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Use computer simulations to understand:
1. Spin glasses
2. Optimization Problems

3. Quantum phase transitions (with possible relevance to quantum

computers)
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What is a spin glass?

A system with disorder and frustration.
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Most theory uses the simplest model with these ingredients:
the Edwards-Anderson Model:

(2,3)

[Jijlav = O,

2 - 2
[J2]0y = J2.

Even determining the ground state is non-trivial.
Connection with optimization problems in computer science.



Phase transition

Non-linear susceptibility A phase transition occurs.
Experimental signature is the divergence of the non-linear
susceptibilty.

Xni, 1S defined by -

m = xh — xuh® + - -
Find: Xnl (T — TS(;), with Y
generally in the range 2.5-3.5; i.e. -
there is a finite temperature spin N
glass transition.

e.g. results of Omari et al,
(1983) for CuMn . T




Slow Dynamics
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Parallel Tempering

Problem: Very slow Monte Carlo dynamics at low-T"; system trapped in a
valley. Needs more energy to overcome barriers.

This is achieved by paraIIeI tempering: simulate copies at many
different temperatures:
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Lowest T": system would be trapped:
Highest T": system has enough energy to fluctuate quickly over barriers.

Perform global moves in which spin configurations at

neighboring temperatures are swapped.
Result: temperature of each copy performs a random walk between 77 and T, .
Advantages:

e satisfies detailed balance
e simple

e system can now visit many valleys at low-T" (with correct relative weight)



Recent spin glass work

Is there a transition in a magnetic field (Almeida-Thouless line)?
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Fig. (a) is one of the most surprising predictions of the mean field theory of
spin glasses. One normally expects that a field would break the symmetry
so there would be no transition in a magnetic field. (This happens in a
ferromagnet, for example.) However, in a spin glass, “mean-field theory”
predicts a transition without symmetry breaking but in which the nature of
the spin glass state changes, by the development of many “valleys” in the
energy landscape.

Seems that this transition does not occur (we have Fig (b)) though a gradual
“crossover” does happen. The simulations indicate that a real transition in
a magnetic field would occur in high dimensions, though.



Recent spin glass work

Is the resistance of superconductors really zero in a magnetic field.

Have looked at related models which describe the behavior of
a superconductor (with disorder) in a magnetic field. Is there
a spin-glass like phase (called the “vortex glass”)? This would
have strictly zero resistance. The resistance is certainly very
small, this is why superconducting magnets work, e.g. the
LHC. Theoretically of interest to know if there is a phase
transition which would lead to a state with strictly zero
resistance because of collective effects.

My own work, which is on models that have very different
parameters from experimental systems (so effects which can
be very hard to see experimentally can be easily visible in the
simulations) indicates that the transition would be rounded out
but only extremely close to the putative transition, due to
“screening” effects between the vortices (probably not
observable experimentally).



Optimization Problems

Finding the ground state of a spin
glass is a non-trivial “optimization
problem”.

Can techniques used for spin glasses
also be used in other fields?

We are considering the problem of

Ramsey Numbers in graph theory.

Consider a “complete” graph with n,

vertices and N = ny (ny -1)/2 edges.

Color each edge red or blue. The Above figure shows
Ramsey numbers R(I, m) are the that R(3, 3) > 5.
smallest values of nv such that each Actual value is 6.
graph has either a complete red

subgraph of size | or a complete blue

subgraph of size m.



Optimization Problems

Values of Ramsey numbers are not known even for
small values of | and m.

Ramsey Numbers R(I, m)
[] m— || 1] 2 3 4 D 0
1 1] 1 1 1 1 1
2 2 3 4 D 0
3 3 0 9 14 18
4 4 9 18 29 30—41
5 5 | 14 25 | 43-49 D87
0 6 | 18 | 3541 | 5887 | 102—-165

Trying to improve the bounds for R(4, 6) and R(5, 5).



What is a quantum computer?

Classical computer: bitis O or 1
Quantum computer: qubit: linear superposition of O and 1.

N qubits: linear superposition of 2V basis states
Actions on the quantum state act on all 2N basis states

‘ = Quantum Parallelism

BUt: to get the result, need to make a measurement
= Don’t get 2N results. Rather there are 2" probabilities and

one gets one result according to these probabilities.

Seems that quantum mechanics is not useful for computing

Nonetheless, in some cases useful results can be obtained by
doing clever processing before the measurement.

The most famous is Shor’s algorithm for factoring integers



Optimization problems

Shor’s algorithm (factoring large integers) is rather
specialized.

