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The Linear Transfer Function T(k)



An approximate fitting function for T(k) in a ΛCDM universe is (Bardeen et al. 1986)

where (Sugayama 1995)

For accurate work, for example for starting high-resolution N-body simulations, it is best to 
use instead of fitting functions the numerical output of highly accurate integration of the 
Boltzmann equations, for example from CMBFast, which is available at 
http://lambda.gsfc.nasa.gov/toolbox/  which points to 
http://lambda.gsfc.nasa.gov/toolbox/tb_cmbfast_ov.cfm 

W e l c o m e to the CMBFAST Website!
This is the most extensively used code for computing cosmic microwave background anisotropy, 
polarization and matter power spectra. The code has been tested over a wide range of cosmological 
parameters. We are continuously testing and updating the code based on suggestions from the 
cosmological community. Do not hesitate to contact us if you have any questions or suggestions.

U. Seljak & M. Zaldarriaga

http://lambda.gsfc.nasa.gov/toolbox/
http://lambda.gsfc.nasa.gov/toolbox/
http://lambda.gsfc.nasa.gov/toolbox/tb_cmbfast_ov.cfm
http://lambda.gsfc.nasa.gov/toolbox/tb_cmbfast_ov.cfm




Scale-Invariant Spectrum (Harrison-Zel’dovich)
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Formation of Large-Scale Structure

M

1

0

CDM: bottom-up

Fluctuation growth in the linear regime:

HDM: top-down

M

1

0

free 
streaming

rms fluctuation at mass scale M:

Galaxies        Clusters     Superclusters Galaxies        Clusters     Superclusters



From Peter Schneider, Extragalactic Astronomy 
and Cosmology (Springer, 2006)

Einstein-de Sitter

Open universe

Benchmark model

Structure forms
earliest in Open,
next in Benchmark,
latest in EdS model.

Open

Benchmark

EdS



Linear Growth Rate Function D(a)

From Klypin, Trujillo, Primack - Bolshoi paper 1 - Appendix A



From Peter Schneider, 
Extragalactic Astronomy and 
Cosmology (Springer, 2006)
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On large scales (k small), the gravity of the dark matter dominates.  But on small scales, 
pressure dominates and growth of baryonic fluctuations is prevented.  Gravity and 
pressure are equal at the Jeans scale

The Jeans mass is the dark matter + baryon mass enclosed within a sphere of radius 
πa/kJ, 

where µ is the mean molecular weight.  The evolution of MJ is shown below, assuming that 
reionization occurs at z=15:



Jeans-type analysis for HDM, WDM, and CDM

Hot Dark Matter

Warm Dark Matter

Cold Dark Matter



GRAVITY – The Ultimate Capitalist Principle

The early universe expands 
almost perfectly uniformly.  
But there are small 
differences in density from 
place to place (about 30 
parts per million).   Because 
of gravity, denser regions 
expand more slowly, less 
dense regions more rapidly.  
Thus gravity amplifies the 
contrast between them, 
until…

Astronomers say that a region of the universe with more matter is “richer.” 
Gravity magnifies differences—if one region is slightly denser than average, it 
will expand slightly more slowly and grow relatively denser than its 
surroundings, while regions with less than average density will become 
increasingly less dense. The rich always get richer, and the poor poorer.

Temperature map at 380,000 years after the Big 
Bang.  Blue (cooler) regions are slightly denser.  
From NASA’s WMAP satellite, 2003.  



Structure Formation by Gravitational Collapse

When any region 
becomes about 
twice as dense as 
typical regions its 
size, it reaches a 
maximum radius, 
stops expanding, 

and starts falling 
together. The forces 
between the 
subregions generate 
velocities which 
prevent the material 
from all falling 
toward the center.

Through Violent 
Relaxation the dark 
matter quickly reaches a 
stable configuration 
that’s about half the 
maximum radius but 
denser in the center.
Simulation of top-hat collapse: 
P.J.E. Peebles 1970, ApJ, 75, 13.



