Physiçs/Astronomy 224 Sppring 2012 Orionin and Evolution of te dhiverse
 Week 2 - Parit 1% sheral Relativit mond Distance.

Joel Primack

University of California, Santa Cruz

Picturing the History of the Universe:

 The Backward Lightcone

Picturing the History of the Universe: The Backward Lightcone

Figure 21.11. At the instant labeled "now" the particle horizon is at worldline X . In a big bang universe, all galaxies at the particle horizon have infinite redshift.
From E. Harrison, Cosmology (Cambridge UP, 2000).

Figure 21.12. At the instant labeled "later" the particle horizon has receded to world line Y. Notice the distance of the particle horizon is always a reception distance, and the particle horizon always overtakes the galaxies and always the fraction of the universe observed increases.

Distances in an Expanding Universe

Proper distance $=$ physical distance $=d_{p}$ $d_{p}\left(t_{0}\right)=\left(\right.$ physical distance at $\left.t_{0}\right)=a\left(t_{0}\right) r_{e}=r_{e}$ $\chi\left(\mathrm{t}_{\mathrm{e}}\right)=$ (comoving distance of galaxy emitting at time t_{e})
$\chi\left(t_{e}\right)=\int_{0}^{r_{e}} d r=r_{e}=c \int_{t_{e}}^{t_{0}} d t / a=c \int_{a_{e}}^{1} d a /\left(a^{2} H\right)$
because
$\mathrm{dt}=(\mathrm{dt} / \mathrm{da}) \mathrm{da}=(\mathrm{a} \mathrm{dt} / \mathrm{da}) \mathrm{da} / \mathrm{a}$ $=\mathrm{da} /(\mathrm{aH})$
$d_{p}\left(t_{e}\right)=\left(\right.$ physical distance at $\left.t_{e}\right)=a\left(t_{e}\right) r_{e}=a_{e} r_{e}$

The Hubble radius $\mathrm{d}_{\mathrm{H}}=\mathrm{CH}_{0}{ }^{-1}=$

$$
=4.29 h_{70^{-1}} \mathrm{Gpc}=13.97 h_{70^{-1}} \mathrm{Glyr}
$$

For E-dS $\left(\Omega_{m}=1, \Omega_{\Lambda}=0\right)$, where $H=H_{0} a^{-3 / 2}$,

$$
\begin{array}{r}
\chi\left(t_{e}\right)=r_{e}=d_{p}\left(t_{0}\right)=2 d_{H}\left(1-a_{e}^{1 / 2}\right) \\
d_{p}\left(t_{e}\right)=2 d_{H} a_{e}\left(1-a_{e}^{1 / 2}\right)
\end{array}
$$

time (galaxy
worldline)
reception distance
$\mathrm{d}_{\mathrm{p}}\left(\mathrm{t}_{\mathrm{o}}\right)=\mathrm{r}_{\mathrm{e}}$
maximum distance of lightcone

Cosmic Horizon:
tangent to backward lightcone at Big Bang

Big Bang

From E. Harrison, Cosmology (Cambridge UP, 2000).

Our Particle Horizon

FRW: $d s^{2}=-c^{2} d t^{2}+a(t)^{2}\left[d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \phi^{2}\right]$ for curvature $k=0$ so $\sqrt{ } g_{r r}=a(t)$

Particle Horizon

$\mathbf{d}_{\mathbf{p}}($ horizon $)=\left(\right.$ physical distance at time $\left.\mathrm{t}_{0}\right)=$ $a\left(t_{0}\right) r_{p}=r_{p}$
$\mathbf{d}_{\mathbf{p}}($ horizon $)=\int_{0}^{r_{\text {horizon }}} d r=r_{\text {horizon }}=c \int_{0}^{t_{0}} d t / a=c \int_{0}^{1} d a /\left(a^{2} H\right)$

For E-dS, where $\mathrm{H}=\mathrm{H}_{0} \mathrm{a}^{-3 / 2}$,

$$
\begin{aligned}
& r_{\text {horizon }}=\lim _{\mathrm{a}_{\mathrm{e}} \rightarrow 0} 2 \mathrm{~d}_{\mathrm{H}}\left(1-\mathrm{a}_{\mathrm{e}}^{1 / 2}\right)=2 \mathrm{~d}_{\mathrm{H}}= \\
& =8.58 h_{70^{-1}} \mathrm{Gpc}=27.94 h_{70^{-1}} \mathrm{Glyr}
\end{aligned}
$$

For the Benchmark Model with $h=0.70$, $r_{\text {horizon }}=13.9 \mathrm{Gpc}=45.2$ Glyr.

