Physics 205 - Introduction to Research in Physics

Physics 205 meets Mondays 4-5:45 pm in ISB 231. All first-year Physics grad students must register for Physics 205.

Requirements: Attend every class (at most one will be excused) and turn in a summary of two research topics that interest you, each summary1 or 2 pages in length, based on Phys 205 lectures and possibly follow-up meetings with the relevant Physics faculty.

Website: <u>http://physics.ucsc.edu/~joel/Phys205/</u> Password: Phys205

Instructor: Joel Primack, joel@ucsc.edu, ISB 318, Office Hours: Wed 2-3 or by appointment

Weekly Schedule

- 1/7 Michael Dine Anticipating LHC Physics Jason Nielsen & Bruce Schumm – LHC and ILC
- 1/14 Joel Primack Physics as a Profession
 Sue Carter Non-Academic Career Opportunities
 Hee-Sun Lee Physics Education Research Opportunity
- 1/28 Sasha Sher Imaging of Neural Function and Structure Sriram Shastry – Superconductors, Magnets, Thermoelectics Gey-Hong Gweon – Spectroscopy on HTSCs and Graphene
- 2/4 Steve Ritz Fermi γ-ray Space Telescope David Williams – VHigh Energy Gamma Ray Astrophysics Tesla Jeltema – Observational Cosmology and Particle Astrophysics

- 2/11 Tom Banks Holographic Space-Time Anthony Aguirre - Testing Theories of the Super-Early Universe? Stefano Profumo – Fundamental Physics with GeV Gamma Rays
- 2/25 Howard Haber Theory/Phenomenology of the Terascale Robert Johnson - Proton Computed Tomography Project Joshua Deutsch – Biophysics & Condensed Matter Theory
- 3/4 Bud Bridges Crystal Structure and Macroscopic Properties Art Ramirez – Strongly Correlated Matter David Belanger - Nanoparticle Magnetism
- 3/11 Joel Primack Physics Ethics

Physics 205 Research Proposals

Each short research proposal should have your name and the title at the top, and then explain

- what physics question you want to answer and why this question is interesting,
- what method(s) you propose to use,
- what information and resources (e.g. experimental apparatus, computational capability, and funding) you expect to need,
- how long you expect this project to take, and

• other relevant information such as which faculty member(s) you discussed this project with, why you are especially interested in this project, and what you might want to do if it succeeds.

Your two research project summaries are due at the last meeting of Physics 205, Monday March 11, 2012. However, if you submit drafts to me in advance, I will try to return them to you quickly with comments that may help you improve them. Please submit your research project summaries by email to joel@physics.ucsc.edu (please also cc a copy to relevant faculty members who would advise you on each project). Physics 205 - Introduction to Research in Physics

January 14, 2012

PHYSICS AS A PROFESSION

4 pm Joel Primack – **Physics as a Profession**

5:00 pm Sue Carter – Non-Academic Career Opportunities

5:15 pm Hee-Sun Lee – Physics Education Research Opportunity

Physics as a Profession

Joel Primack

- Demographics of the Physics Profession
- Physics occupations including Public Interest Science
- How scientific fields grow and stagnate
- Working on the frontier vs. developed fields
- The PhD is a research degree
- Patterns of physics careers importance of ~10 yr post-PhD
- U.S. and International Science Budgets and Indicators

Monday, January 14, 13

Status One Year After Earning a Physics Bachelor's, Classes of 2009 & 2010 Combined

Although the distribution of initial post-degree paths chosen by physic bachelor's has changed little in recent years, there has been a shift in outcoPhysicsver the long tether Since 2003, the proportion of new bachelettonoosing to eniether a physicsveraged about 36% and is greater than what was seen in the period 1995 through 2002 when about 30% pursued physics graduate study.

36% 24% 35% 5%

Trends in Status One Year After Earning a Physics Bachelor's, Classes 1995 through 2010

THE 2009 AND 2010 Where do Physics Helor's of Bachelors Gyoc achelor's are

Sentected in the winter following the academic year in which they receive their degree. They are asked to share their employment or graduate school experiences. These reports describe our findings.

Source: www.aip.org/statistics

Physics PhDs Conferred in the US, 1900 through 2008.

