#### Lectures

# Dwarf Galaxies & Dark-Dark Halos: Feedback Processes

- · The "fundamental line"
- Origin of scaling relations: supernova feedback
- Dark-dark halos (DDH) must exist
- Origin of DDH by photoionization
- Halo substructure: phase-space density

# 1. Missing Dwarfs & the "Fundamental Line"

Dekel & Woo 2003







#### z=49.000 Halo buildup by mergers



# $\Lambda$ CDM model: many dwarf satellites



Moore et al



# Low-Surface-Brightness & Dwarf Galaxies

197

# Only a few faint dwarf satellites



Antlia (Tr)





#### The "Fundamental Line" of LSB/Dwarfs



#### Metallicity



#### Local Group Dwarfs: Metallicity





# 2. Origin of Scaling Relations:

virial theorem & spherical halo collapse angular momentum feedback



#### Bright Galaxies: Tully Fisher Relation



Courteau et al. 04

# Surface Brightness: SDSS



# Metallicity SDSS



# Supernova Feedback Dekel & Silk 86 Dekel & Woo 03



# Much energy in SNe



# Galactic wind M82





Chandra X-Ray Observatory image of M82

# Simulation of supernova blowout





Mori et al

# Supernova Feedback



Fragile, Murray, Lin 04

# Supernova Feedback Scale

(Dekel & Silk 86)

Energy fed to the ISM during the "adiabatic" phase:

$$E_{\rm SN} \approx v \varepsilon \ \dot{M}_* \ t_{\rm rad} \propto M_* (t_{\rm rad}/t_{\rm ff})$$
  
$$\dot{M}_* \approx M_*/t_{\rm ff} \qquad \approx 0.01$$
  
for  $\Lambda \propto T^{-1}$  at  $T \sim 10^5 K$ 

Energy required for blowout:

$$E_{\rm SN} \approx M_{\rm gas} V^2$$

$$\rightarrow V_{\rm crit} \approx 100 \text{ km/s} \rightarrow M_{*\rm crit} \approx 3 \times 10^{10} M_{\odot}$$



LSB vs HSB





#### The "Fundamental Line" of LSB/Dwarfs



#### Metallicity



# Local Group Dwarfs: Metallicity



# LG Dwarfs: Velocity



### Summary: SN feedback

Could be responsible for the transition scale at  $M_*=3\times10^{10}$ , and the "fundamental line" of LSB/dwarf galaxies,  $M^*/M^{\infty}V^2$ .

# A lower bound for galaxies







#### It isn't that simple to turn on the light



# 3. Dark-Dark Halos Must Exist





#### Dark Dark Halos must exist!

![](_page_39_Figure_1.jpeg)

# Search for DDH

![](_page_40_Picture_1.jpeg)

#### Complete removal of gas from proto-halos?

By SN outflow? unlikely

![](_page_41_Picture_2.jpeg)

By ram pressure due to outflow from a nearby galaxy (Scannapieco, Ferrara & Broadhurst 00)? By radiative feedback?

# 4. Evaporation by Thermal Winds Shaviv & Dekel 2003

![](_page_42_Picture_1.jpeg)

# Radiative Feedback

Reionization of H by UV flux from stars and AGN by  $z_{ion} \sim 10 \rightarrow$  heating gas to  $T \approx (1-2) \times 10^4$ K Jeans scale – no infall into halos of V<30 km/s Efstathiou 92; Thoul & Weinberg 96; Gnedin & Ostriker 97; Gnedin 00

But complete gas removal? Evaporation from halos of V<10 km/s Barkana & Loeb 99 V<30 km/s Shaviv & Dekel 03

May eliminate luminous dwarfs in small halos, 10<V<30

# Evaporation of hot gas

![](_page_44_Figure_1.jpeg)

cold gas hot gas

Mass loss from top of potential well  $t_{evap} \approx t_{dyn} e^{\phi/kT}$ It is continuously replenished and lost Continuous energy input by the ionizing flux  $\rightarrow$  steady wind

#### Steady Thermal Wind In stars: Parker 1960. In galaxies: extended potential well

Hydrodynamics:

$$\frac{\partial \rho}{\partial t} = -\nabla \cdot (\rho \mathbf{v})$$
$$\rho \frac{D \mathbf{v}}{D t} = -\nabla P + \mathbf{f}_{\text{grav}}$$
$$P = c_{\text{s}}^{2} \rho$$

Assume: spherical, c<sub>s</sub>=const., steady state  $\frac{\dot{M}(r) = \text{const.} \rightarrow \dot{\rho} = 0}{\dot{N}(r) = \text{const.} \rightarrow \dot{\rho} = 0}$ 

→ wind equation:  $\left( v(r) - \frac{c_s^2}{v(r)} \right) v'(r) = -\phi'(r) + \frac{2c_s^2}{r}$ 

