Neutron Scattering and $La_{1-x}Sr_xCoO_3$ Bulk and Nanoparticles David P. Belanger and Alice M. Durand

- Bulk system has been studied since the 1950's and yet it is not well understood (Goodenough).
- Neutron scattering techniques can be used to look at the long-range and short-range structure and magnetism and can probe excitations.
- Nanoparticles of this system have significant practical importance, but the effect of reducing to nanometer sizes is poorly understood.

Main Collaborators and Acknowledgments

- Alice Durand UCSC
- Nalini Sundaram UCSC
- Ingrid Anderson UCSC
- Yu Jiang UCSC
- Frank (Bud) Bridges UCSC
- Thomas Proffen Lujan Center, Los Alamos National Lab
- Corwin Booth Lawrence Berkeley National Lab
- Feng Ye Oak Ridge National Laboratory
- Jaime Fernandez-Baca Oak Ridge National Laboratory

Magnetic Phase Diagram

- K. Asai, P. Gehring, H. Chou, and G. Shirane, Phys. Rev. B 40, 10982 (1989); V. G. Bhide, D. S. Rajoria, G. R. Rao, and C. N. R. Rao, Phys. Rev. B 6, 1021 (1972).
- M. Itoh, I. Natori, S. Kubota, and K. Motoya, J. Phys. Soc. Japan **63**, 1486 (1993).

e_g and t_{2g} orbitals

• Y. Tokura and N. Nagaosa, Science **288**, 462 (2008).

Physics 205 - UCSC

Possible Local Co Spin States in LaCoO₃

Toulemonde, et al., J. Solid St. Chem. **158**, 208 (2001)

Physics 205 - UCSC

Phase Diagram

C. He, M. A. Torija, J. Wu, J. W. Lynn, H. Zheng, J. F. Mitchell, and C. Leighton, Phys. Rev. B **76**, 014401 (2007).

Physics 205 - UCSC

Reactor-based neutron scattering

Typical triple-axis spectrometer

HB1A triple axis spectrometer

07-G00244H/arm

Spallation Neutron Source

Physics 205 - UCSC

Spallation Neutron Source

Neutron PDF of Buckeyballs

- The local structure is well characterized for r<7Å, the size of the buckeyballs.
- The structure at larger r gives correlations of spatial arrangements between the buckeyballs.

 T. Egami and S. J. L. Billinge, "Underneath the Bragg Peaks, Structural Analysis of Complex Materials", Pergamon, 2003

PDF of bulk and nanoparticle powders

• *G(r)* in La_{0.8}Sr_{0.2}CoO₃ bulk powder sample.

•
$$G(r)$$
 in La_{0.8}Sr_{0.2}CoO₃

nanoparticle powder sample. Correlations drop off as the particle size is approached, as expected.

Previous "Observation" of Jahn-Teller Distortion in Cobaltites

- A previous neutron PDF study showed an apparent large J-T distortion, with the second peak at 2.1 Å only for temperatures of 50K or higher, but not at very low temperature.
- This was taken to be direct evidence for the population of the IS state as the temperature increased.
- D. Louca and J.L. Sarrao, Phys. Rev. Lett. **91**, 155501 (2003).

No neutron PDF evidence for a Jahn Teller distortion at T=300K in $La_{1-x}Sr_xCoO_3$

- The main peak is the Co-O bond at 1.92 Å, as previously observed
- The peak reported by Louca, et al. at 2.1 Å is not evident at any concentration or temperature.
- The small peaks are artifacts of the Fourier transform.
- Note that the Co-O bond length does not change much with Sr doping.
- Los Alamos NPDF

WAND (ORNL) diffraction pattern

Structural Phase Transition

Magnetism depends on the rotation of the octahedra

Conclusions

- Nanoparticles of La_{1-x}Sr_xCoO₃ are grown and characterized, with sizes 20 to 300nm.
- Neutron scattering can look at long-range and short-range order as well as magnetism and excitations.
- The neutron PDF techniques show no significant Jahn-Teller distortion in bulk or nanoparticle powders. This is consistent with the results Bud Bridges and his group obtained with EXAFS.
- We have shown that the strange magnetic behavior in LaCoO₃ is not a result of the Jahn-Teller distortion, but rather the structural and magnetic cooperative behaviors in the system.
- Local excitation models are not adequate to describe the behavior of LaCoO₃ or La_{1-x}Sr_xCoO₃.