Monday, January 14, 13

Initial employment of physics PhDs, 1979 through 2008. focus on Physics Graduate Degre Percent Postdoc Fiaure **Potentially Permanent** Position **Other Temporary** Years of Physics Graduate Study to Receive a PhD, Classes of 2007 & 2008 Combined 02 04 06 2008 82 84 Percent **Academic Year** WIGQt

Monday, January 14, 13 (Two-Year Averages)

or medical services, and other science, technology, engineering, or math (STEM) fields Nearly 60% of PhDs who accepted potentially permannel deaders and other field of physics with about half of them positions were working in the field of physics with about half of them persisting in the grates of the physics with about half of them

Figure 3

doctorate.

Initial Employment of Physics PhDs, Classes of 2009 & 2010.

Employment in physics means an individual's primary or secondary employment field was in physics or astronomy. Data only include U.S.educated physics PhDs who remained in the U.S. after earning their degrees.

http://www.aip.org/statistics

Figure 1

Initial Employment of Physics PhDs, Classes of 2009 & 2010.

U.S.-educated physics PhDs who remained in the U.S. after earning the PhD.

Typical Annual Salaries in Thousands of Dollars

Data only include U.S.-educated PhDs who remained in the U.S. after earning their degrees. Typical salaries are the middle 50%, i.e. between the 25th and 75th percentiles. Government Lab includes Federally Funded Research and Development

AMERICAN INSTITUTE OF PHYSICS Information that matters®

About AIP	Publications	Physics Resources	Services for Societies	SEARCH AIP Google TH Custom Search	•				
Physics Res	ources	Statistical Res	earch Center	http://www.aip.or	g/statistics/				
 Jobs Statistical Research About the Center Subscribe to data alerts Download flyers Career guidance for students Who's Hiring Physics Bachelors? 		The Statistical Research Center is your source for data on education and employment in physics, astronomy and allied fields. The links below lead to listings of full reports and highlighted tables and graphs for each general topic:							
		Full Reports by topic	Essential data (click on keywords to jump to detailed tables and graphs on the topic)						
		High school & two-year college physics	enroliments teachers teaching conditions salaries initiatives						
 Current reports Staff Contact us 		Undergraduate education	2-year college degrees women & minorities student goals college choice undergrad experience						
Science News Public Policy		Graduate enrollments degrees subfields support women & minorities education citizenship							
+ History		Faculty	number job market wome	n & minorities new faculty 2	-yr college				
Physics Educat	tion	Employment	bachelors masters PhDs	faculty salaries					
Industrial Outre	each	Women	degrees faculty internation	nal high school & 2-year colle	ege				
		Minorities	bachelors PhDs faculty r	most degrees					
Physics Hoday		International	foreign students in U.S. wo community	omen degrees abroad intern	ational				

Physics as a Profession

Joel Primack

Demographics of the Physics Profession

* Physics occupations include Public Interest Science

How scientific fields grow and stagnate

Working on frontier vs. developed fields

The PhD is a research degree

Patterns of physics careers – importance of ~10 yr post-PhD

U.S. and International Science Budgets and Indicators

*See also Joel Primack and Frank von Hippel, *Advice and Dissent: Scientists in the Political Arena* (Basic Books, 1974; New American Library, 1976). Monday, January 14, 13 Home About AAAS Programs Membership Publications News Career Resources

SEARCH AAAS.org Advanced search Quick Links *	http://fellowships.aaas.org/ Programs	
	Science & Policy	
Fellowships - About	AAAS Science & Technology Policy Fellow	ships
Society Partners		FELLOWS IN THE NEWS
Fellowship Areas Fellows Directory		University of Nebraska Medical Center profiles
Fellowship Support Host a Fellow		Renaisa Anthony (2007-08) in their Winter 2010 newsletter. Read it now.
News		More News
Testimonials	2010-11 AAAS S&T Policy Fellows	STAY CONNECTED
Annual Review	THE LATEST:	Twitter
Resources	AAAS S&T Policy Fellows Make Key Contributions to White House Report on Adapting to Climate Change	Facebook
Contact	Fall Edition of the Fellowship Focus e-newsletter	• KEEP IN TOUCH
	Watch Our Webinar	

AAAS Science & Pubic Policy Fellowships

Q: What is the deadline for AAAS Fellowship applications?

The annual deadline is 5 December, without exception. All required information, including three letters of recommendation, must be submitted by 11:59 p.m. U.S. Pacific Standard Time on that date. Applications are being accepted this year from early September to 5 December, for the fellowship class that begins the following September.

