supernovae
- Surface brightness fluctuations

The Age of the Universe

In the mid-1990s there was a crisis in cosmology, because the age of the old Globular Cluster stars in the Milky Way, then estimated to be 16±3 Gyr, was higher than the expansion age of the universe, which for a critical density (Ω_m = 1) universe is 9±2 Gyr (with the Hubble parameter h=0.72±0.07).

But when the data from the Hipparcos astrometric satellite became available in 1997, it showed that the distance to the Globular Clusters had been underestimated, which implied that their ages are 12±3 Gyr.

Absolute magnitude —>

Temperature

The Age of the Universe

In the mid-1990s there was a crisis in cosmology, because the age of the old Globular Cluster stars in the Milky Way, then estimated to be 16±3 Gyr, was higher than the expansion age of the universe, which for a critical density ($\Omega_m = 1$) universe is 9±2 Gyr (with the Hubble parameter h=0.72±0.07). But when the data from the Hipparcos astrometric satellite became available in 1997, it showed that the distance to the Globular Clusters had been underestimated, which implied that their ages are 12±3 Gyr.

Several lines of evidence now show that the universe does not have $\Omega_m = 1$ but rather $\Omega_{tot} = \Omega_m + \Omega_{\Lambda} = 1.0$ with $\Omega_m \approx 0.3$, which gives an expansion age of about 14 Gyr.

Moreover, a new type of age measurement based on radioactive decay of Thorium-232 (half-life 14.1 Gyr) measured in a number of stars gives a completely independent age of 14±3 Gyr. A similar measurement, based on the first detection in a star of Uranium-238 (half-life 4.47 Gyr), gives 12.5±3 Gyr.

All the recent measurements of the age of the universe are thus in excellent agreement. It is reassuring that three completely different clocks – stellar evolution, expansion of the universe, and radioactive decay – agree so well.

Age of the Universe t₀ in FRW Cosmologies

(a) Evolution of the scale factor a(t) plotted vs. the time after the present $(t - t_0)$ in units of Hubble time $t_H \equiv H_0^{-1} = 9.78h^{-1}$ Gyr for three different cosmologies: Einstein-de Sitter ($\Omega_0 = 1, \Omega_{\Lambda} = 0$ dotted curve), negative curvature ($\Omega_0 = 0.3, \Omega_{\Lambda} = 0$: dashed curve), and low- Ω_0 flat ($\Omega_0 = 0.3, \Omega_{\Lambda} = 0.7$: solid curve). (b) Age of the universe today t_0 in units of Hubble time t_H as a function of Ω_0 for $\Lambda = 0$ (dashed curve) and flat $\Omega_0 + \Omega_{\Lambda} = 1$ (solid curve) cosmologies.

Age of the Universe and Lookback Time

These are for the Benchmark Model $\Omega_{m,0}$ =0.3, $\Omega_{\Lambda,0}$ =0.7, h=0.7.

Age t₀ of the Double Dark Universe

History of Cosmic Expansion for General $\Omega_M \& \Omega_\Lambda$

History of Cosmic Expansion for General $\Omega_M \& \Omega_\Lambda$

History of Cosmic Expansion for Ω_{Λ} = 1- Ω_{M}

With $\Omega_{\Lambda} = 0$ the age of the decelerating universe would be only 9 Gyr, but $\Omega_{\Lambda} = 0.7$, $\Omega_{m} = 0.3$ gives an age of 14Gyr, consistent with stellar and radioactive decay ages

Figure 4. The history of cosmic expansion, as measured by the high-redshift supernovae (the black data points), assuming flat cosmic geometry. The scale factor R of the universe is taken to be 1 at present, so it equals 1/(1 + z). The curves in the blue shaded region represent cosmological models in which the accelerating effect of vacuum energy eventually overcomes the decelerating effect of the mass density. These curves assume vacuum energy densities ranging from 0.95 $\rho_{\rm c}$ (top curve) down to 0.4 ρ_c . In the yellow shaded region, the curves represent models in which the cosmic expansion is always decelerating due to high mass density. They assume mass densities ranging (left to right) from 0.8 ρ_c up to 1.4 ρ_c . In fact, for the last two curves, the expansion eventually halts and reverses into a cosmic collapse.

Saul Perlmutter, Physics Today, Apr 2003

SNe Ia from ground-based discoveries in the Gold sample are shown as diamonds, HST-discovered SNe Ia are shown as filled symbols. Overplotted is the best fit for a flat cosmology: $\Omega_m = 0.27$, $\Omega_{\Lambda=} 0.73$. **Inset**: Residual Hubble diagram and models after subtracting empty Universe model. The Gold sample is binned in equal spans of $n\Delta z = 6$ where n is the number of SNe in a bin and z is the redshift range of the bin. Fig. 6 of A. Riess et al. 2007, ApJ, 659, 98.

