Homework Set 2

DUE: Thursday May 10

1. The "tired light" hypothesis states that the universe is not expanding, but that photons lose energy per unit distance

$$\frac{dE}{dr} = -KE.$$

Show that this hypothesis gives a distance-redshift relation that is linear in the limit $z \ll 1$. What value of K gives a Hubble constant h = 0.7? What are some arguments against the "tired light" hypothesis?

2. Short problems:

(a) If a neutrino has mass m_{ν} and decouples at $T_{\nu d} \sim 1$ MeV, show that the contribution of this neutrino and its antiparticle to the cosmic density today is (Dodelson Eq. 2.80)

$$\Omega_{\nu} = \frac{m_{\nu}}{94h^2 \text{eV}} \quad .$$

(b) Verify that $\eta_b \equiv n_b/n_\gamma$ is given by (Dodelson Eq. 3.11)

$$\eta_b = 5.5 \times 10^{-10} \left(\frac{\Omega_b h^2}{0.020} \right) \quad .$$

(c) Verify the time-temperature relation (Dodelson Eq. 3.30)

$$t = 132 \sec (0.1 \text{MeV}/T)^2$$
.

3. A recent cosmological speculation is that the universe may contain a quantum field called "quintessence" which has an equation of state parameter $w_Q = p_Q/\rho_Q$ with energy density ρ_Q positive (of course) but pressure p_Q negative. Suppose that the universe contains nothing but pressureless matter, i.e. with $w_m = 0$, and quintessence, with $w_Q = -3/4$. The current density parameter of matter is $\Omega_m \approx 0.3$ and that of quintessence is $\Omega_Q = 1 - \Omega_m$. At what scale factor a_{mQ} will the energy density of quintessence and matter be equal? Solve the Friedmann equation to find a(t) for this universe. What is a(t) in the limit $a \gg a_{mQ}$? What is the current age of the universe, expressed in terms of H_0 and $\Omega_{m,0}$?

4. Suppose that the neutron decay time were $\tau_n = 89$ s instead of $\tau_n = 890$ s, with all other physical parameters unchanged. Estimate Y_p , the primordial mass fraction of nucleons in ${}^4\text{He}$, assuming that all available neutrons are incorporated into ${}^4\text{He}$.

- 5. Suppose that there were no baryon asymmetry so that the number density of baryons exactly equaled that of anti-baryons. Determine the final relic density of (baryons + anti-baryons). At what temperature is this relic density reached?
- 6. There is a fundamental limitation on the annihilation cross section of a particle χ of mass m: because of unitarity, $\langle \sigma v \rangle$ must be less than or equal to $\sim m^{-2}$, give or take a factor of order unity. Determine Ω_{χ} for a particle with $\langle \sigma v \rangle = m^{-2}$. For what value of m is $\Omega_{\chi} = 1$? (Assume $x_f = 10$ and $g_*(m) = 100$, the nominal values in Dodelson Eq. 3.60.) Note that if m exceeds this value, $\Omega_{\chi} > 1$, which is ruled out. This is a strong argument against stable particles (and therefore dark matter candidates) with masses above this critical value. (See Griest and Kamionkowski 1990, Phys. Rev. Lett. 64, 615.)