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Use computer simulations to understand:
1. Spin glasses

2. Optimization Problems

3. Quantum phase transitions (with possible relevance to quantum
computers)
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What is a spin glass?
A system with disorder and frustration.

or

Most theory uses the simplest model with these ingredients:
the Edwards-Anderson Model:

H = −
∑

〈i,j〉

JijSiSj −
∑

i

hiSi ,

[Jij]av = 0, [J2

ij]av = J2 .

Even determining the ground state is non-trivial.
Connection with optimization problems in computer science.
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Phase transition
Non-linear susceptibility A phase transition occurs.
Experimental signature is the divergence of the non-linear
susceptibilty.

χnl, is defined by
m = χh − χnlh

3 + · · ·

Find: χnl ∼ (T − TSG), with γ

generally in the range 2.5–3.5; i.e.
there is a finite temperature spin
glass transition.
e.g. results of Omari et al,
(1983) for CuMn1%.
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Slow Dynamics
Slow dynamics
The dynam-
ics is very
slow at low
T . System
not in equilib-
rium due to
complicated
energy land-
scape: sys-
tem trapped
in one “valley”
for long times.

valley

ΔE

valley

barrier

configuration

(free) energy
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Parallel Tempering
Problem: Very slow Monte Carlo dynamics at low-T ; system trapped in a
valley. Needs more energy to overcome barriers.
This is achieved by parallel tempering: simulate copies at many
different temperatures:

T

T

T T T1 2 n−1 n
T T3 n−2

Lowest T : system would be trapped:
Highest T : system has enough energy to fluctuate quickly over barriers.
Perform global moves in which spin configurations at
neighboring temperatures are swapped.
Result: temperature of each copy performs a random walk between T1 and Tn.
Advantages:

• satisfies detailed balance
• simple
• system can now visit many valleys at low-T (with correct relative weight)
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Recent spin glass work
Is there a transition in a magnetic field (Almeida-Thouless line)?
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Fig. (a) is one of the most surprising predictions of the mean field theory of
spin glasses. One normally expects that a field would break the symmetry
so there would be no transition in a magnetic field. (This happens in a
ferromagnet, for example.) However, in a spin glass, “mean-field theory”
predicts a transition without symmetry breaking but in which the nature of
the spin glass state changes, by the development of many “valleys” in the
energy landscape.
Seems that this transition does not occur (we have Fig (b)) though a gradual
“crossover” does happen. The simulations indicate that a real transition in
a magnetic field would occur in high dimensions, though.
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Recent spin glass work
Is the resistance of superconductors really zero in a magnetic field.

Have looked at related models which describe the behavior of
a superconductor (with disorder) in a magnetic field. Is there
a spin-glass like phase (called the “vortex glass”)? This would
have strictly zero resistance. The resistance is certainly very
small, this is why superconducting magnets work, e.g. the
LHC. Theoretically of interest to know if there is a phase
transition which would lead to a state with strictly zero
resistance because of collective effects.
My own work, which is on models that have very different
parameters from experimental systems (so effects which can
be very hard to see experimentally can be easily visible in the
simulations) indicates that the transition would be rounded out
but only extremely close to the putative transition, due to
“screening” effects between the vortices (probably not
observable experimentally).
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Optimization Problems
Finding the ground state of a spin 
glass is a non-trivial “optimization 
problem”.

Can techniques used for spin glasses 
also be used in other fields?

We are considering the problem of 
Ramsey Numbers in graph theory. 
Consider a “complete” graph with nv 
vertices and N = nv (nv -1)/2 edges. 
Color each edge red or blue. The 
Ramsey numbers R(l, m) are the 
smallest values of nv such that each 
graph has either a complete red 
subgraph of size l or a complete blue 
subgraph of size m.  

Above figure shows 
that R(3, 3) > 5. 
Actual value is 6.



Optimization Problems
Values of Ramsey numbers are not known even for 
small values of l and m.

same study for the diluted model [29] with a fixed average coordination number. The model with
σ = 0 is called the Viana-Bray [83] model. It corresponds to a spin glass on a random graph, the
exact solution of which is expected to be the Bethe-Peierls approximation. We will see if diluted
models with 0 < σ < 1/2 give identical results to those of the Viana-Bray model.

