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Polymers

Polymers in a Vacuum???

You wouldn’t expect to find them in a vacuum. . .
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But you do!

“One day in February of 1985, instead

Koichi Tanaka, 2002 Nobel Prize in Chemistry

of using Cobalt Ultra Fine Metal Powder (UFMP) as a matrix,
I mistakenly used a glycerin-UFMP mixed matrix. I noticed this
mistake immediately, but I thought, “Mottai-nai!” at the idea of
throwing the mixture away. If I allowed the glycerin to evaporate,
I thought that I could still make use of the UFMP, so I placed
the mixture in the vacuum chamber to dry it out. Thinking
that I could even speed up the drying process by irradiating
the mixture with the laser, I switched on the laser beam. On
top of that, anxious to confirm the elimination of the glycerin as
soon as possible, I kept the spectrometer running and monitored
the results. And then, I noticed a signal peak I had never
before seen mixed in with the noise peaks. I think because up to
that point I had always felt annoyance at the sight of that noise
wave data in the experiments, I noticed a slight di↵erence. The
signal peak that I had never seen before now appeared at the
same position no matter how many times I ran the experiment.”

Josh Deutsch Polymers in a Vacuum



Introduction
Experimental Systems

Statics
Dynamics

Future Work and Conclusions

Mass Spec
Possible Systems
Utility
Astrophysics

This lead to a huge advance in biology and medicine. For example
“Matrix-assisted Laser Desoprtion/Ionization” (MALDI) “Imaging
Mass Spectrometry” (IMS).

The mass of molecules of order 10

5 Daltons can be measured to an
accuracy of 1 part in 10

6.

An example of a use of this is in understanding cancer and its
diagnosis.
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Drawback

You get the mass accurately but not the chemical sequence.

Additional probes of internal dynamics should provide more
information about the chemical species
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Alternate method: Electrospray Ionization

Developed by John Bennett Fenn, (2002 Nobel Prize in Chemistry).
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Optical trap

Put DNA in evacuated optical trap
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Optical trap

Put DNA in evacuated optical trap
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Suspend a molecule over a trench

Minot et al, PRL (2003)

May be possible to extend to DNA
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X-Ray’s from Scotch Tape

X-ray of finger taken with scotch
tape

Camara, Escobar, Hird, and
Putterman, Nature (2008)
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Studying polymers in a vacuum gives you information about the
mass distribition of a polymer.
Take proteins that bind to DNA
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In solution the mass is essentially irrelevant.

In a vacuum the dynamics are very sensitive to the mass.

This would then help to determine the presence of proteins on
DNA.
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Polymers in Interstellar Media

Many di↵erent kinds of polymers have also been detected in
interstellar media. (Thaddeus et al (1998).

Josh Deutsch Polymers in a Vacuum



Introduction
Experimental Systems

Statics
Dynamics

Future Work and Conclusions

Conservation Laws
Exact Solution
Thermal radiation

Conservation Laws

Because a single polymer in a vacuum is isolated you have three
conservation laws:

Conservation of Energy
Conservation of Momentum
Conservation of Angular Momentum
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Dynamics

In a liquid, motion is highly damped.
Consider the average square displacement vs time

<Δ
2  r>

 - 
<r

2 c>

t

What does this look like for a polymer in a vacuum?
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Internal Damping

Polymer solutions have hydrodynamic drag.

But also “Cerf friction”, or internal damping of chains.
f(s) / @r

@t

???

In a vacuum, take r(s) ! r(s) + vt.
But f can’t change!
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In a vacuum
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s

Model needs to be su�ciently nonlinear
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Vacuum Langevin Eqn
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Simulation

Rigid links

Freely rotating

Solves Newton’s Laws

Algorithm obeys conservation laws + keeps links fixed length.