Q: Who is the ideal candidate for a AAAS fellowship?

There is no "ideal" candidate for a fellowship. Fellows come from many different disciplines in science and engineering; they arrive from academia, industry and the non-profit sectors; and they represent a broad range of career stages, from recently graduated postdocs to mid-career professionals and faculty on sabbatical, to retired individuals.

Q: Is previous experience in public policy necessary to be a strong candidate?

No, the fellowships are designed to help scientists and engineers learn about the policymaking process by participating in it. However, it is important to convey an understanding of the societal impacts of science in your application materials and during an interview. You should also be prepared to speak about how your specific scientific specialty relates to policy issues and how it can be applied in government decision-making.

>150 Science and Public Policy Fellowships per Year

Q: How many persons apply each year and how many are selected? The ratio of applicants to fellowships awarded is different in each of the fellowship program areas. We urge you not to consider "the odds," but to apply to the fellowships that fit best with your interests and area of expertise. It is in those areas that you will be most competitive. Overall, AAAS awards more than 150 fellowships each year, including second year renewal fellowships. In addition, approximately 30 congressional and 10 executive branch fellowships are selected and awarded by other science and engineering societies that partner with AAAS to provide the Science & Technology Policy Fellowships.

Q: Does AAAS have any fellowship programs for undergraduate or graduate students?

Yes. AAAS also administers the Mass Media Fellowship Program, which places undergraduate and graduate students at various media sites throughout the U.S. during the summer, to work as science journalists. For more information about this program, contact Stacey Pasco at spasco@aaas.org.

Q: What impact has the fellowship had on the career path of former Fellows?

In the year immediately following their fellowship, approximately 40-50% of the Fellows continue working in the policy realm; 20-25% return to the sector in which they worked previously; and another 20-25% use the experience as a stepping stone to a new opportunity. To read about AAAS Fellows' perspectives on their experiences click here.

I recruited the first class of Congressional Science Fellows in 1973. They were physicists Ben Cooper and Michael Telson and biologist Jessica Tuchman [Mathews]. Ben Cooper, one of the first two APS Fellows, gave up tenure at Iowa State after his Fellowship year to join the staff of the Senate Interior Committee, subsequently renamed Energy and Natural Resources, where he remained for more than twenty years. Michael Telson had received his M.I.T. PhD just before becoming a AAAS Fellow. After his Fellowship year, he had offers from three universities and several Federal agencies, but he instead joined the staff of the newly formed House Budget Committee working on energy and environment, where he stayed for twenty years. He subsequently worked as Chief Financial Officer of the DoE for several years, and now works for the University of California. Jessica Mathews helped lead Mo Udall's Presidential campaign, served on the National Security Council staff in the Carter administration, was an editor at the Washington Post, and is now President of the Carnegie Endowment for International Peace.

The career paths of the 58 APS Congressional Fellows (as of 2004) have been diverse. One, Rush Holt, is now the Representative for the New Jersey district that includes Princeton University, where he had earlier worked at the Forrestal Research Center. Five others are presently on Congressional staffs. Twelve have positions in the Executive Branch, ten are at universities or laboratories, eleven work in industry, five are on professional society staffs, and seven work for public interest groups.

Benjamin Franklin is America's earliest model of the "civic scientist". Science was his passion and expertise, but society was his concern. As scientists in a much more complex world than Franklin's – we face a society and momentum that, in many ways, we as scientists have created. Just as many in our ranks have taken on the task of insuring a better informed public on scientific matters, and many have moved into policy positions in government and academic institutions, it is clearly a moment in history when more of us should actively seek that role and responsibility that was so clear to Franklin – the larger public arena.

Neal Lane (Rice University), "Benjamin Franklin, Civic Scientist," Physics Today (October 2003) 41-46.

• A civic scientist should be a credentialed scientist with sufficient professional standing to have credibility among colleagues, policy-makers, students, and the public.

A civic scientist must possess the wisdom and judgment to understand the boundaries of scientific authority and when it is appropriate to apply scientific authority to policy issues.

• A civic scientist should be able to communicate effectively with a variety of audiences in order to convey his or her message most effectively.

• A civic scientist must not expect to persuade solely by virtue of his or her scientific authority; rather, he or she should understand the nature of political discourse and decision-making and realize that progress is made incrementally through a process of compromise and consensus building.

