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Why do cosmic topological defects form?

If cosmic strings or other topological defects can form at a cosmological phase
transition then they will form. This was first pointed out by Kibble and, in a
cosmological context, the defect formation process is known as the Kibble
mechanism.

The simple fact is that causal effects in the early universe can only propagate (as
at any time) at the speed of light c. This means that at a time t, regions of the
universe separated by more than a distance d=ct can know nothing about each
other. In a symmetry breaking phase transition, different regions of the universe
will choose to fall into different minima in the set of possible states (this set is
known to mathematicians as the vacuum manifold). Topological defects are
precisely the “boundaries” between these regions with different choices of
minima, and their formation is therefore an inevitable consequence of the fact
that different regions cannot agree on their choices.

For example, in a theory with two minima, . 7 T\~ domain walls
plus + and minus -, then neighboring regions i
separated by more than ct will tend to fall
randomly into the different states (as shown
below). Interpolating between these different
minima will be a domain wall.




Cosmic strings will arise in slightly more —— ‘ o, Hons
complicated theories in which the minimum /3= | *© | 2 L
energy states possess "holes'. The strings will | =~ — —3'" odose
simply correspond to non-trivial "windings' v { 3¢ {0 \/ 2
around these holes (as illustrated at right). P Xe 2 N 6}' ==
s G o S
The Kibble mechanism for the é O

formation of cosmic strings. +———— e S

Topological defects can provide a unique link to the physics of the very early
universe. Furthermore, they can crucially affect the evolution of the universe, so
their study is an unavoidable part of any serious attempt to understand the early
universe. The cosmological consequences vary with the type of defect considered.
Domain walls and monopoles are cosmologically catastrophic. Any cosmological
model in which they form will evolve in a way that contradicts the basic
observational facts that we know about the universe. Such models must therefore
be ruled out! Cosmic inflation was invented to solve this problem.

Cosmic strings and textures are (possibly) much more benign. Among other
things, the were until recently thought to be a possible source of the fluctuations
that led to the formation of the large-scale structures we observe today, as well as
the anisotropies in the Cosmic Microwave Background. However, the CMB
anisotropies have turned out not to agree with the predictions of this theory.



Cosmic String Dynamics and Evolution
The evolution of cosmic string network is the relatively complicated result of
only three rather simple and fundamental processes: cosmological
expansion, intercommuting & loop production, and radiation.

Cosmological expansion

The overall expansion of the universe will ‘stretch’ the strings, just like any
other object that is not gravitationally bound. You can easily undertand this
through the well-known analogy of the expanding balloon. If you draw a line
of the surface of the balloon and then blow it up, you will see that the length
of your “string' will grow at the same rate as the radius of the balloon.

Intercommuting & loop production

Whenever two long strings cross each other, they exchange ends, or
‘intercommute’ (case (a) in the figure below). In particular, a long string can
intercommute with itself, in which case a loop will be produced (this is case (b)
below).



Radiation from strings

Both long cosmic strings and small loops will emit radiation. In most
cosmological scenarios this will be gravitational radiation, but electromagnetic
radiation or axions can also be emitted in some cases (for some specific

phase transitions).
The effect of radiation is much

more dramatic for loops, since
they lose all their energy this way,
and eventually disappear. Here
you can see what happens in the
case of two interlocked loops.
This configuration is unlikely to
happen in a cosmological setting,
but it is nevertheless quite
enlightening. Notice the
succession of complicated
dynamic processes before the
loop finally disappears!

After formation, an initially high density string network begins to chop itself up

by producing small loops. These loops oscillate rapidly (relativistically) and
decay away into gravitational waves.




The net result is that the strings become more and more dilute with time as the
universe expands. From an enormous density at formation, mathematical
modelling suggests that today there would only be about 10 long strings
stretching across the observed universe, together with about a thousand small
loops!