TOP HAT             VIOLENT          VIRIALIZED
Max Expansion         RELAXATION

rmax rvir



Growth and Collapse of 
Fluctuations

Schematic sketches of radius, density, and density 
contrast of an overdense fluctuation.  It initially expands 
with the Hubble expansion, reaches a maximum radius 
(solid vertical line), and undergoes violent relaxation 
during collapse (dashed vertical line), which results in 
the dissipationless matter forming a stable halo.  
Meanwhile the ordinary matter ρb continues to dissipate 
kinetic energy and contract, thereby becoming more 
tightly bound, until dissipation is halted by star or disk 
formation, explaining the origin of galactic spheroids 
and disks.  
(This was the simplified discussion of BFPR84; the 
figure is from my 1984 lectures at the Varenna school.
Now we take into account halo growth by accretion, 
and the usual assumption is that spheroids form mostly 
as a result of galaxy mergers Toomre 1977.)



Halo and Galaxy 
Merging and Spheroid 

Formationdynamical
friction

mergers can trigger starburst,
          forming spheroid

subsequent cooling forms disk



Growth Factor



N-body simulation
N-body simulation

ΛCDM 
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Connection
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Hot Dark Matter
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2dF redshift survey
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2dF and Mocks



ΛCDM Fluctuation Spectrum 
Agrees with Observations!

Max Tegmark

P(k)



MNRAS 336 (2002) 112 
The abundance and clustering of dark haloes in the 

standard Lambda CDM cosmogony 
H. J. Mo, S.D.M. White

We define the characteristic properties of a dark halo within a sphere of radius r200 chosen so that the mean enclosed density is 200 times 
the mean cosmic value.  Then

and the growth factor is 

and equation (9) then follows by differentiation.

Lahav, Lilje, Primack, & Rees 1991



Numerical simulations show that although the scaling properties implied by the PS 
argument hold remarkably well for a wide variety of hierarchical cosmogonies, substantially 
better fits to simulated mass functions are obtained if the error
function in equation (12) is replaced by a function of slightly different shape. Sheth & 
Tormen (1999) suggested the following modification of equation (9)

[See Sheth, Mo & Tormen (2001) and Sheth & Tormen (2002) for a justification of this 
formula in terms of an ellipsoidal model for perturbation collapse.] The fraction of all matter 
in haloes with mass exceeding M can be obtained by integrating equation (14). To good 
approximation,

In a detailed comparison with a wide range of simulations, Jenkins et al. (2001) confirmed 
that this model is indeed a good fit provided haloes are defined at the same density 
contrast relative to the mean in all cosmologies.  This is for FOF halo finding -- but Klypin, 
Trujillo, Primack 2010 find that the more physical Bound Density Maximum (BDM) halo 
finder results in 10x lower halo number density at z=10.

The PS formula is

(14)

(9)



z = 8.8

Curve:
    Sheth-
       Tormen
          approx.

FOF halos
  link = 0.20SO halos

Sheth-Tormen approximation with the same WMAP5 parameters used for Bolshoi simulation 
very accurately agrees with abundance of halos at low redshifts, but increasingly 
overpredicts bound spherical overdensity halo abundance at higher redshifts.  

Sheth-Tormen Fails at
High Redshifts

Klypin, Trujillo, & Primack, arXiv: 1002.3660v3



Each panel shows 1/2 of the dark matter particles in cubes of 1h-1 Mpc size. The center of each 
cube is the exact position of the center of mass of the corresponding FOF halo. The effective 
radius of each FOF halo in the plots is 150 − 200 h-1 kpc. Circles indicate virial radii of distinct 
halos and subhalos identified by the spherical overdensity algorithm BDM. 

= ratio of FOF mass / SO mass

FOF linked together a chain of 
halos that formed in long and 
dense filaments (also in panels b, 
d, f, h; e = major merger) 

Klypin, Trujillo, & Primack, arXiv: 1002.3660v3

FOF



Comoving Halo Number Density n(Mhalo)

Mo & 
White 
2002



Mo & 
White 
2002

Standard 
LCDM

Fraction of all matter

Dashed red curves: halo number density for log M/Msun
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Cosmological Simulation Methods
Dissipationless Simulations

Particle-Particle (PP) - Aarseth NbodyN, N=1,...,6
Particle Mesh (PM) - see Klypin & Holtzman 1997
Adaptive PM (P3M) - Efstathiou et al.
Tree - Barnes & Hut 1986, PKDGRAV Stadel
TreePM - GADGET2, Springel 2005
Adaptive Mesh Refinement (AMR) - Klypin (ART)