• A civic scientist is committed to applying scientific knowledge and experience to the benefit of the public.

Philip W. Hammer (Franklin Institute), "The Civic Scientist – An Introduction to Scientific Citizenship for the 2008 Quadrennial Congress of Sigma Pi Sigma" <u>http://www.sigmapisigma.org/congress/2008/ethics_primer.pdf</u>

Physics as a Profession

Joel Primack

- Demographics of the Physics Profession
- Physics occupations include Public Interest Science

How scientific fields grow and stagnate

Working on frontier vs. developed fields

The PhD is a research degree

Patterns of physics careers – importance of ~10 yr post-PhD

U.S. and International Science Budgets and Indicators

Figure 6. Inverse relationship between the accumulation of application and the interest in a basic-research field.

From Gerald Holton, "Models for Understanding the Growth of Research," originally published in Doedalus (Spring 1962), reprinted as Chapter 12 of Gerald Holton, *Thematic Origins of Scientific Thought: Kepler to Einstein* (Harvard U Press, 1973).

Linear Sigmoid Growth Curve

Figure 1.6. Growth in Length of a Beanstalk as a Function of Age

Adapted from D'Arcy W. Thompson, Growth and Form (Cambridge: Cambridge University Press, 1948), p. 116, figure 20.

Figure 1.6 in Derek J. de Solla Price, *Little Science, Big Science* (1963). Monday, January 14, 13

Figure 7. The escalation of discovery lines.

*From Gerald Holton, "Models for Understanding the Growth of Research"

Figure 1.11 in Derek J. de Solla Price, *Little Science, Big Science* (1963). Monday, January 14, 13

How exponential growth can continue via repeating sigmoid growth curves...

Monday, January 14, 13

Big Challenges of AstroComputing

Big Data

Sloan Digital Sky Survey (SDSS) 2008

2.5 Terapixels of images40 Tb raw data = 120 Tb processed35 Tb catalogs

Mikulski Archive for Space Telescopes

185 Tb of images (MAST)25 Tb/year ingest rate>100 Tb/year retrieval rate

Large Synoptic Survey Telescope (LSST)

15 Tb per night for 10 years 2014 100 Pb image archive 20 Pb final database catalog Square Kilometer Array (SKA) ~2024 1 Eb per day (> internet traffic today) 100 PFlop/s processing power ~1 Eb processed data/year

Physics as a Profession

Joel Primack

Physics occupations include Public Interest Science

How scientific fields grow and stagnate

Working on frontier vs. developed fields

The PhD is a research degree

Patterns of physics careers – importance of ~10 yr post-PhD

U.S. and International Science Budgets and Indicators

Who Are the Scientists? A Representative Case

The element of discontinuity in the general experience of our time merely reinforces the discontinuities in the experiences of contemporary science. The rate at which events happen is again the important variable. For, when a field changes more and more rapidly, it reaches at some point a critical rate of activity beyond which one has to learn by oneself, not merely the important new ideas, but even the basic elements of one's daily work. This is now true of many parts of physics and of some other fields of science, not only for the most productive and ingenious persons, but for anyone who wishes to continue contributing. The recent past, the work of one or two generations ago, is not a guide to the future, but is prehistory.

Thus the representative physicist is far more his own constantly changing creation than ordinary persons have ever been. His sense of balance and direction cannot come from the traditional past. It has to come from a natural sure-footedness of his own—and from the organism of contemporary science of which he strongly feels himself a part. None of the novels or the representations in the mass media which I have seen have portrayed him with success, perhaps because they missed the fact that this is the component that really counts. Holton. "Models for Understanding the Growth of Research," originally published in Doedalus (Spring 1962), reprinted as Chapter 12 of Gerald Holton, Thematic Origins of Scientific Thought: Kepler to Einstein (Harvard U Press, 1973).

From Gerald

The Matthew Effect in Science

1968

Robert K. Merton, Science **159**, 56-63 (1968). Reprinted in Robert K. Merton, *The Sociology of Science: Theoretical and Empirical Investigations* (U Chicago Press, 1973). Available on the web at <u>http://garfield.library.upenn.edu/</u> <u>merton/matthew1.pdf</u> The workings of this process at the expense of the young scientist and to the benefit of the famous one is remarkably summarized in the life history of a laureate in physics, who has experienced both phases at different times in his career. "When you're not recognized," he recalls,

it's a little bit irritating to have somebody come along and figure out the obvious which you've also figured out, and everybody gives him credit just because he's a famous physicist or a famous man in his field.