Figure 21.11. At the instant labeled "now" the particle horizon is at worldline X . In a big bang universe, all galaxies at the particle horizon have infinite redshift.

For the parameters of
WMAP5 $h=0.70, \Omega_{\mathrm{m}}=0.28, \mathrm{k}=0, \mathrm{t}_{0}=13.7 \mathrm{Gyr}, \mathrm{r}_{\text {horizon }}=14.3 \mathrm{Gpc}=46.5 \mathrm{Glyr}$.
WMAP7 $h=0.70, \Omega_{\mathrm{m}}=0.27, \mathrm{k}=0, \mathrm{t}_{0}=13.9 \mathrm{Gyr}, \mathrm{r}_{\text {horizon }}=14.5 \mathrm{Gpc}=47.1 \mathrm{Glyr}$.

Horizons

$$
d s^{2}=d t^{2}-d x^{2}=d t^{2}-R^{2} d x^{2}=R^{2}\left(d \eta^{2}-d x^{2}\right)
$$

PARTICLE HORIZON
 comoring coord. dx: $\mathbf{e d X} / \mathbb{R}$

Spherical surface that at time t separates worldlines into observed vs. unobserved

EVENT HORIZON

Backward lightcone that separates events that will someday be observed from those never observed

Schwarzschild

CURVED SPACE-TIME IS NOT JUST AN ARENA IN WHICH THINGS MOVE, IT IS DYNAMIC. CURVATURE CAN CAUSE HORIZONS, BEYOND WHICH INFORMATION CANNOT BE SENT.

Distances in an Expanding Universe

Angular Diameter Distance

From the FRW metric, the distance D across a source at comoving distance $r=r_{e}$ which subtends an angle $d \theta=\theta_{1}-\theta_{2}$ is $\mathrm{D}=\mathrm{a}(\mathrm{t}) \mathrm{rd} \mathrm{d}$, or $\mathrm{d} \theta=\mathrm{D} /[\mathrm{a}(\mathrm{t}) \mathrm{r}]$.

The angular diameter distance d_{A} is defined by $d_{A}=D / d \theta$, so

$$
d_{A}=a\left(t_{e}\right) r_{e}=r_{e} /\left(1+z_{e}\right)=d_{p}\left(t_{e}\right)
$$

This has a maximum, and $\mathrm{d} \theta$ a minimum.

Distances in an Expanding Universe

In Euclidean space, the luminosity L of a source at distance d is related to the apparent luminosity ℓ by $\ell=$ Power / Area $=\mathrm{L} / 4 \pi \mathrm{~d}^{2}$ The luminosity distance \mathbf{d}_{L} is defined by

$$
d_{L}=(L / 4 \pi \ell)^{1 / 2} .
$$

Weinberg, Cosmology, pp. 31-32, shows that in FRW

$$
\begin{aligned}
\ell & =\text { Power/Area }=\mathrm{L} / 4 \pi \mathrm{~d}_{\mathrm{L}}{ }^{2} \quad \text { fraction of photons reaching unit } \\
& =\mathrm{L}\left[\mathrm{a}\left(\mathrm{t}_{1}\right) / \mathrm{a}\left(\mathrm{t}_{0}\right)\right]^{2} /\left[4 \pi \mathrm{~d}_{\mathrm{p}}\left(\mathrm{t}_{0}\right)^{2}\right]=\mathrm{La}\left(\mathrm{t}_{1}\right)^{2} / 4 \pi r_{1}{ }^{2}=\mathrm{L} / 4 \pi r_{1}{ }^{2}\left(1+\mathrm{z}_{1}\right)^{2}
\end{aligned}
$$