Hydrodynamical Simulations
Fixed grid - Cen & Ostriker
Smooth Particle Hydrodynamics (SPH) - GADGET2, Springel 2005
                       - Gasoline, Wadsley, Stadel, & Quinn
Adaptive grid - ART+hydro - Klypin & Kravtsov

Initial Conditions
Standard: Gaussian P(k) realized uniformly, Zel’dovich displacement
Multimass - put lower mass particles in a small part of sim volume
Constrained realization - small scale: simulate individual halos (NFW)

  large scale: simulate particular region

Reviews
Bertschinger ARAA 1998, Klypin lectures 2002, U Washington website



Navarro, Frenk, White
1996     1997

Structure of Dark Matter Halos

NFW formula works for all models

Note: more massive
      halos have higher 
             central density



Table 2

Comparison of NFW and Moore et al. profiles

Parameter NFW Moore et al.

Density ρ = ρs

x(1 + x)2
ρ = ρs

x1.5(1 + x)1.5

x = r/rs ρ ∝ x−3 for x " 1 ρ ∝ x−3 for x " 1
ρ ∝ x−1 for x # 1 ρ ∝ x−1.5 for x # 1
ρ/ρs = 1/4 at x = 1 ρ/ρs = 1/2 at x = 1

Mass
M = 4πρsr3

sf(x) f(x) = ln(1 + x) − x
1 + x f(x) = 2

3 ln(1 + x3/2)

= Mvirf(x)/f(C)
Mvir = 4π

3 ρcrΩ0δtop−hatr3
vir

Concentration CNFW = 1.72CMoore CMoore = CNFW/1.72
for halos with the same Mvir and rmax

C = rvir/rs C1/5 ≈ CNFW
0.86f(CNFW) + 0.1363

C1/5 = CMoore

[(1 + C3/2
Moore)

1/5 − 1]2/3

error less than 3% for CNFW =5-30 ≈ CMoore

[C3/10
Moore − 1]2/3

Cγ=−2 = CNFW Cγ=−2 = 23/2CMoore

≈ 2.83CMoore

Circular Velocity

v2
circ =

GMvir

rvir

C

x

f(x)

f(C)
xmax ≈ 2.15 xmax ≈ 1.25

= v2
max

xmax

x

f(x)

f(xmax)
v2
max ≈ 0.216v2

vir

C

f(C)
v2
max ≈ 0.466v2

vir

C

f(C)

v2
vir =

GMvir

rvir
ρ/ρs ≈ 1/21.3 at x = 2.15 ρ/ρs ≈ 1/3.35 at x = 1.25
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Dark Matter Halo Radial Profile

Klypin, Kravtsov, Bullock & Primack 2001



the radius at which the logarithmic slope of the
density profile is equal to −2. This scale corre-
sponds to rs for the NFW profile and ≈ 0.35rs for
the Moore et al. profile.

Figure 3 presents the comparison between the
analytic profiles normalized to have the same virial
mass and the same radius rmax. We show results
for halos of low and high values of concentration
representative of cluster- and low-mass galaxy ha-
los, respectively. The bottom panels show the pro-
files, while the top panels show the corresponding
logarithmic slope as a function of radius. The fig-
ure shows that the two profiles are very similar
throughout the main body of the halos. Only in
the very central region do the differences become
significant. The difference is more apparent in the
logarithmic slope than in the actual density pro-
files. Moreover, for galaxy-mass halos the differ-
ence sets in at a rather small radius ! 0.01rvir,
which would correspond to scales < 1 kpc for the
typical dark matter dominated dwarf and LSB
galaxies. At the observationally interesting scales
the differences between NFW and Moore et al.
profiles are fairly small and the NFW profile pro-
vides an accurate description of the halo density
distribution.

Note also that for galaxy-size (e.g., high-
concentration) halos the logarithmic slope of the
NFW profile has not yet reached its asymptotic
inner value of −1 even at scales as small as
0.01rvir. At this distance the logarithmic slope
of the NFW profile is ≈ −1.4 − 1.5 for halos with
mass ∼ 1012h−1M". For cluster-size halos this
slope is ≈ −1.2. This dependence of the slope at a
given fraction of the virial radius on the virial mass
of the halo is very similar to the results plotted
in Figure 3 of Jing & Suto (2000). These authors
interpreted it as evidence that halo profiles are
not universal. It is obvious, however, that their
results are consistent with NFW profiles and the
dependence of the slope on mass can be simply a
manifestation of the well-studied cvir(M) relation.