From the A. Riess et al. 2007, ApJ, 659, 98 Abstract: The unique leverage of the HST high-redshift SNe Ia provides the first meaningful constraint on the dark energy equation-of-state parameter at $z \ge 1$. The result remains consistent with a cosmological constant (w(z) = -1), and rules out rapidly evolving dark energy (dw/dz >> 1). The defining property of dark energy, its negative pressure, appears to be present at z > 1, in the epoch preceding acceleration, with $\int 98\%$ confidence in our primary fit. Moreover, the z > 1 sample-averaged spectral energy distribution is consistent with that of the typical SN Ia over the last 10 Gyr, indicating that any spectral evolution of the properties of SNe Ia with redshift is still below our detection threshold.

Brief History of the Universe

- Cosmic Inflation generates density fluctuations
- Symmetry breaking: more matter than antimatter
- All antimatter annihilates with almost all the matter (by ~1s)
- Big Bang Nucleosynthesis makes light nuclei (~3 min)
- Electrons and light nuclei combine to form atoms, and the cosmic background radiation fills the newly transparent universe (400,000 yr)

- Galaxies and larger structures form (~1 Gyr)
- Carbon, oxygen, iron, ... are made in stars
- Earth-like planets form around metal-rich stars
- Life somehow starts (~3.7 Gyr ago) and evolves on earth

Picturing the History of the Universe: The Backward Lightcone

Picturing the History of the Universe: The Backward Lightcone

Figure 21.11. At the instant labeled "now" the particle horizon is at worldline X. In a big bang universe, all galaxies at the particle horizon have infinite redshift.

From E. Harrison, Cosmology (Cambridge UP, 2000).

Figure 21.12. At the instant labeled "later" the particle horizon has receded to world line Y. Notice the distance of the particle horizon is always a reception distance, and the particle horizon always overtakes the galaxies and always the fraction of the universe observed increases.

Distances in an Expanding Universe

Horizons PARTICLE HORIZON Spherical surface that at time t separates worldlines into observed vs. unobserved

EVENT HORIZON

Backward lightcone that separates events that will someday be observed from those never observed

Our Particle Horizon

FRW: $ds^2 = -c^2 dt^2 + a(t)^2 [dr^2 + r^2 d\theta^2 + r^2 sin^2\theta d\phi^2]$ for curvature K=0 so $\sqrt{g_{rr}} = a(t)$

Particle Horizon

 $\mathbf{d}_{\mathbf{p}}(\text{horizon}) = (\text{physical distance at time } t_0) = a(t_0) r_p = r_p$

$$\mathbf{d}_{\mathbf{p}}(\text{horizon}) = \int_{0}^{r_{\text{horizon}}} d\mathbf{r} = r_{\text{horizon}} = c \int \frac{dt}{a} = c \int \frac{da}{a} (a^{2}H)$$

For E-dS, where
$$H = H_0 a^{-3/2}$$
,
 $r_{\text{horizon}} = \lim_{a_e \to 0} 2d_H (1 - a_e^{1/2}) = 2d_H =$

= 8.58 h_{70}^{-1} Gpc = 27.94 h_{70}^{-1} Glyr

For the Benchmark Model with *h*=0.70,

 $r_{\text{horizon}} = 13.9 \text{ Gpc} = 45.2 \text{ Glyr}.$

Figure 21.11. At the instant labeled "now" the particle horizon is at worldline X. In a big bang universe, all galaxies at the particle horizon have infinite redshift.

For the WMAP5 parameters h = 0.70, M = 0.28, K = 0, $r_{\text{horizon}} = 14.3$ Gpc = 46.5 Glyr.

Distances in an Expanding Universe

Angular Diameter Distance

From the FRW metric, the distance D across a source at comoving distance $r = r_e$ which subtends an angle $d\theta = \theta_1 - \theta_2$ is $D = a(t) r d\theta$, or $d\theta = D/[a(t)r]$.

The **angular diameter distance** d_A is defined by $d_A = D/d\theta$, so

 $d_A = a(t_e) r_e = r_e / (1 + z_e) = d_p(t_e)$.

This has a maximum, and $d\theta a minimum$.

For the Benchmark Model		
<u>redshift z</u>	<u>D↔1 arcsec</u>	
0.1	1.8 kpc	
0.2	3.3	
0.5	6.1	
1	8.0	
2	8.4	
3	7.7	
4	7.0	
6	5.7	

Distances in an Expanding Universe

In Euclidean space, the luminosity L of a source at distance d is related to the **apparent luminosity** ℓ by ℓ = Power / Area = L / $4\pi d^2$ The **luminosity distance** d_L is defined by $d_{\rm L} = (L / 4\pi \ell)^{1/2}$. Weinberg, Cosmology, pp. 31-32, shows that in FRW ℓ = Power/Area = L / $4\pi d_L^2$ _____fraction of photons reaching unit area at t₀ $= L \left[\frac{a(t_1)}{a(t_0)} \right]^2 / \left[\frac{4\pi d_p(t_0)^2}{2} \right] = L \frac{a(t_1)^2}{4\pi r_1^2} - \frac{4\pi r_1^2}{4\pi r_1^2} \left(\frac{1+z_1}{2} \right)^2$ Thus (redshift of each photon)(delay in arrival) $d_{L} = r_{1}/a(t_{1}) = r_{1} (1+z_{1}) = d_{p}(t_{0}) (1+z_{1}) = d_{A} (1+z_{1})^{2}$ 15 A-only Benchmark $\left(\frac{H_0}{c}\right) d_L$ matter-only E-dS 5 Barbara Ryden, Introduction to Cosmology (Addison-Wesley, 2003) 0 5 redshift $z \rightarrow$ 2 3 6 0