In fact the network dynamics is such that the string density will eventually
stabilize at an exactly constant level relative to the rest of the radiation and
matter energy density in the universe. Thus the string evolution is described as
“scaling' or scale-invariant, that is, the properties of the network look the same at
any particular time ¢ if they are scaled (or multiplied) by the change in the time.
This is schematically represented below:




Because strings are extremely
complex non-linear objects, the
only rigorous way to study their
evolution and cosmological
consequences is to simulate in on
the computer. One of the aims of
performing numerical simulations
of the evolution of cosmic string
networks is to subsequently use
the resulting information as an
input to build (relatively) simpler
semianalytic models that
reproduce (in an averaged sense)
the crucial properties of these
objects. One starts by generating
an initial “box of stings” containing
a configuration of strings such as

one would expect to find after a
phase transition in the early In this and all other pictures and movies below

universe. Then one evolves this long strings are shown in yf-)llow, while small
s : loops have a color code going from yellow to red
initial box, by using the laws of according to their size (red loops being the

motion of the strings. smallest).




Why do the two boxes below look different? Because
the rate at which the universe is expanding is different.

Snapshot of a string network in the Snapshot of a string network in the matter
radiation era. Note the high density of

e, D : era. Compare with the radiation case at
small loops and the ‘wiggliness’ of the left. Notice the lower density of both long
long strings in the network. The box size is strings and loops, as well as the lower
about 2ct. (B. Allen & E. P. Shellard) ‘wiggliness' of the former. The box size is

again about 2ct.
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Two movies of the evolution of a cosmic string network in the radiation era. In the movie on
the left the box has a fixed size (so you will see fewer and fewer strings as it evolves), while
in the one on the right it grows as the comoving horizon. (C. Martins & E. P. Shellard)

fixed size box box grows with horizon

Notice that the number of long strings in the box that grows with the horizon
remains roughly constant, in agreement with the scaling hypothesis. This is
because the additional length in strings is quickly converted into small loops.




Two movies of the evolution of a cosmic string network in the matter era. In the movie on
the left the box has a fixed size (so you will see fewer and fewer strings as it evolves),
while in the one on the right it grows as the comoving horizon. (C. Martins & E. P. Shellard)

fixed size box | box grows with horizon

Notice that the number of long strings in the box that grows with the horizon
again remains roughly constant, in agreement with the scaling hypothesis.
This is because the additional length in strings is quickly converted into




When strings evolve, scaling from smaller scales to larger ones, they create
perturbations in the matter energy density of the universe. Because of their
tension, cosmic strings pull straight as they come inside the horizon. Although
there is no gravitational force from a static string, such moving cosmic strings
produce wakes toward which matter falls, thus serving as seeds for structure
formation. For a static string along the z axis of mass u per unit length, the

energy momentum tensor is
T"" = pdiag(1,0,0, —1)d(2)d(y)

and the metric is
ds® = dt® — dz® —dR? — (1 — 4Gp)’R*dy?
Gu = (Mg 1/Mp)? = 10 is just the magnitude needed for GUT string structure

formation. There is an angular defect of 8ntGu = 5.18" (10% Gu). This implies

that the geodesic path of
light is curved towards a
string when light passes by e

it. Two copies of a galaxy i \ P A
near a cosmic string will = | B /:. \
appear to observers on the il [

other side of the string.

A. Vilenkin, E. P. S. Shellard, Cosmic Strings and Other
Topological Defects (Cambridge U P, 1994)



Cosmic Strings Summary

Cosmic strings arise in spontaneously broken (SB) gauge theories

2
Ze -4, F - et - 2(160- ¢2)
as a consequence of causality in the expanding universe.

As the temperature T falls, a complex scalar
field ¢ gets a nonzero expectation value

0(x) = 0, €

The phase 6 will inevitably be different in -- 9,
regions separated by distances greater than
the horizon size when the SB phase transition occurred. If 6 runs over 0 —

21 as x goes around a loop in space, the loop encloses a string.

(b=

dicechion
fepresents

phase
of &




By 2000, it was clear that cosmic defects are
not the main source of the CMB anisotropies.
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Figure 3: Current data (as complied by Knox[22|) with two defect models

(dashed) and an inflation-based model (solid).

The upper defect model has

a standard ionization history and the lower model has an ionization history
specifically designed to produce a sharper, shifted peak.

Andreas Albrecht, Defect models of cosmic structure in light of the new CMB data,
XXXVth Rencontres de Moriond ""Energy Densities in the Universe" (2000).