Here he is viewing the case he reports from the perspective of one who had this happen to him before he had become famous. The conversation takes a new turn as he notes that his own position has greatly changed. Shifting from the perspective of his earlier days, when he felt victimized by the pattern, to the perspective of his present high status, he goes on to say:

This often happens, and I'm probably getting credit now, if I don't watch myself, for things other people figured out. Because I'm notorious and when I say it, people say: "Well, he's the one that thought this out." Well, I may just be saying things that other people have thought out before.

In the end, then, a sort of rough-hewn justice has been done by the compounding of two compensating injustices. His earlier accomplishments have been underestimated; his later ones, overestimated.¹⁷

This complex pattern of the misallocation of credit for scientific work must quite evidently be described as "the Matthew effect," for, as will be remembered, the Gospel According to St. Matthew puts it this way:

For unto every one that hath shall be given, and he shall have abundance: but from him that hath not shall be taken away even that which he hath.

Put in less stately language, the Matthew effect consists of the accruing of greater increments of recognition for particular scientific contributions to scientists of considerable repute and the withholding of such recognition from scientists who have not yet made their mark. Nobel laureates provide presumptive evidence of the effect, since they testify to its occurrence, not as victims—which might make their testimony suspect—but as unwitting beneficiaries.

The Parable of the Talents from the Gospel of Matthew 25:14-30

¹⁴"Again, it will be like a man going on a journey, who called his servants and entrusted his property to them. ¹⁵To one he gave five talents of money, to another two talents, and to another one talent, each according to his ability. Then he went on his journey. ¹⁶The man who had received the five talents went at once and put his money to work and gained five more. ¹⁷So also, the one with the two talents gained two more. ¹⁸But the man who had received the one talent went off, dug a hole in the ground and hid his master's money.

¹⁹"After a long time the master of those servants returned and settled accounts with them. ²⁰The man who had received the five talents brought the other five. 'Master,' he said, 'you entrusted me with five talents. See, I have gained five more.'

²¹"His master replied, 'Well done, good and faithful servant! You have been faithful with a few things; I will put you in charge of many things. Come and share your master's happiness!' ²²"The man with the two talents also came. 'Master,' he said, 'you entrusted me with two talents; see, I have gained two more.'

²³"His master replied, 'Well done, good and faithful servant! You have been faithful with a few things; I will put you in charge of many things. Come and share your master's happiness!'
²⁴"Then the man who had received the one talent came. 'Master,' he said, 'I knew that you are a hard man, harvesting where you have not sown and gathering where you have not scattered seed. ²⁵So I was afraid and went out and hid your talent in the ground. See, here is what belongs to you.'

²⁶"His master replied, 'You wicked, lazy servant! So you knew that I harvest where I have not sown and gather where I have not scattered seed? ²⁷Well then, you should have put my money on deposit with the bankers, so that when I returned I would have received it back with interest. ²⁸" 'Take the talent from him and give it to the one who has the ten talents. ²⁹For everyone who has will be given more, and he will have an abundance. Whoever does not have, even what he has will be taken from him. ³⁰And throw that worthless servant outside, into the darkness, where there will be weeping and gnashing of teeth.'

[Note: 1 talent \approx \$1000 today.]

Lotka's Law

The number N of authors publishing >n papers is roughly proportional to n⁻²

Lotka, Alfred J., "The frequency distribution of scientific productivity". Journal of the Washington Academy of Sciences **16** (12): 317–324 (1926).

According to the article in Wikipedia on Lotka's Law, the ~2 power law index slightly differs in different fields. It has been found that Lotka's Law does not apply when papers with >100 authors are included.

Figure 2.2 in Derek J. de Solla Price, *Little Science, Big Science* (1963).

Monday, January 14, 13

Number of authors publishing at least this many papers

UCSC ranked first in nation for research impact in Physics

In a 2007 analysis of research publications from top U.S. universities, the University of California, Santa Cruz, ranked first for the impact of its faculty in the field of physics and fifth in the field of space sciences. These rankings were reported in *Science Watch*, a newsletter published by Thompson Scientific.

Citation impact is based on the number of times a published paper is cited by other researchers. These rankings are based on the citation impact of research papers published by the top 100 federally funded universities between 2001 and 2005.