→ the sonic radius:  $\phi'(r_s) = 2c_s^2 / r_s$  →  $r_s \approx GM / c_s^2$ 

wind parameter (NFW):  $\psi = \frac{GM_{c}/r_{c}}{c_{c}^{2}}$ 

$$t_{evap} / t_{dyn} \approx 10^{\psi - 1}$$

 $\psi$ >>1 tightly bound, no evaporation  $\psi$ >1 bound, but steady wind >>  $t_{dyn}$  $\psi$ <1 rapid evaporation ~ $t_{dyn}$ 

![](_page_46_Figure_0.jpeg)

Summary Dwarf Halos Dark-dark halos must exist at V<30 km/s Half the photo-ionized gas evaporates by steady winds from halos of V<30 km/s. Halos in the range 10<V<30 could be: - gas-poor dSph /dE - or totally dark

No galaxies V<10 becasue of cooling barrier

![](_page_48_Figure_0.jpeg)

# Summary: Characteristic Scales

|                  | V (km/s) | $M_{\star}(M_{})$  | M(M_)              | <u> </u>                    |
|------------------|----------|--------------------|--------------------|-----------------------------|
| Cooling (Brems.) | 300      | 2×10 <sup>11</sup> | 10 <sup>13</sup>   | clusters                    |
| Shock heating    | 100      | 3×10 <sup>10</sup> | 6×10 <sup>11</sup> | L*, Tyoung disks            |
| Supernovae       | 100      | 3×10 <sup>10</sup> | 6×1011             | LSB T                       |
| Photoionization  | 30       | 10 <sup>8</sup>    | 2×10 <sup>10</sup> | d <u>Sp</u> h d <u>ar</u> k |
| Cooling (H)      | 10       | 3×10 <sup>5</sup>  | 6×10 <sup>8</sup>  |                             |

Phase-Space Density & Halo Substructure

Arad & Dekel, in progress

![](_page_52_Figure_0.jpeg)

Distribution function of f:

$$V(f = f_0) \equiv \int d\vec{x} d\vec{v} \,\delta_{Dirac}[f(\vec{x}, \vec{v}, t) - f_0]$$

V(f)df = volume of phase space occupied by f in the range (f,f+df)

# Measuring f(x,v) using an adaptive "grid" Delaunay Tesselation

![](_page_53_Figure_1.jpeg)

$$f_i = (d+1)\frac{m}{V_i}$$

Arad, Dekel & Klypin

#### PDF of Phase-Space Density

![](_page_54_Figure_1.jpeg)

Arad, Dekel & Klypin

# PDF of Phase-Space Density

![](_page_55_Figure_1.jpeg)

f

Arad, Dekel & Klypin

# V(f) related to \_(r)?

![](_page_56_Figure_1.jpeg)

#### e.g., spherical & isotropic

$$\rho(r) \propto r^{-\alpha}, \quad V(f) \propto f^{-\beta}, \quad \beta = \frac{18 - 4\alpha}{6 - \alpha}$$

$$\alpha = 3 \Leftrightarrow \beta = 2$$
  

$$\alpha = 2 \iff \beta = 2.5$$
  

$$\alpha = 1 \iff \beta = 2.8$$
  

$$\alpha = 0 \iff \beta = 3$$

# Halo Phase-Space Density

#### **Real Density**

#### Phase-Space Density

![](_page_57_Figure_3.jpeg)

# Halo Phase-Space Density

#### Real Density

#### **Phase-Space Density**

![](_page_58_Figure_3.jpeg)

# Profiles in Real Space and Phase Space f(r)

![](_page_59_Figure_1.jpeg)

![](_page_59_Figure_2.jpeg)

radius

![](_page_59_Picture_4.jpeg)

# Is $v(f) \propto f^{-2.5}$ determined by substructure?

# ACDM No short waves

![](_page_60_Picture_2.jpeg)

**Real-Space Density** 

Moore et al.

# Phase-Space density

#### $\land CD$

#### No short waves

![](_page_61_Figure_3.jpeg)

#### Phase-Space Density Profile

 $\land CD$ 

#### No short waves

![](_page_62_Figure_3.jpeg)

![](_page_62_Picture_4.jpeg)

![](_page_62_Picture_5.jpeg)

# Same power law v(f)?

![](_page_63_Figure_1.jpeg)

# Additive Contribution of Subhalos

![](_page_64_Figure_1.jpeg)

# The Two Most Massive Subhalos

![](_page_65_Figure_1.jpeg)

#### Adding up Sub-halos

![](_page_66_Figure_1.jpeg)

# **Tentative Conclusions**

In hierarchical clustering, robust PDF: v(f)∝f<sup>-2.5</sup> doesn't depend on power-spectrum slope, or on method of simulation The power-law v(f) is driven by substructure. How exactly? Yet to be understood !

Phase-space density is a unique tool for studying substructure and its evolution

Adding up small CDM halos leads to  $v(f) \propto f^{-2.5}$ ? How robust? How dependent on subhalo density profile and mass function?