

Testing Theories of the High-z and Super-Early Universe

Anthony Aguirre

Anthony Aguirre's *current* research:

- Enrichment of the intergalactic medium (IGM)
 - How did the IGM get enriched with the heavy elements?
 - What does this tell us about feedback in galaxy formation?
 - What does this tell us about Pop. III? About reionization?

Local Group: Shen (postdoc), Madau, Prochaska & IMPS Strong nonlocal Interactions: J. Schaye (Leiden), L. Hernquist (Harvard)

Anthony Aguirre's *current* research:

Inflation and eternal inflation

- When and how does 'eternal inflation' occur?
- What is the large-scale structure of an eternal inflating universe?
- Given inflation, need there be an initial singularity?
- How do transitions between inflationary 'vacua' occur?
- What is the inflationary "multiverse" and how can we test it?
- Might there be observable signatures of eternal inflation?

Local Group: Kozakzuk, Tysanner (Grads); Dine, Banks, Profumo Strong nonlocal interactions: S. Gratton (Cambridge); M. Tegmark (MIT); M. Johnson (ex-student, now PI postdoc)

Anthony Aguirre's recent-past and current research:

• Other

- Could annihilation of dark matter be important in the formation and evolution of the first stars (yes, it could!)
- How do we interpret quantum mechanics in a context where every quantum system has exact duplicates elsewhere? (count!)
- What does it look like when entropy *decreases*? (reverse the film!)

Local Group: Strong nonlocal interactions: D. Spolyar (Fermilab); M. Tegmark (MIT); Sean Carroll (Caltech); M. Johnson (ex-student, now Caltech postdoc)

Inflation

- Basic idea: exponential expansion at very early times.
- Provides:
 - Expansion
 - Flatness
 - Uniformity
 - Fluctuations

Ending Inflation

- Driven by vacuum energy, but dynamical.
- Leads to 'field ϕ ', with 'potential' $\Lambda(\phi)$.
- Handy: description is just like a ball on a slope: gravity and friction.
- Field evolves toward $\Lambda_{obs,}$ where inflation ends.

Failing to end inflation: Is inflation everlasting?

- * The "double-well":
 - Tunneling nucleations bubble of new phase.
 - Inflation inside.
 - but new phase fails to take over.

Everlasting bubbly inflation

- Expanding sea of inflation.
- Pocket universes fill in interstices, grow.

Can we observe other bubble "universes"?

Bubbles collide!

Can we observe other bubble "universes"?

What could we see?

Bubble collisions: what could we see?

Can we observe other bubble "universes"?

Some current/possible projects:

- Deeper analysis of link between collisions and cosmological observables. (In progress: many collisions at once).
- Involvement in data analysis?
- Other processes like decompactifications; collisions between different #s of large dimensions; collisions between bubbles with uncoupled fields.

Currently being pondered

Some current/possible projects:

- Cosmological interpretation of quantum mechanics vs.
 'multiverse interpretation' of quantum mechanics.
- Inflation from/as spacetime emergence.
- A 'double' standard in the eternal inflationary arrow of time.

On the back burner

Some current/possible projects:

- Dark stars, Pop. III, and the IGM.
- Very interesting things that happen inside Kerr black holes
- Do 'baby universes' actually form?
- The 'emergent' universe.