UCSC has been highly ranked in similar surveys for many years. Past rankings for the campus, all based on citation impact data, include first among U.S. universities in space sciences (2003), second worldwide in physical sciences (2001), and first among U.S. universities in physics (2000). In 2008, *Science Watch* reported that UC Santa Cruz achieved the highest score for the number of citations per high-impact paper in molecular biology and genetics.

Physics ≥ 500 papers						
Rank	Institution	# of Papers	Relative Impact (%)			
1	Univ. Calif., Santa Cruz	630	+225			
2	University of Pennsylvania	1,244	+224			
3	Univ. Calif., Irvine	1,091	+217			
4	Harvard University	2,033	+203			
5	University of Washington	1,645	+202			
6	Boston University	1,151	+197			
7	University of Minnesota	1,552	+184			
8	Stanford University	2,807	+181			
9	Columbia University	1,267	+173			
10	Rice University	667	+169			

The Science Impact of Astronomy PhD Granting Departments in the United States A. L. Kinney, NASA/GSFC

Table 1: Impact Index of US Universities: Based on affiliation with University PhD Granting Departments for Astronomy PhD's.

Table 2: Impact Index based on University affiliation (includes Physics, Earth & Planetary Sciences, and Applied Mathematics).

Rank	University	N	h- index	h(m)	NRC Rank	Rank	University	N	h- index
1	Caltech	347	67	6.46	1	1	Univ Calif Santa Cruz	1096	110
2	UC Santa Cruz	1096	106	6.45	6	2	Princeton Univ	1220	104
3	Princeton University	194	51	6.20	2	3	Johns Hopkins Univ (1)	1587	107
4	Harvard University	757	87	6.14	4	4	Penn State Univ	828	82
5	Colorado	256	55	5.98	12	5	SUNY Stony Brook	298	54
6	SUNY Stony Brook	209	50	5.90	26	6	Univ Michigan	861	70
7	JHU (4)	1112	97	5.87	NA	7	New Mexico State Univ	384	57
	D. Contraction	647				8	U Mass Amherst	297	51
8	Penn State Univ	647	78	5.86	21	9	University of Virginia	586	67
0	Univ Michigan	374	62	5 70	25	10	Michigan State Univ	218	45
10	Univ Hawaji	005	80	5.63	11	11	Vale University	470	61
11	Univ Wisconsin	544	70	5.63	14	12	Univ Hawaji	1250	00
12	UC Berkeley	1210	96	5.61	3	12	Univ Hawan	018	79
.~	o o bennency	1210	1	5.01	1	13	University of Chicago	1102	02
13	Michigan State Univ	196	45	5.45	NA	14	Ohio State Univ	946	74
14	U Virginia	474	64	5.44	18	15	UC Dededes	840	114
15	New Mexico State U	316	54	5.40	32	16	UC Berkeley	2504	114
16	MIT	409	59	5.32	8	17	Harvard	3510	126
17	Yale University	359	56	5.32	15	18	Univ Minnesota	504	58
18	University of Chicago	617	69	5.28	5	19	MIT	1248	83
19	Stanford University	131	37	5.26	22	20	Caltech	4113	107
20	U Mass Amherst	297	51	5.22	20	http://a	rxiv.org/ftp/arxiv/papers/0811	/0811.031	1.pdf

Physics as a Profession

Joel Primack

Physics occupations include Public Interest Science

How scientific fields grow and stagnate

Working on frontier vs. developed fields

The PhD is a research degree

Patterns of physics careers – importance of ~10 yr post-PhD

U.S. and International Science Budgets and Indicators

The PhD is a research degree

Graduate students should start research as soon as possible. Ask faculty members about research opportunities both now and starting in summer 2013. Start thinking about affiliating with a research group. Finish a research project and Advance to Candidacy for the PhD by the end of your 3rd year, if possible. Finish your PhD within 3 years after that.

Patterns of physics careers – importance of ~10 yr post-PhD

In science, medicine, law, and even business, during the first decade or so after finishing your advanced degree you are expected to make major progress rapidly. These are also the prime child-bearing years. You can relax somewhat during your graduate studies, but to succeed in a scientific career you must hit the ground running when you get your PhD. You should also finish at least one major paper that's not a continuation of your dissertation during the first year after the PhD.