Thus (redshift of each photon)(delay in arrival)

$$
d_{L}=r_{1} / a\left(t_{1}\right)=r_{1}\left(1+z_{1}\right)=d_{p}\left(t_{0}\right)\left(1+z_{1}\right)=d_{A}\left(1+z_{1}\right)^{2}
$$

Summary: Distances in an Expanding Universe

FRW: $\mathrm{ds}^{2}=-\mathrm{c}^{2} \mathrm{dt}^{2}+\mathrm{a}(\mathrm{t})^{2}\left[\mathrm{dr}^{2}+\mathrm{r}^{2} \mathrm{~d} \theta^{2}+\mathrm{r}^{2} \sin ^{2} \theta \mathrm{~d} \phi^{2}\right]$ for curvature $\mathrm{k}=0$ $\chi\left(\mathrm{t}_{1}\right)=\left(\right.$ comoving distance at time $\left.\mathrm{t}_{1}\right)=\int_{0}^{\mathrm{t}_{1}} d \mathrm{dt} / \mathrm{a}=\mathrm{r}_{1}$ $\mathrm{d}\left(\mathrm{t}_{1}\right)=\left(\right.$ physical distance at $\left.\mathrm{t}_{1}\right)=\mathrm{a}\left(\mathrm{t}_{1}\right) \chi\left(\mathrm{t}_{1}\right)$
Particle $\quad \chi_{p}=\left(\right.$ comoving distance at time $\left.t_{0}\right)=r_{p}$ Horizon $\quad d_{p}=\left(\right.$ physical distance at time $\left.t_{0}\right)=a\left(t_{0}\right) r_{p}=r_{p}$ since $a\left(t_{0}\right)=1$
From the FRW metric above, the distance D across a source at distance r_{1} which subtends an angle $d \theta$ is $D=a\left(t_{1}\right) r_{1} d \theta$. The angular diameter distance d_{A} is defined by $d_{A}=D / d \theta$, so

$$
a_{A}=a\left(t_{1}\right) r_{1}=r_{1} /\left(1+z_{1}\right)
$$

In Euclidean space, the luminosity L of a source at distance d
adding distances at time t_{1}
 is related to the apparent luminosity ℓ by

$$
\ell=\text { Power/Area }=\mathrm{L} / 4 \pi \mathrm{~d}^{2}
$$

so the luminosity distance d_{L} is defined by $d_{L}=(L / 4 \pi \ell)^{1 / 2}$.
Weinberg, Cosmology, pp. 31-32, shows that in FRW

$$
\ell=\text { Power/Area }=\mathrm{L}\left[\mathrm{a}\left(\mathrm{t}_{1}\right) / \mathrm{a}\left(\mathrm{t}_{0}\right)\right]^{2}\left[4 \pi \mathrm{a}\left(\mathrm{t}_{0}\right)^{2} \mathrm{r}_{1}{ }^{2}\right]^{-1}=\mathrm{L} / 4 \pi \mathrm{~d}_{\mathrm{L}}{ }^{2}
$$

Thus

$$
d_{L}=r_{1} / a\left(t_{1}\right)=r_{1}\left(1+z_{1}\right)
$$

fraction of photons reaching unit area at t_{0} (redshift of each photon)(delay in arrival)

Distances in a Flat (k=0) Expanding Universe

$$
\left.\chi\left(t_{1}\right)=\text { (comoving distance at time } t_{1}\right)=r_{1} \quad d_{A}=a\left(t_{1}\right) r_{1}=r_{1} /\left(1+z_{1}\right) \quad d_{L}=r_{1} / a\left(t_{1}\right)=r_{1}\left(1+z_{1}\right)
$$

Figure 2.3. Three distance measures in a flat expanding universe. From top to bottom, the luminosity distance, the comoving distance, and the angular diameter distance. The pair of lines in each case is for a flat universe with matter only (light curves) and 70\% cosmological constant Λ (heavy curves). In a Λ-dominated universe, distances out to fixed redshift are larger than in a matter-dominated universe.