Summary: Distances in an Expanding Universe

FRW: $ds^2 = -c^2 dt^2 + a(t)^2 [dr^2 + r^2 d\theta^2 + r^2 sin^2\theta d\phi^2]$ for curvature K=0 so $\sqrt{g_{rr}} = a(t)$ $\chi(t_1) = (\text{comoving distance at time } t_1) = \int dr = r_1 = \int dt/a^{1/2}$ adding distances at time t₁ $d(t_1) = (physical distance at t_1) = a(t_1) \chi (t_1) = a_1 r_1$ $\chi(t_1) = (\text{comoving distance at time } t_0) = r_1$ \mathbf{r}_1 $\mathbf{d}_{\mathbf{p}} = (\text{physical distance at time } \mathbf{t}_0) = \mathbf{a}(\mathbf{t}_0) \mathbf{r}_{\mathbf{p}} = \mathbf{r}_{\mathbf{p}}$ since $a(t_0) = 1$ From the FRW metric above, the distance D across a source at lookback time comoving distance r_1 which subtends an angle d θ is emission $D=a(t_1) r_1 d\theta$. The angular diameter distance d_A is distance $a_1 r_1$ maximum distance defined by $d_A = D/d\theta$, so $d_{\Delta} = a(t_1) r_1 = r_1/(1+z_1)$

In Euclidean space, the luminosity L of a source at distance d is related to the **apparent luminosity** *l* by χ (t₁) = (comoving distance at time

 ℓ = Power/Area = L/4 π d²

so the **luminosity distance** d_{I} is defined by $d_{I} = (L/4\pi\ell)^{1/2}$. Weinberg, Cosmology, pp. 31-32, shows that in FRW

 ℓ = Power/Area = L [a(t₁)/a(t₀)]² [4 π a(t₀)² r₁²]⁻¹ = L/4 π d₁²

 $\mathbf{\hat{b}}$ fraction of photons reaching unit area at t₀

 $d_1 = r_1/a(t_1) = r_1 (1+z_1)$

Thus

(redshift of each photon)(delay in arrival)

Velocities in an Expanding Universe

The velocity away from us now of a galaxy whose light we receive with redshift z_e , corresponding to scale factor $a_e = 1/(1 + z_e)$, is given by Hubble's law:

 $v(t_0) = H_0 d_p(t_0)$

The velocity away from us that this galaxy had when it emitted the light we receive now is

 $v(t_e) = H_e d_p(t_e)$

The graph at right shows $v(t_0)$ and $v(t_e)$ for the E-dS cosmology.

For E-dS, where $H = H_0 a^{-3/2}$,

$$v(t_0) = H_0 d_p(t_0) = 2c (1-a^{1/2})$$

$$v(t_e) = H_e d_p(t_e)$$

$$= H_0 a_e^{-3/2} a_e 2c (1-a_e^{1/2})/H_0 = 2c (a_e^{-1/2})$$

Velocities in an Expanding Universe

From E. Harrison, *Cosmology* (Cambridge UP, 2000).

Figure 15.12. On an elastic strip let O represent our position, and X and Y the positions of two galaxies. If signals from X and Y are to reach us at the same instant, then Y, which is farther away, must emit before X. In (a), Y emits a signal. In (b), X emits a signal at a later instant when it is farther away than Y was when it emitted its signal. In (c), both signals arrive simultaneously at O. Y's signal has the greater redshift (it has been stretched more) although Y was closer than X at the time of emission. This odd situation occurs at large redshifts in all big bang universes.

Distances in a Flat (k=0) Expanding Universe

Figure 2.3. Three distance measures in a flat expanding universe. From top to bottom, the luminosity distance, the comoving distance, and the angular diameter distance. The pair of lines in each case is for a flat universe with matter only (light curves) and 70% cosmological constant Λ (heavy curves). In a Λ -dominated universe, distances out to fixed redshift are larger than in a matter-dominated universe.

Scott Dodelson, Modern Cosmology (Academic Press, 2003)

Distances in the Expanding Universe

 D_{now} = proper distance, D_L = luminosity distance,

 D_A = angular diameter distance, D_{ltt} = c(t₀ – t_z)

http://www.astro.ucla.edu/~wright/cosmo_02.htm#DH

Distances in the Expanding Universe: Ned Wright's Javascript Calculator

http://www.astro.ucla.edu/~wright/CosmoCalc.html

See also David W. Hogg, "Distance Measures in Cosmology" http://arxiv.org/abs/astro-ph/9905116