In addition, I intend to model “superspin glasses” [84] which consist of ferromagnetic particles
in a gel, which have an easy axis frozen in a random direction, interacting via dipole-dipole
interactions. The remarkable non-equilibrium properties of spin glasses, such as rejuvenation and
memory [85], require a very broad range of timescales. In traditional spin glasses, the microscopic
time scale is of order 10−12 sec, and so one can perform an experiment over 1016 times the
microscopic time. In simulations, the unit of time is the Monte Carlo sweep (MCS) and one
can perhaps get good statistics for, say, 106 sweeps, which is 1010 times shorter, relative to the
microscopic time, than in experiments. This is probably why experiments and simulations of
non-equilibrium behavior do not agree very well [86]. However, in superspin glasses, the analogue
of a spin flip is the reversal of the magnetization of the whole particle which is a slow process
since an intervening barrier has to be overcome. The time scale is argued to be of order 10−6

secs or longer, so one can simulate time scales which are much closer to those in experiment
than is possible for traditional spin glasses. The aim of this project will be to compare in detail
experimental non-equilibrium behavior with the results of simulations, which has not been done
before for any system, to our knowledge.

Finding the ground state of a spin glass is a non-trivial optimization problem. It is interesting
and useful to use techniques from statistical physics to solve other optimization problems. I
propose to study one such problem, the value of “Ramsey numbers” [87], which has recently
been studied [88] by physicists in the context of quantum computing. Ramsey numbers appear
in a problem in graph theory. Consider a graph of nV vertices. The edge between each of the
N = nV (nV − 1)/2 pairs of vertices is colored either red or blue. Thus, in physics language, there
is an Ising variable on each edge (+1 ≡ blue, −1 ≡ red). We need the notion of a “complete
subgraph” which is a subset of the vertices such that each vertex in the subset is connected to
each of the other vertices in the subset by an edge of the same color. The Ramsey number R(l, m)
is the smallest graph (i.e. the small value of nV ) such that for every one of the 2N colorings of
the edges (recall that each edge is blue or red) there is either a complete subgraph of l vertices
connected by blue edges or a complete subgraph of m vertices connected by red edges. (Clearly
R(l, m) = R(m, l).)

A coloring with nV = 5 vertices
which does not have triangle col-
ored entirely blue or red. (The
outer pentagon is red, the inner
lines are blue.)

Ramsey Numbers R(l, m)
l ↓ m → 1 2 3 4 5 6

1 1 1 1 1 1 1
2 1 2 3 4 5 6
3 1 3 6 9 14 18
4 1 4 9 18 25 35–41
5 1 5 14 25 43–49 58–87
6 1 6 18 35–41 58–87 102–165

14

Trying to improve the bounds for R(4, 6) and R(5, 5). 



What is a quantum computer?
Classical computer: bit is 0 or 1
Quantum computer: qubit: linear superposition of 0 and 1.

N qubits: linear superposition of 2N basis states
Actions on the quantum state act on all 2N basis states
⇒  Quantum Parallelism

But: to get the result, need to make a measurement

⇒ Don’t get 2N results. Rather there are 2N  probabilities and 

one gets one result according to these probabilities.
Seems that quantum mechanics is not useful for computing
Nonetheless, in some cases useful results can be obtained by 
doing clever processing before the measurement.
The most famous is Shor’s algorithm for factoring integers



Optimization problems
Shor’s algorithm (factoring large integers) is rather 
specialized.
Would a quantum computer also be useful for more general 
problems, such as optimization problems, i.e. minimizing a 
function of N variables with constraints?
Of interest in many fields in science and engineering. 
Here we will take “Problem Hamiltonians” (i.e. the function 
to be minimized) which involve binary variables, 0 or 1, (or 
equivalently Ising spins σz = ±1). 
How could we try to solve such optimization problems on a 
quantum computer?

An idea from physics .... 



H(t) = [1� s(t)]HD + s(t)HP

0 � s(t) � 1, s(0) = 0, s(T ) = 1

�
�x

i � 1
�

Quantum Adiabatic Algorithm
Proposed by Farhi et. al (2001) to solve hard optimization 
problems on a quantum computer.