Distances in the Expanding Universe

$D_{\text {now }}=$ proper distance, $D_{L}=$ luminosity distance,
$D_{A}=$ angular diameter distance, $D_{\text {ltt }}=c\left(t_{0}-t_{z}\right)$

http://www.astro.ucla.edu/~wright/cosmo_02.htm\#DH

Distances in the Expanding Universe: Ned Wright's Javascript Calculator

Enter values, hit a button

General

Open sets Omega vac $=0$ giving an open Universe [if you entered Omega ${ }_{M}<1$]
Flat sets Omega ${ }_{\text {vac }}=1$ Omega ${ }_{M}$ giving a flat Universe. General uses the Omega vac that you entered.

- It is now 13.462 Gyr since the Big Bang.
- The age at redshift z was 6.489 Gyr .
- The light travel time was 6.974 Gyr.
- The comoving radial distance, which goes into Hubble's law, is 2868.9 Mpc or 9.357 Gly.
- The comoving volume within redshift z is $98.906 \mathrm{Gpc}^{3}$.
- The angular size distance $\mathrm{D}_{\text {A }^{\prime}}$ is 1567.7 Mpc or 5.1131 Gly.
- This gives a scale of $7.600 \mathrm{kpc} /$ ".
- The luminosity distance $\underline{D}_{\underline{\mathrm{L}}}$ is 5250.0 Mpc or 17.123 Gly.
$=17.123 / 13.97$
1 Gly $=1,000,000,000$ light years or $9.461 * 10^{26} \mathrm{~cm}$.
$1 \mathrm{Gyr}=1,000,000,000$ years.
$1 \mathrm{Mpc}=1,000,000$ parsecs $=3.08568^{*} 10^{24} \mathrm{~cm}$, or $3,261,566$ light years.
Tutorial: Part 1 \mid Part 2 \mid Part 3| Part 4
FAQ Age | Distances | Bibliography| Relativity

Ned Wright's home page

© 1999-2003 Edward L. Wright. Last modified on 08/13/2003 11:58:51

Web app
iPhone app
http://www.astro.ucla.edu/~wright/CosmoCalc.html http://itunes.apple.com/us/app/cosmocalc/id334569654?mt=8

Velocities in an Expanding Universe

The velocity away from us now of a galaxy whose light we receive with redshift Ze_{e}, corresponding to scale factor $a_{e}=1 /\left(1+z_{e}\right)$, is

$$
v\left(\mathrm{t}_{0}\right)=\mathrm{H}_{0} \mathrm{~d}_{\mathrm{p}}\left(\mathrm{t}_{0}\right)
$$

The velocity away from us that this galaxy had when it emitted the light we receive now is

$$
\mathrm{v}\left(\mathrm{t}_{\mathrm{e}}\right)=\mathrm{H}_{\mathrm{e}} \mathrm{~d}_{\mathrm{p}}\left(\mathrm{t}_{\mathrm{e}}\right)
$$

The graph at right shows $\mathrm{v}\left(\mathrm{t}_{0}\right)$ and $\mathrm{v}\left(\mathrm{t}_{\mathrm{e}}\right)$ for the $\mathrm{E}-\mathrm{dS}$ cosmology.

For E-dS, where $\mathrm{H}=\mathrm{H}_{0} \mathrm{a}^{-3 / 2}$,

$$
\begin{aligned}
v\left(t_{0}\right) & =H_{0} d_{p}\left(t_{0}\right)=2 c\left(1-a^{1 / 2}\right) \\
v\left(t_{e}\right) & =H_{e} d_{p}\left(t_{e}\right) \\
& =H_{0} a^{-3 / 2} a_{e} 2 c\left(1-a^{1 / 2}\right) / H_{0}=2 c\left(a^{-1 / 2}-1\right)
\end{aligned}
$$

(b)

Velocities in an Expanding Universe

Figure 15.12. On an elastic strip let O represent our position, and X and Y the positions of two galaxies. If signals from X and Y are to reach us at the same instant, then Y, which is farther away, must emit before X . In (a), Y emits a signal. In (b), X emits a signal at a later instant when it is farther away than Y was when it emitted its signal. In (c), both signals arrive simultaneously at O . Y 's signal has the greater redshift (it has been stretched more) although Y was closer than X at the time of emission. This odd situation occurs at large redshifts in all big bang universes.