Fitting CMB data with cosmic strings and inflation, by Neil Bevis,
Mark Hindmarsh, Martin Kunz, and Jon Urrestilla 2008 PRL100.021301

The inflationary paradigm is successful in providing a match to measurements of the
cosmic microwave background (CMB) radiation, and it appears that any successful
theory of high energy physics must be able to incorporate inflation. While ad hoc
single-field inflation can provide a match to the data, more theoretically motivated
models commonly predict the existence of cosmic strings. These strings are
prevalent in supersymmetric inflation models and occur frequently in grand-unified theories
(GUTs). String theory can also yield strings of cosmic extent. Hence the observational
consequences of cosmic strings are important, including their sourcing of additional
anisotropies in the CMB radiation. In this letter we present a multi-parameter fit to CMB
data for models incorporating cosmic strings. It is the first such analysis to use simulations
of a fully dynamical network of local cosmic strings, and the first to incorporate their
microphysics with a field theory. It yields conclusions which differ in significant detail from
previous analyses based upon simplified models: we find that the CMB data moderately
favor a 10% contribution from strings to the temperature power spectrum measured
at multipole £ = 10 with a corresponding spectral index of primordial scalar perturbations ns
= 1. There are also important implications for models of inflation with blue power spectra
(ns > 1). These are disfavored by CMB data under the concordance model (power-law
CDM which gives ns = 0.951+0.015 -0.019) and previous work seemed to show that this
remains largely the case even if cosmic strings are allowed. However with our more
complete CMB calculations, we find that the CMB puts no pressure on such models if they
produce cosmic strings. Our conclusions are slightly modified when additional non-CMB
data are included, with the preference for strings then reduced.



GUT Monopoles

A simple SO(3) GUT illustrates how nonsingular monopoles arise. The
Lagragian is 1

A ‘I)Q(I)a = 2,

1 1 )
£ = DA D8~ —FLF™

ab
Fo, = 8,AC - 8,A% — ecac AL A

[ P
D3 = 8,3° — ecancA,P".

The masses of the resulting charged vector and Higgs bosons after
spontaneous symmetry breaking are ;2 _ 2,2

ng- = \ol.

If the Higgs field ®2 happens to rotate about a sphere in SO(3) space as
one moves around a sphere about any particular point in x-space, then it
must vanish at the particular point. Remarkably, if we identify the
massless vector field as the photon, this configuration corresponds to a
nonsingular magnetic monopole, as was independently discovered by
‘tHooft and Polyakov. The monopole has magnetic charge twice the
minimum Dirac value, g = 2n/e = (4n/e?)(e/2) = 67.5 e.

The singular magnetic field is cut off at scale ¢, and as a result the GUT

monopole has mass M ~ My/o. = Mg, 1 /oo = 1078 GeV.

monopole



The first accurate calculation of the mass of the ‘t Hooft - Polyakov non-
singular monopole was Bais & Primack (Phys. Rev. D13:819,1976).

GUT Monopole Problem

The Kibble mechanism produces ~ one GUT monopole per horizon volume
when the GUT phase transition occurs. These GUT monopoles have a
number density over entropy

ny/s ~ 102 (Tgy/Mp)2 ~ 10-13

(compared to ng/s ~ 10-° for baryons) Their annihilation is inefficient since
they are so massive, and as a result they are about as abundant as gold
atoms but 1076 times more massive, so they “overclose” the universe. This
catastrophe must be avoided! This was Alan Guth’s initial motivation for
inventing cosmic inflation.

| will summarize the key ideas of inflation theory, following my lectures at
the Jerusalem Winter School, published as the first chapter in Avishai Dekel
& Jeremiah Ostriker, eds., Formation of Structure in the Universe
(Cambridge University Press, 1999), and Dierck-Ekkehard Liebscher,
Cosmology (Springer, 2005) (available online through the UCSC library).