Would a quantum computer also be useful for more general
problems, such as optimization problems, i.e. minimizing a
function of N variables with constraints?

Of interest in many fields in science and engineering.

Here we will take “"Problem Hamiltonians™ (i.e. the function
to be minimized) which involve binary variables, O or 1, (or
equivalently Ising spins 0% = £1).

How could we try to solve such optimization problems on a
quantum computer?

An idea from physics ....



Quantum Adiabatic Algorithm

Proposed by Farhi et.al (2001) to solve hard optimization
problems on a quantum computer.

H(t) =1 —s(t)|Hp + s(t)Hp

Hp (gs.) adiabatic? Hp(gs.?)
—— 1
0 1 S
Hp is the problem Hamiltonian, depends on the o
‘Hp is the driver Hamiltonian = —h z:(a": — 1)

0 <s(t) <1, s(0) = 0, s(T) =
7 is the running time
System starts in ground state of driver Hamiltonian. If process

is adiabatic (and T — 0), it ends in g.s. of problem Hamiltonian,
and problem is solved. Minimum 7 is the “complexity”.

Is 7 exponential or polynomial in the problem size N?



Early Numerics

Early numerics, Farhi et al. for very small sizes N < 20, on a
particular problem found the time varied only as N2, i.e.
polynomial!

But possible “crossover” to exponential at larger sizes”?

To explore large sizes, need techniques from statistical physics,
Quantum Monte Carlo.



Quantum Phase Transition
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Bottleneck is likely to be a quantum phase transition
(QPT) where the gap to the first excited state is very small

Landau Zener Theory:
To stay in the ground

AE i state the time needed
is proportional to A E 2

min

S
Using QMC, we compute A E for different s: — AEmin



Dependence of gap on s
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‘Mind this gap‘

Results for the dependence
of the gap to the first
excited state, AE, with s, for
one instance of 1-in-3 SAT
with N = 64.

The gap has a minimum for
s about 0.66 which is the
bottleneck for the QAA.

We compute the minimum
gap for many (50) instances
for each size N and look
how the median minimum
gap varies with size.



Satisfiability Problems I

In satisfiability problems (SAT) we ask whether there is an
assignment of N bits which satisfies all of M logical conditions
(“clauses”). We assign an energy to each clause such that it is
zero If the clause is satisfied and a positive value if not satisfied.

We take the ratio of M/N to be at the satisfiability threshold, and

study instances with a “unique satisfying assignment” (USA).
(so gap to 1st excited state has a minimum whose value indicates the complexity.)



Locked 1-In-3

Plots of the median minimum gap (average over 50 instances)
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Clearly the behavior of the minimum gap is exponential




Comparison with a classical algorithm,
WalkSAT: I

WalkSAT iIs a classical, heuristic, local search algorithm. It is a
reasonable classical algorithm to compare with QAA.

We have compared the running time of the QAA for the three
SAT problems studied with that of WalkSAT.

For QAA, Landau-Zener theory states that the time is

proportional to 1/(AEmin)? (neglecting N dependence of matrix
elements).

For WalkSAT the running time is proportional to number of “bit
flips”.
We write the running time as proportional to ‘ exp(M N).‘

We will compare the values of y among the different
models and between QAA and WalkSAT.




Comparison with a classical algorithm,
WalkSAT: 11

QAA WalkSAT
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Exponential behavior for both QAA and WalkSAT

The trend is the same in both QAA and WalkSAT.
3-XORSAT is the hardest, and locked 1-in-3 SAT the easiest.




Comparison with a classical algorithm,

WalkSAT: 111
Exponential
| Model |QAA WalkSAT | Ratio complexity in
both cases.

1-in-3  |0.084(3)| 0.0505(5) | 1.66 QAA not better
than WalkSAT.

-1n- 0.126(7)| 0.085 1.47
2oin-4 (7) 558(8) Values of |

(where time ~
3-XORSAT |0.159(2)| 0.1198(4) 1.32 exp[u NJ).

These results used the simplest implementation of the QAA

for instances with a USA.

Interesting to also study random instances to see if they also
have exponential complexity in QAA.

Also look for better paths in Hamiltonian space.




Conclusions for quantum computing

e Simple application of QAA gives exponentially small gaps
for SAT problems with a USA. This implies that the time to
solve the problem would grow exponentially with N (like
classical algorithms).

* Need to see if the exponentially small gap is absent in other
cases:

* look at other problems

e repeatedly run the algorithm with different random values
for the transverse fields (and costs).

* try to find a clever way to optimize the path in
Hamiltonian space “on the fly” during the simulation to
iIncrease the minimum gap.
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