Nobel Laureates Urge Institutions To Help More Women Reach Top Positions

The AP (12/7/09) reports that Elizabeth H. Blackburn and Carol W. Greider, the two female winners of the 2009 Nobel Prize in medicine urged scientific institutions to change their career structures to help more women reach top positions. Blackburn said, "The career structure is very much a career structure that has worked for men," and "many women, at the stage when they have done their training really want to think about family ... and they just are very daunted by the career structure. Not by the science, in which they are doing really well." Blackburn added that "a more flexible approach to part-time research and career breaks would help women continue to advance their careers during their childbearing years," while Greider said "she especially wants to see measures to get more women onto committees and decision-making positions."

UCSC hosted the 2010 **Undergraduate Women in Physics Conference** on the UCSC campus. About 100 undergraduate women from western states visited.

Physics as a Profession

Joel Primack

Physics occupations include Public Interest Science

How scientific fields grow and stagnate

Working on frontier vs. developed fields

The PhD is a research degree

Patterns of physics careers – importance of ~10 yr post-PhD

U.S. and International Science Budgets and Indicators

Per Capita GDP by Country/Region

Constant 1990 PPP dollars (thousands)

EU = European Union; GDP = gross domestic product; PPP = purchasing power parity

NOTES: Asia-10 includes China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, and Thailand. China includes Hong Kong.

Per Capita Employee Productivity

Constant 1990 PPP dollars (thousands)

EU = European Union; PPP = purchasing power parity

NOTES: Asia-10 includes China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, and Thailand. China includes Hong Kong.

NSB Science and Engineering Indicators 2008 and 2010

Doctoral degrees in natural sciences and engineering, selected countries: 1993–2007

Average annual growth of R&D expenditures for United States, EU-27, and selected Asia-8 economies: 1996–2007

U.S. Foreign-Born Science & Engineering Workers

Science & Engineering Articles

EU = European Union; GDP = gross domestic product

NOTES: Asia-10 includes China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, and Thailand. China includes Hong Kong.

NSB Science and Engineering Indicators 2008

Source: Budget of the United States Government FY 2012. Projected unified deficit is \$1.1 trillion. © 2011 AAAS

Source: Based on AAAS estimates of R&D funding and the FY 2013 budget, and CBO analyses of the Budget Control Act. © 2012 AAAS

Trends in Federal R&D

U.S. Budgets for Science & Engineering by Discipline

Total R&D / Total Budget

Nondefense R&D / Total Budget

MAAAS 2008-2012

Total World R&D, 2008

The United States leads the world in R&D investment \$369b PPP, 35.7% of world R&D investment But, others are quickly increasing their investment In the decade from 1997 to 2007, South Korea, +0.99% of GDP to 3.47% China, +0.85% of GDP to 1.49% Taiwan, +0.81% of GDP to 2.63% Japan, +0.57% of GDP to 3.44% United States, +0.10% of GDP to 2.68%

National R&D Investment

percent of GDP

AAAS REPORT XXXVI Research & Development FY 2012

http://www.aaas.org/spp/rd/

Physics as a Profession?

It's a great time to be a physicist!

There are now terrific research opportunities in many areas of physics, including astrophysics, condensed matter physics, and particle physics.

Solving many of the world's biggest problems -- energy, climate, environment, defense -- will involve physics.

There will be good employment opportunities as the need for physicists grows and as the current generation of senior physicists retires.

The Obama administration has two superb physicists at Cabinet meetings: Science Advisor John Holdren and Energy Secretary Steve Chu.

On Being a Scientist: Third Edition

Committee on Science, Engineering, and Public Policy, National Academy of Sciences, National Academy of Engineering, and Institute of Medicine ISBN: 0-309-11971-5, 82 pages, 6 x 9, (2009)

This free PDF was downloaded from: http://www.nap.edu/catalog/12192.html

This free book plus thousands more books are available at http://www.nap.edu.