Motivations for Inflation

PROBLEM SOLVED

Horizon Homogeneity, Isotropy, Uniform T
Flatness/Age Expansion and gravity balance
“Dragons” Monopoles, doman walls,.. .banished
Structure Small fluctuations to evolve into galaxies,

clusters, voids

Cosmological constant A > () = space repels space, so the more space the more
repulsion, = de Sitter exponential expansion a x VAt

Inflation is exponentially accelerating expansion caused by effective cosmological
constant (“false vacuum” energy) associated with hypothetical scalar field
(“inflaton™).

FORCES OF NATURE Spin
Known { Saraviy 3
Strong, weak, and electromagnetic 1
Goal of LHC Mass (Higgs Boson) 0
Early universe Inflation (Inflaton) 0

Inflation lasting only ~10~32%s suffices to solve all the problems listed above.

Universe must then convert to ordinary expansion through conversion of false to
true vacuum (“re-"heating).

Joel Primack, in Formation of Structure in the Universe, ed. Dekel & Ostriker (Cambridge Univ Press, 1999)



Inflation Basics

The basic idea of inflation is that before the universe entered the present
adiabatically expanding Friedmann era, it underwent a period of de Sitter
exponential expansion of the scale factor, termed inflation (Guth 1981).
Actually, inflation is never precisely de Sitter, and any superluminal
(faster-than-light) expansion is now called inflation. Inflation was originally
invented to solve the problem of too many GUT monopoles, which, as
mentioned in the previous section, would otherwise be disastrous for
cosmology.

The de Sitter cosmology corresponds to the solution of Friedmann’s
equation in an empty universe (i.e., with p = 0) with vanishing curvature

(k = 0) and positive cosmological constant (A > 0). The solution is
a = a,et, with constant Hubble parameter H = (A/3)Y/2. There are
analogous solutions for ¥ = 41 and ¥ = -1 with @ « cosh Ht and

a x sinh It respectively. The scale factor expands exponentially because the
positive cosmological constant corresponds effectively to a negative pressure.
de Sitter space is discussed in textbooks on general relativity (for example,
Rindler 1977, Hawking & FEllis 1973) mainly for its geometrical interest.
Until cosmological inflation was considered, the chief significance of the de
Sitter solution in cosmology was that it is a limit to which all indefinitely
expanding models with A > () must tend, since as a = oo, the cosmological
constant term ultimately dominates the right hand side of the Friedmann

equation.  joel Primack, in Formation of Structure in the Universe, (Cambridge Univ Press, 1999)



As Guth (1981) emphasized, the de Sitter solution might also have been
important in the very early universe because the vacuum energy that plays
such an important role in spontaneously broken gauge theories also acts as
an effective cosmological constant. A period of de Sitter inflation preceding
ordinary radiation-dominated Friedmann expansion could explain several
features of the observed universe that otherwise appear to require very
special initial conditions: the horizon, flatness/age, monopole, and structure
formation problems. (See Table 1.6.)

Let us illustrate how inflation can help with the horizon problem. At
recombination (pt + e~ — H), which occurs at afa, ~ 107%, the
mass encompassed by the horizon was My =~ 10"Mg, compared to
My . ~ 10°2Mg today. Equivalently, the angular size today of the causally
connected regions at recombination is only Af ~ 3°. Yet the fluctuation
in temperature of the cosmic background radiation from different regions
is very small: AT/T ~ 107°. How could regions far out of causal
contact have come to temperatures that are so precisely equal? This is

the “horizon problem™. With inflation, it is no problem because the entire
observable universe initially lay inside a single causally connected region that

subsequently inflated to a gigantic scale. Similarly, inflation exponentially
dilutes any preceeding density of monopoles or other unwanted relics (a
modern version of the “dragons™ that decorated the unexplored borders of
old maps).



