Astronomy 214 - UCSC Galaxy Seminar - Monday Jan 12

Galaxy Lectures at UCSC This Week

*Mon 12:15 ISB 102 - Joel Primack, UCSC - A Brief History of Dark Matter

Tues 12:30 ISB 102 - Alan McConnachie (Herzbert Inst) - Stars, Galaxies and Cosmology in the Near Field: the Local Group as a Laboratory for Galaxy Formation (TLASH)

*Wed 12:15 ISB 102 - Mark Krumholz - The Secret Lives of Molecular Clouds

Wed 4:00 NS Annex 101 - Sara Ellison (Victoria) - Galaxies and their Environments: Mergers, Morphologies and Metallicities (Astro Colloquium)

*Astronomy 214 lecture, posted at http://physics.ucsc.edu/~joel/Ay/214/
A Brief History of Dark Matter

Joel Primack, UCSC

Although the first evidence for dark matter was discovered in the 1930s, it was in the early 1980s that astronomers became convinced that most of the mass holding galaxies and clusters of galaxies together is invisible. For two decades, theories were proposed and challenged, but it wasn't until the beginning of the 21st century that the "Double Dark" standard cosmological model was accepted: cold dark matter -- non-atomic matter different from that which makes up the planets, stars, and us -- plus dark energy together making up 95% of the cosmic density. The challenge now is to understand the underlying physics of the particles that make up dark matter and the nature of dark energy. This lecture includes astronomical videos and ends with David Weinberg's "Dark Matter Rap" (1992).
A Brief History of Dark Matter

1930s - Discovery that cluster $\sigma_V \sim 1000$ km/s
1970s - Discovery of flat galaxy rotation curves
1980 - Most astronomers are convinced that dark matter exists around galaxies and clusters
1980-84 - short life of Hot Dark Matter theory
1984 - Cold Dark Matter (CDM) theory proposed
1992 - COBE discovers CMB fluctuations as predicted by CDM; CHDM and LCDM are favored CDM variants
1998 - SN Ia and other evidence of Dark Energy
2000 - ΛCDM is the Standard Cosmological Model
2003-08 - WMAP and LSS data confirm ΛCDM predictions
\sim2010 - Discovery of dark matter particles??
Early History of Dark Matter

1922 - Kapteyn: “dark matter” in Milky Way disk
1933, 1937 - Zwicky: “dunkle (kalte) materie” in Coma cluster
1937 - Smith: “great mass of internebular material” in Virgo cluster
1937 - Holmberg: galaxy mass $5 \times 10^{11} M_{\odot}$ from handful of pairs
1939 - Babcock observes rising rotation curve for M31

1940s - large cluster σ_V confirmed by many observers

1957 - van de Hulst: high HI rotation curve for M31
1959 - Kahn & Woltjer: MWy-M31 infall $\Rightarrow M_{\text{Local Group}} = 1.8 \times 10^{12} M_{\odot}$
1970 - Rubin & Ford: M31 flat optical rotation curve
1973 - Ostriker & Peebles: halos stabilize galactic disks
1974 - Einasto, Kaasik, & Saar; Ostriker, Peebles, Yahil: summarize evidence that galaxy M/L increases with radius
1975, 78 - Roberts; Bosma: extended flat HI rotation curves
1978 - Mathews: X-rays reveal enormous mass of Virgo cluster
1979 - Faber & Gallagher: convincing evidence for dark matter

1980 - Most astronomers are convinced that dark matter exists around galaxies and clusters

2 S. M. Faber and J. S. Gallagher 1979, ARAA 17, 135
1922 - Kapteyn: “dark matter” in Milky Way disk
1933, 1937 - Zwicky: “dunkle (kalte) materie” in Coma cluster
1937 - Smith: “great mass of internebular material” in Virgo cluster
1937 - Holmberg: galaxy mass $5 \times 10^{11} M_{\text{sun}}$ from handful of pairs
1939 - Babcock observes rising rotation curve for M31