Visit the <u>National Academies Press</u> online, the authoritative source for all books from the <u>National Academy of Sciences</u>, the <u>National Academy of Engineering</u>, the <u>Institute of Medicine</u>, and the <u>National Research Council</u>:

- Download hundreds of free books in PDF
- Read thousands of books online, free
- Sign up to be notified when new books are published
- Purchase printed books
- Purchase PDFs
- Explore with our innovative research tools

Non-Academic Career Opportunities

Bruce Rosenblum

Preface

Where do physics students go for help and advice when they anticipate starting a job hunt? Most likely, you would go to your physics professor. However, most academic physicists begin their employment on a campus and they end it on a campus; therefore, they may have little or no experience in industry or government which is where the great majority of physicists work. So your physics professors may be unable to provide the detailed advice and the focused guidance that students need as they plan their job search. You could go to your campus career center. And you should. The career center staff can be very helpful. In addition, read this short book. This book, *Landing Your First Job*, was written to guide students who are looking ahead to seek employment. It is a practical book that identifies the important steps to the first job.

Freshmen, sophomores, and first-year graduate students: start now to plan your job search.

Available for loan. in Physics Office

Additional highly recommended books for young scientists

Shrewd Advice for Aspiring Scientists:

- Choose a curver path and the right advisers
- Establish an identity; communicate effectively
- Win a research job and keep it
- Select a viable research program; get it funded

An invaluable pocket mentoe!

Peter J. Feibelman

Contents

Preface: What This Book Is About ix

Acknowledgements xv

1 Do You See Yourself in This Picture?

A set of nonfiction vignettes illustrating some of the ways that young scientists make their lives more unpleasant that necessary or fail entirely to establish themselves in a research career.

2 Important Choices: A Thesis Adviser, a Postdoctoral Job 17

A discussion of what to consider: young adviser versus an older one, a superstar versus a journeyman, a small group versus a "factory." Understanding and attending to your interests as a postdoc.

3 Giving Talks 27

Preparing talks that will make people want to hire and keep you, and that will make the information you present easy to assimilate.

Contents

Chapter 1	Basic Choices	1
1.1	"Know thyself" so you can set realizable goals	1
1.2	Match your goals to your character and talents	
1.3	Work style choices: Lone wolf, collaborator,	
	team player, team leader?	11
1.4	Choices in work climate	16
1.5	A basic style choice: Experimentalist or theoretician?	17
Chapter 2	Basic Strategies and Actions	21
2.1	Career choices vs. personal choices and	
	reconciling two professional carners	22
2.2	Choosing a university (Ph.D., post-doc, faculty)	22
2.3	Why go through the post-doctoral appressiceship?	26
2.4	First career choices: Thesis advisor - Young or senior?	30
2.5	Find a mentor as soon as possible	34
2.6	Choosing collaborators	35
2.7	Which character traits lead to success?	37
2.8	Character traits which can be developed:	
	Self-organization, rigor in science and in	
	meeting deadlines	38
2.9	Patience!	-42
2.10	Stand up for yourself?	-44
2.11	Fighting against the odds	45
2.12	Nothing succeeds like success	-49
2.13	Europe vs. North America	50
2.14	Working in Asia	52
2.15	Brain drain vs. brain gain	55

4 Writing Papers: Publishing Without Perishing 39

Why it is important to write good papers. When to write up your work, how to draw the reader in, how to draw attention to your results.

5 From Here to Tenure: Choosing a Career Path 53

An unsentimental comparison of the merits of jobs in academia, industry, and in government laboratories.

6 Job Interviews 71

What will happen on your interview trip, the questions you had better be prepared to answer.

7 Getting Funded 83

What goes into an effective grant proposal, how and when to start writing one.

8 Establishing a Research Program 95

Tuning your research efforts to your own capabilities and your situation in life, e.g., why not to start a five-year project when you have a two-year postdoctoral appointment.

Basic Choices

хž

In UCSC S&E Library

Sections of this Chapter

- 1.1 "Know thyself" so you can set realizable goals
- 1.2 Match your goals to your character and talents
- 1.3 Work style choices: Lone wolf, collaborator, team player, team leader?
- 1.4 Choices in work climate
- 1.5 A basic style choice: Experimentalist or theoretician?

1.1 "Know thyself" so you can set realizable goals

Make the effort to "Know thyself" so that your goals are realistic and will indeed satisfy you when you attain them. What should be your career goals as a scientist? This should include not just what you would like to achieve as a scientist, but how to advance in your career so as to have the means to do what you want. Asking yourself this question openly, critically and realistically at each stage of your career (preferably well before the next stage is to begin) is extremely important. It may save you from a lot of trouble and frustration, later on. Of course you should not forget to ask yourself this basic question from time to time later in your development as a scientist (say every few months at least), and not