In the first inflationary models, the dynamics of the very early universe
was typically controlled by the self-energy of the Higgs field associated with
the breaking of a Grand Unified Theory (GUT) into the standard 3-2-1
model: GUT— SU(3) cotor @ [SU(2) ® U(1))etectroweak- This occurs when the
cosmological temperature drops to the unification scale Ty ~ 10" GeV at
about 107*° s after the Big Bang. Guth (1981) initially considered a scheme
in which inflation occurs while the universe is trapped in an unstable state
(with the GUT unbroken) on the wrong side of a maximum in the Higgs
potential. This turns out not to work: the transition from a de Sitter to a
Friedmann universe never finishes (Guth & Weinberg 1981). The solution in
the “new inflation” scheme (Linde 1982; Albrecht and Steinhardt 1982) is for
inflation to occur after barrier penetration (if any). It is necessary that the
potential of the scalar field controlling inflation (“inflaton™) be nearly flat
(i.e., decrease very slowly with increasing inflaton field) for the inflationary
period to last long enough. This nearly flat part of the potential must then
be followed by a very steep minimum, in order that the energy contained in
the Higgs potential be rapidly shared with the other degrees of freedom
(“reheating”). A more general approach, “chaotic” inflation, has been
worked out by Linde (1983, 1990) and others; this works for a wide range of
inflationary potentials, including simple power laws such as A\¢?. However,
for the amplitude of the fluctuations to be small enough for consistency with
observations, it is necessary that the inflaton self-coupling be very small, for
example A ~ 107! for the ¢* model. This requirement prevents a Higgs field
from being the inflaton, since Higgs fields by definition have gauge couplings
to the gauge field (which are expected to be of order unity), and these would

generate self-couplings of similar magnitude even if none were present.



It turns out to be necessary to inflate by a factor R € in order to solve e%¢=

the flatness problem, i.e., that Qg ~ 1. (With H~! ~ 10~* s during the de 4x10%°
Sitter phase, this implies that the inflationary period needs to last for only
a relatively small time 7 2 1072 s.) The “flatness problem™ is essentially
the question why the universe did not become curvature dominated long
ago. Neglecting the cosmological constant on the assumption that it is
unimportant after the inflationary epoch, the Friedmann equation can be

written

a\* 8rGnr?® kT?
() =5 50T - Gy

a

where the first term on the right hand side is the contribution of the energy
density in relativistic particles and g(7’) is the effective number of degrees of
freedom. The second term on the right hand side is the curvature term. Since
aT =~ constant for adiabatic expansion, it is clear that as the temperature
T drops, the curvature term becomes increasingly important. The quantity
K = k/(aT)? is a dimensionless measure of the curvature. Today, |K| =
Q—1|H2/T? < 2 x 107, Unless the curvature exactly vanishes, the
most “natural” value for K is perhaps K ~ 1. Since inflation increases
H7 at essentially constant T (after reheating),
it increases aT by the same tremendous factor and thereby decreases the
curvature by that factor squared. Setting e~ 277 < 2x 10~ gives the needed
amount of inflation: Hrt R 66. This much inflation turns out to be enough
to take care of the other cosmological problems mentioned above as well.

a by a tremendous factor €



Cosmic Inflation

According to Cosmic
Inflation theory, the entire
visible universe was once
about 1039 cm in size.

Its size then inflated by a
factor of about 1030 so
that when Cosmic
Inflation ended (after
about 10-32 second) it
had reached the size of a
baby. During its entire
subsequent evolution,
the size of the visible
universe has increased
by only about another
factor of 1028,




Generating the Primordial Density Fluctuations

Early Development
of the Universe

Early phase of exponential expansion
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Thus far, it has been sketched how inflation stretches, flattens, and smooths
out the universe, thus greatly increasing the domain of initial conditions
that could correspond to the universe that we observe today. But inflation
also can explain the origin of the fluctuations necessary in the gravitional
instability picture of galaxy and cluster formation. Recall that the very
existence of these fluctuations is a problem in the standard Big Bang picture,
since these fluctuations are much larger than the horizon at early times. How
could they have arisen?