The NFW and Moore et al. profiles can be
compared in a different way. We can approximate
the Moore et al. halo of a given concentration with
the NFW profile. Fractional deviations of the fits
depend on the halo concentration and on the range
of radii used for the fits. A low-concentration halo
has larger deviations, but even for C = 7 case, the
deviations are less than 15% if we fit the halo at

Fig. 3.— Comparison of the Moore et al. and the
NFW profiles. Each profile is normalized to have the
same virial mass and the same radius of the maximum
circular velocity. Left panels: High-concentration halo
typical of small galaxy-size halos CNFW = 17. Right

panels: Low-concentration halo typical of cluster-size
halos. The deviations are very small (< 3%) for radii
r > rs/2. Top panels show the local logarithmic slope
of the profiles. Note that for the high concentration
halo the slope of the profile is significantly larger than
the asymptotic value -1 even at very small radii r ≈

0.01rvir.

scales 0.01 < r/rvir < 1. For a high-concentration
halo with C = 17, the deviations are much smaller:
less than 8% for the same range of scales.

To summarize, we find that the differences be-
tween the NFW and the Moore et al. profiles are
very small (∆ρ/ρ < 10%) for radii above 1% of
the virial radius for typical galaxy-size halos with
CNFW

>∼ 12. The differences are larger for halos
with smaller concentrations. In the case of the
NFW profile, the asymptotic value of the central
slope γ = −1 is not achieved even at radii as small
as 1%-2% of the virial radius.

3.2. Convergence study

The effects of numerical resolution can be stud-
ied by resimulating the same objects with higher
force and mass resolution and with a larger num-
ber of time steps. In this study we performed
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Fig. 1.— Example of the construction of mass re-
finement in lagrangian space (here for illustration we
show a 2D case). Three central blocks of particles
were marked for highest mass resolution. Each block
produces 162 particles of the smallest mass. Adjacent
blocks correspond to the four times lower resolution
and produce 82 particles each. The procedure is re-
peated recursively until we reach the lowest level of
resolution. The region of the highest resolution can
have arbitrary shape.

Figure 2 shows an example of mass refinement
for one of the halos in our simulations. A large
fraction of high resolution particles ends up in
the central halo, which does not have any larger
mass particles (see insert in the bottom panel). At
z = 10, the region occupied by the high resolution
particles is non-spherical: it is substantially elon-
gated in the direction perpendicular to the large
filament clearly seen at z = 0.

After the initial conditions are set, we run the
simulation again allowing the code to perform
mesh refinement based only on the number of par-
ticles with the smallest mass.

2.3. Numerical simulations

We simulated a flat low-density cosmological
model (ΛCDM) with Ω0 = 1 − ΩΛ = 0.3, the
Hubble parameter (in units of 100 kms−1Mpc−1)
h = 0.7, and the spectrum normalization σ8 = 0.9.
We have run two sets of simulations. The first set

Fig. 2.— Distribution of particles of different masses
in a thin slice through the center of halo A1 (see Ta-
ble 1) at z = 10 (top panel) and at z = 0 (bot-
tom panel). To avoid crowding of points the thick-
ness of the slice is made smaller in the center (about
30h−1kpc) and larger (1h−1Mpc) in the outer parts
of the forming halo. Particles of different mass are
shown with different symbols: tiny dots, dots, large
dots, squares, and open circles.

used 1283 zeroth-level grid in a computational box
of 30h−1Mpc. The second set of simulations used
2563 grid in a 25h−1Mpc box and had higher mass
resolution. In the simulations used in this paper,
the threshold for cell refinement (see above) was
low on the zeroth level: nthresh(0) = 2. Thus, ev-
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Klypin, Kravtsov, Bullock 
& Primack 2001



Aquarius Simulation:  Formation of a Milky-Way-size Dark Matter Halo

Diameter of Milky Way Dark Matter Halo
1.6 million light years



500 kpc

Diameter of visible Milky Way
30 kpc = 100,000 light years

Diameter of Milky Way Dark Matter Halo
1.6 million light years



500 kpc

Diameter of visible Milky Way
30 kpc = 100,000 light years

Diameter of Milky Way Dark Matter Halo
1.6 million light years


