

Very High-Energy Gamma-Ray Astrophysics

David A. Williams

daw@ucsc.edu

Natural Sciences 2, 319 459-3032

February 4, 2013

Main Research Interests

- How are high energy particles accelerated in the jets of AGN? Are they primarily electrons or protons?
- Do gamma-ray bursts produce very high-energy gamma-rays, either in the prompt or afterglow phase? What does that tell us about GRBs if they do/don't?
- What can we learn about the evolution of the Universe from the extragalactic background light?
- How can we build more sensitive instruments to address these – and other – questions?
 - -VERITAS upgrade
 - -CTA, the Cherenkov Telescope Array

VERITAS: Imaging Atmospheric Cherenkov Telescope

Whipple Observatory Basecamp (el. 1275 m) at foot of Mt. Hopkins

Atmospheric Imaging Technique

Area = $10^4 - 10^5 \text{ m}^2$ ~60 optical photons/m²/TeV

Image: Second secon

electronics

4

Discovery of VHE Crab Pulsar

E. Aliu et al. 2011, *Science* 334, 69–72 Work led by, A. Nepomuk Otte UCSC postdoc, now asst. prof. at Georgia Tech

Radio Galaxy: M 87

- Giant radio galaxy (class of AGN)
- Distance ~16 Mpc, redshift 0.004
- Central black hole
 ~6 x 10⁹ M_{sun}
- Jet angle 15°-30°
- Knots resolved in the jet
- Jet is variable in all wavebands

Dec Offset (mas)

6

M 87 – Radio and TeV flares

- Rapid TeV flares coincident with the core brightening
- TeV particles accelerated within ~100 R_s of BH
- Best determination so far of location of particle acceleration

Time

V. Acciari et al. 2009, Science 325, 444

Understanding the EBL

- Search for new, more distant blazars (e.g. 4C +55.17)
- More precise spectral measurements of known blazars (e.g. Mrk 421)
- Obtain data at other wavelengths to help model intrinsic spectra (*Fermi*, *Swift*)
- Obtain redshifts for detected blazars (w/ Prochaska, Fumagalli)
- Theoretical modeling of the EBL (w/ Primack, Madau, Gilmore)

Primack *et al.* 2008, AIPC 1075, 71 (arXiv:0811.3230) ⁹

The EBL and Intergalactic B Fields

• Electrons produced by

M_{High Energy}+M_{EBL} → e⁺ e⁻ Compton scatter off EBL to produce more photons

- Amount that the cascade fans out depends on intergalactic magnetic field (IGMF) strength
- Observable effects:
 - Pair halo
 - Spectral distortion
 - Time delays between prompt and reprocessed photons

Figures from Taylor *et al*. 2011, arXiv: 10 1101.0932

Blazar: 3C 66A

V. Acciari *et al.* 2009, ApJL 693, L104; erratum ApJL 721, L203

- AGN with jet oriented along line of sight – BL Lac object
- redshift 0.44?
- Observed spectral index Γ = 4.1 ± 0.4_{stat} ± 0.6_{sys}
- Deabsorbed spectrum using Franceschini et al 2008 model gives

$\Gamma = 1.5 \pm 0.4$

- At the limit the models can tolerate
- Need firm redshift & more VERITAS data

Blazar: 3C 66A

V. Acciari *et al.* 2009, ApJL 693, L104; erratum ApJL 721, L203

- AGN with jet oriented along line of sight – BL Lac object
- redshift 0.44? 0.335-0.41
- Observed spectral index Γ = 4.1 ± 0.4_{stat} ± 0.6_{sys}
- Deabsorbed spectrum using Franceschini et al 2008 model gives

$\Gamma = 1.5 \pm 0.4$

- At the limit the models can tolerate
- Need firm redshift & more VERITAS data

3C 66A Spectra — Keck

3C 66A Spectra — HST

GRB 090902B

A. Abdo et al. 2009, ApJL 706, L138

15

VERITAS Upgrade

- Moved 1 telescope (complete)
- Install improved trigger system (fall 2011)
- Install higher quantum efficiency phototubes (summer 2012)
- Investigating faster telescope slewing

Opportunities to work on the telescope hardware

The CTA Concept

Arrays in northern and southern hemispheres for full sky coverage 4 large telescopes in the center (LSTs)

Threshold of ~30 GeV

≥25 medium telescopes (MSTs) covering ~1 km²

Order of magnitude improvement in 100 GeV–10 TeV range Small telescopes (SSTs) covering >3 km² in south

>10 TeV observations of Galactic sources

Construction begins in ~2015

From current arrays to CTA

Light pool radius

- R ≈100-150 m
- ≈ typical telescope spacing

Sweet spot for best triggering and reconstruction: Most showers miss it!

ction: miss it!

H.E.S.S.

CTA, for same exposure

Expect ~1000 detected sources over the whole sky

Dark matter searches with Fermi & CTA

A Novel Telescope for CTA

Schwarzschild-Couder optics

Camera using multianode photomultiplier tubes or Geiger-APDs with integrated electronics

Opportunities

- Data analysis with VERITAS most sensitive instrument in the world >100 GeV
- Synergy with Fermi, X-ray satellites, e.g. Swift
- Optical program for redshifts and source monitoring
- CTA development
 - Studies of new, more efficient photosensors
 - Design and construction of the prototype telescope
 - Optimization of full CTA telescope and array

Postdocs: Aurelien Bouvier

Graduate students: Amy Furniss, Caitlin Johnson

Undergraduate students: Lloyd Gebremedhin, Zach Hughes, Andrey Kuznetsov