The answer in the inflationary universe scenario is that they arise from
quantum fluctuations in the inflaton field ¢ whose vacuum energy drives
inflation. The scalar fluctuations d¢ during the de Sitter phase are of the
order of the Hawking temperature H/27. Because of these fluctuations,
there is a time spread Al =~ 5(#)/({) during which different regions of the
same size complete the transition to the Friedmann phase. The result is
that the density fluctuations when a region of a particular size re-enters
the horizon are equal to (Guth & Pi 1982; see Linde 1990 for alternative
approaches) dg = (dp/p)g ~ At/ty = HAL. The time spread At can be
estimated from the equation of motion of ¢ (the free Klein-Gordon equation
in an expanding universe): b+ 3H¢ = —(0V/0¢). Neglecting the b term,
since the scalar potential V' must be very flat in order for enough inflation
to occur (this is called the “slow roll” approximation), ¢ ~ —V'/(3H), so
Sy~ H3/V' ~ V32/V'. Unless there is a special feature in the potential
V(@) as ¢ rolls through the scales of importance in cosmology (producing
such “designer inflation” features generally requires fine tuning — see e.g.
Hodges et al. 1990), V and V' will hardly vary there and hence &y will
be essentially constant. These are fluctuations of all the contents of the
universe, so they are adiabatic fluctuations.




Thus inflationary models typically predict a nearly constant curvalure
spectrum 6y = constant of adiabalic fluctuations. Some time ago Harrison
(1970), Zel'dovich (1972), and others had emphasized that this is the only
scale-invariant (i.e., power-law) fluctuation spectrum that avoids trouble at
both large and small scales. If §y o Mg, where My is the mass inside
the horizon, then if —« is too large the universe will be less homogeneous
on large than small scales, contrary to observation; and if « is too large,
fluctuations on sufficiently small scales will enter the horizon with §y > 1
and collapse to black holes (see e.g. Carr, Gilbert, & Lidsey 1995, Bullock
& Primack 1996); thus a &~ 0. The a = 0 case has come to be known as the
Zel'dovich spectrum.

Inflation predicts more: it allows the calculation of the value of the
constant dy in terms of the properties of the scalar potential V(o).
Indeed, this proved to be embarrassing, at least initially, since the
Coleman-Weinberg potential, the first potential studied in the context of
the new inflation scenario, results in g ~ 10® (Guth & Pi 1982) some
six orders of magnitude too large. But this does not seem to be an
insurmountable difficulty; as was mentioned above, chaotic inflation works,
with a sufficiently small self-coupling. Thus inflation at present appears to
be a plausible solution to the problem of providing reasonable cosmological
initial conditions (although it sheds no light at all on the fundamental
question why the cosmological constant is so small now). Many variations of
the basic idea of inflation have been worked out



sopERNEEerenmniationary models:

J Chaofle mnfelem )50t smallestdomam of size 10°° cm with
total mass =Mp (IesS than a lelL[Ly.Jl)) \d entropy O(1)

l

Solves flatness, mass and entropy problem

start only in domalgw:tl'\ mass 6 orders of magnitude
aterthaniVigiend entropy greater than 10

|
l,’ Mary good with solving flatness, mass and

entropy problem

can oocur only in the domain ogglze greater than the W

of the Observabie of the universe, with mass> 10" g and entropy > 10

Does not solve flatness, mass and entropy problem
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These terms are harmless for sub-Planckian masses and
densities, even if the scalar field itself is very large.




Many
Inflation
Models

following
Andrei Linde’s
classification

How INFLATION BEGINS
Old Inflation  Tipnitia high, @i, & 0 is false vacuum until phase transition
Ends by bubble creation; Reheat by bubble collisions
New Inflation  Slow roll down V(é), no phase transition
Chaotic Inflation  Similar to New Inflation, but ¢;, essentially arbitrary:
any region with 36? + 3(8;6)? < V(9) inflates

Extended Inflation Like Old Inflation, but slower (e.g., power a o 7),
so phase transition can finish

POTENTIAL V(¢) DURING INFLATION

Chaotic typically V(@) = Aé", can also use V = Vye%?, etc.
Saxtl, p=16r/a’®>1

How INFLATION ENDS

First-order phase transition — e.g., Old or Extended inflation
Faster rolling — oscillation — e.g., Chaotic V(6)?A¢"
“Waterfall” — rapid roll of & triggered by slow roll of ¢

(RE)HEATING

Decay of inflatons
“Preheating” by parametric resonance, then decay

BEFORE INFLATION?
Eternal Inflation? Can be caused by
e Quantum dé ~ H/2x > rolling Ad = At =¢H- ' x V'V

e Monopoles or other topological defects