0 1
HD HP(g.s.) (g.s.?)adiabatic?

System starts in ground state of driver Hamiltonian. If process 
is adiabatic (and T → 0), it ends in g.s. of problem Hamiltonian, 
and problem is solved. Minimum    is the “complexity”.T

T is the running time

HP is the problem Hamiltonian, depends on the �z
i

Is    exponential or polynomial in the problem size N?T

HD is the driver Hamiltonian = �h
�

�x
i

s



Early Numerics
Early numerics, Farhi et al. for very small sizes N ≤ 20, on a 
particular problem found the time varied only as N2 , i.e. 
polynomial!

But possible “crossover” to exponential at larger sizes?

To explore large sizes, need techniques from statistical physics, 
Quantum Monte Carlo.



0 1

HD HP

QPT

Quantum Phase Transition

Bottleneck is likely to be a quantum phase transition 
(QPT) where the gap to the first excited state is very small

Landau Zener Theory:  
To stay in the ground 
state the time needed 
is proportional to �E�2

min

s

�EUsing QMC, we compute for different s: → ΔEmin 
h

E0

E1

6 minE

E

s



Dependence of gap on s

Text Text

Text

s

Results for the dependence 
of the gap to the first 
excited state, ΔE, with s, for 
one instance of 1-in-3 SAT 
with N = 64.
The gap has a minimum for 
s about 0.66 which is the 
bottleneck for the QAA.

We compute the minimum 
gap for many (50) instances 
for each size N and look 
how the median minimum 
gap varies with size.

Mind this gap
↑



Satisfiability Problems I 
In satisfiability problems (SAT) we ask whether there is an 
assignment of N bits which satisfies all of M logical conditions 
(“clauses”). We assign an energy to each clause such that it is 
zero if the clause is satisfied and a positive value if not satisfied.

i.e. We need to determine if the ground state energy is 0.

We take the ratio of M/N to be at the satisfiability threshold, and 
study instances with a “unique satisfying assignment” (USA). 
(so gap to 1st excited state has a minimum whose value indicates the complexity.)
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Comparison with a classical algorithm, 
WalkSAT: I

WalkSAT is a classical, heuristic, local search algorithm. It is a 
reasonable classical algorithm to compare with QAA.
We have compared the running time of the QAA for the three 
SAT problems studied with that of WalkSAT.
For QAA, Landau-Zener theory states that the time is 
proportional to 1/(ΔEmin)2 (neglecting N dependence of matrix 
elements).
For WalkSAT the running time is proportional to number of “bit 
flips”.
We write the running time as proportional to  
We will compare the values of µ among the different 
models and between QAA and WalkSAT. 

exp(µ N).
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Comparison with a classical algorithm, 
WalkSAT: II

The trend is the same in both QAA and WalkSAT. 
3-XORSAT is the hardest, and locked 1-in-3 SAT the easiest.

Exponential behavior for both QAA and WalkSAT



Comparison with a classical algorithm, 
WalkSAT: III

Values of µ  
(where time ~ 
exp[µ N]).

Model QAA WalkSAT Ratio

1-in-3 0.084(3) 0.0505(5) 1.66

2-in-4 0.126(7) 0.0858(8) 1.47

3-XORSAT 0.159(2) 0.1198(4) 1.32

These results used the simplest implementation of the QAA 
for instances with a USA. 
Interesting to also study random instances to see if they also 
have exponential complexity in QAA. 
Also look for better paths in Hamiltonian space.

Exponential 
complexity in 
both cases.
QAA not better 
than WalkSAT.



Conclusions for quantum computing
• Simple application of QAA gives exponentially small gaps 

for SAT problems with a USA. This implies that the time to 
solve the problem would grow exponentially with N (like 
classical algorithms). 
• Need to see if the exponentially small gap is absent in other 

cases:
• look at other problems
• repeatedly run the algorithm with different random values 

for the transverse fields (and costs). 
• try to find a clever way to optimize the path in 

Hamiltonian space “on the fly” during the simulation to 
increase the minimum gap.
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