E�cient method, O(N) to move N link chain one time step
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Ideal Chain

No interactions i.e. an “ideal chain”.
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Repulsive Interaction

�V (r) = 2(1� (r/l)2)5.

hR2i / N⌫ , ⌫ = .596± .01 in 3d.
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Numerical Scaling
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Charged

Now lets also put charges on the two ends.
N = 32

h end to end distance i = 10.0 (l = 1)
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Microcanonical averages

hÔi = Tr(⇢
micro,hEiÔ)

(bar means time average).

⇢
micro,E0 ⌘ 1

N
states

X

E0<E<E0+�E
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and:

S
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= �Tr(⇢
micro

ln ⇢
micro

)
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The Eigenstate Thermalization Hypothesis

ETH

Tr(⇢
E

Ô) = Tr(⇢
micro,E

Ô)

⇢
E

= |EihE|

The expectation value of Ô will vary very little between
neighboring energy levels for large N , implying that the
expectation value of Ô in any energy eigenstate is the
microcanonical average (at that energy).
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Two Systems in Contact

Reduced density matrix

⇢
A

⌘ Tr
B

⇢

becomes mixed because it is entangled with B.
Now we define

entanglement entropy of A with B

S
Ent

(A,B) ⌘ �Tr(⇢
A

ln ⇢
A

).
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Now consider
⇢
A,micro

⌘ Tr
B

⇢
micro

Heat Bath

S
Ent,micro

(A,B) ⌘ �Tr(⇢
A,micro

ln ⇢
A,micro

)

S
thermo

(A) = S
Ent,micro

(A,B) = �Tr(⇢
A,micro

ln ⇢
A,micro

)

Calabrese and Cardy (2009), Korepin (2004)
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Self-Entanglement Hypothesis

Is

S
thermo

(A) = �Tr(⇢
A

ln ⇢
A

)?

or equivalently

�Tr(⇢
A

ln ⇢
A

) = �Tr(⇢
A,micro

ln ⇢
A,micro

)?

compare with ETH:

Tr(⇢
E

Ô) = Tr(⇢
micro,E

Ô)
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1d Hard Core Bosons and Spinless Fermions
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We consider periodic BC’s (k=1 sector) with N = 27 lattice
sites

6 particles.

We look at V = t = 1, and

V 0 = t0 = 0.0 (integrable) or V 0 = t0 = 0.96 (non-integrable)

We change the number of sites in A, denoted m, and see how
S
ent

(m) varies.
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1d Hard Core Bosons

10966 states total in the k = 1 sector.
Non-integrable Integrable:
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1d Hard Core Bosons, Integrable, m=4
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Entanglement Entropy Di↵erence

We can consider the di↵erence in entanglement entanglement
�S ⌘ S

ent

(4)� S
ent

(3), which should be a measure of the
entropy per site.

Josh Deutsch The microscopic origin of thermodynamic entropy in isolated systems



Introduction
Thermodynamic Entropy and the Wave Function

Numerical Tests
Conclusions

1d Models
Entanglement Entropy
2d Model

�S for Hard Core Bosons, Integrable
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�S for Hard Core Bosons, Generic
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2d Hard Core Bosons

5⇥ 5 square lattice

6 particles

Nearest neighbor repulsive potential = 0.1

periodic boundary conditions.
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2d Hard Core Bosons Entropy
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Comparison of Generic and Integrable fluctuations

The standard deviation of the entanglement entropy S
ent

(A,B) is
plotted against the density of states. This is done around the point
of maximum entanglement entropy.
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Evolution from more general initial conditions

Over long times, the energy eigenvector components of
non-integrable wave functions will have random phases. So we
consider wave functions that are the superposition of 100
contiguous eigenvectors with Gaussian random complex phases.
These are the red dashed lines above.
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Conclusions

Knowledge of neighboring levels is not necessary to determine
the entropy

A complete knowledge of the system’s quantum state, does
not a↵ect its behavior with respect to macroscopic
measurements of the entropy.

For long times, a system in a pure state and one in an
statistical ensemble have identical thermodynamic entropies in
the limit of large systems.

This is because the entropy in such experiments measures the
system’s self-entanglement, not the lack of knowledge of it.
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