

Testing Theories of the High-z and Super-Early Universe

Anthony Aguirre

On the front burners

• Me:

- Arrived 2003 (Postdoc IAS Princeton, PhD Astronomy Harvard.)
- Cosmology, broadly construed.
- Group(s):
 - Scipp theory (Michael, Tom, Howie, Stefano)
 - Astronomy (Piero Madau and others)
- Current students & postdocs:
 - Jonathan Kozaczuk (with Stefano)
 - Max Wainwright (with Stefano)

On the front burners

Inflation and eternal inflation

- When and how does 'eternal inflation' occur?
- What is the large-scale structure of an eternal inflating universe?
- Given inflation, need there be an initial singularity?
- How do transitions between inflationary 'vacua' occur?
- What is the inflationary "multiverse" and how can we test it?
- Might there be observable signatures of eternal inflation?
- Fundamental Physics
 - How do we interpret quantum theory in an infinite universe?
 - How do we think about time in eternal systems?

On the back burners

• Black holes:

- What fun things can happen in the interior of a realistic Kerr black hole?
- What to make of black hole complementarity and 'firewalls'.

Enrichment of the intergalactic medium (IGM)

- How did the IGM get enriched with the heavy elements?
- What does this tell us about feedback in galaxy formation?
- What does this tell us about Pop. III? About reionization?

• Dark matter:

- Dark matter annihilations and the first stars.
- Modified gravity and dark matter.

Inflation

- Basic idea: exponential expansion at very early times.
- Provides:
 - Expansion
 - Flatness
 - Uniformity
 - Fluctuations

Ending Inflation

- Driven by vacuum energy, but dynamical.
- Leads to 'field ϕ ', with 'potential' $\Lambda(\phi)$.
- Handy: description is just like a ball on a slope: gravity and friction.
- * Field evolves toward $\Lambda_{obs,}$ where inflation ends.

Failing to end inflation: Is inflation everlasting?

- * The "double-well":
 - Tunneling nucleations bubble of new phase.
 - Inflation inside.
 - but new phase fails to take over.

Everlasting bubbly inflation

- Expanding sea of inflation.
- Pocket universes fill in interstices, grow.

Can we observe other bubble "universes"?

Bubbles collide!

Can we observe other bubble "universes"?

What could we see?

- Bubble Collisions:
 - Deeper analysis of link between collisions and cosmological observables:
 - Multiple collisions (Jon K.)
 - 1+1D GR simulations of bubble collisions (Max W.)
 - Analysis of Planck data (Matt Johnson, Hiranya Peiris and UCL collaborators; Max W.)
 - Other processes like decompactifications; collisions between different #s of large dimensions; collisions between bubbles with uncoupled fields.

Entropy decrease in closed systems

Entropy decrease in closed systems

• Relativistic closed systems in general (Jon K.)

Strange issues in infinite universes

EVERETT (NO WAVEFUNCTION COLLAPSE)

COPENHAGEN (WAVEFUNCTION COLLAPSES)

- Cosmological interpretation of quantum mechanics vs.
 'multiverse interpretation' of quantum mechanics.
- Past-eternal cosmologies: which are possible and which are not? (Emergent universe with John K@IPMU)
- A 'double standard' in the eternal inflationary arrow of time.

• Dark stars, Pop. III, and the IGM.

• Baby universes inside black holes. (Tegmark and Hamilton)

http://jila.colorado.edu/~ajsh/insidebh/realistic.html