1940s - large cluster σ_V confirmed by many observers

1957 - van de Hulst: high HI rotation curve for M31
1959 - Kahn & Woltjer: MWy-M31 infall $\Rightarrow M_{\text{LocalGroup}} = 1.8 \times 10^{12} M_{\text{sun}}$
1970 - Rubin & Ford: M31 flat optical rotation curve
1973 - Ostriker & Peebles: halos stabilize galactic disks
1974 - Einasto, Kaasik, & Saar; Ostriker, Peebles, Yahil: summarize evidence that galaxy M/L increases with radius
1975, 78 - Roberts; Bosma: extended flat HI rotation curves
1978 - Mathews: X-rays reveal enormous mass of Virgo cluster
1979 - Faber & Gallagher: convincing evidence for dark matter

1980 - Most astronomers are convinced that dark matter exists around galaxies and clusters

2 S. M. Faber and J. S. Gallagher 1979, ARAA 17, 135
ON THE MASSES OF NEBULAE AND OF CLUSTERS OF NEBULAE

F. ZWICKY

The Coma cluster contains about one thousand nebulae. The average mass of one of these nebulae is therefore

\[\bar{M} > 9 \times 10^{43} \text{ gr} = 4.5 \times 10^{10} M_{\odot}. \]

(36)

Inasmuch as we have introduced at every step of our argument inequalities which tend to depress the final value of the mass \(\bar{M} \), the foregoing value (36) should be considered as the lowest estimate for the average mass of nebulae in the Coma cluster. This result is somewhat unexpected, in view of the fact that the luminosity of an average nebula is equal to that of about \(8.5 \times 10^7 \) suns. According to (36), the conversion factor \(\gamma \) from luminosity to mass for nebulae in the Coma cluster would be of the order

\[\frac{\text{Mass}}{\text{Light}} = \gamma = 500, \]

(37)
as compared with about \(\gamma' = 3 \) for the local Kapteyn stellar system.

This article also proposed measuring the masses of galaxies by gravitational lensing.
The fact that the motion is one of approach is significant. For if the Local Group is a physical unit, the Galaxy and M31 are not likely to have been formed very far from each other, certainly not at a much greater distance than their present separation. This indicates that they must have performed the larger part of at least one orbit around their center of gravity during a time of about 10^{10} years. Consequently, their orbital period must be less than 15 billion years. From this we obtain the total mass of the system as follows. According to Kepler’s third law, we have

$$P^2 = \frac{4\pi^2}{GM^*} a^3 \leq 2 \times 10^{35} \text{ sec}^2,$$

where M^* represents the effective mass at the center of gravity. To obtain a minimum estimate for M^*, we assume that the system has no angular momentum. Then conservation of energy gives, for our Galaxy,

$$\frac{GM^*}{2a} = \frac{GM^*}{D} - E_k,$$

where D denotes the present distance of the Galaxy to the center of gravity (480 kpc) and E_k is its present kinetic energy per unit mass. From these equations we obtain

$$M^* \geq 1.8 \times 10^{12} m_\odot,$$

which is six times larger than the reduced mass of M31 and the Galaxy.

The discrepancy seems to be well outside the observational errors.

ROTATION OF THE ANDROMEDA NEBULA FROM A SPECTROSCOPIC SURVEY OF EMISSION REGIONS*

VERA C. RUBIN† AND W. KENT FORD, JR.†
Department of Terrestrial Magnetism, Carnegie Institution of Washington and Lowell Observatory, and Kitt Peak National Observatory‡

Triangles are HI data from Roberts & Whitehurst 1975
A NUMERICAL STUDY OF THE STABILITY OF FLATTENED GALAXIES: OR, CAN COLD GALAXIES SURVIVE?*

J. P. OSTRIKER
Princeton University Observatory

AND

P. J. E. PEEBLES
Joseph Henry Laboratories, Princeton University

Received 1973 May 29

ABSTRACT

To study the stability of flattened galaxies, we have followed the evolution of simulated galaxies containing 150 to 500 mass points. Models which begin with characteristics similar to the disk of our Galaxy (except for increased velocity dispersion and thickness to assure local stability) were found to be rapidly and grossly unstable to barlike modes. These modes cause an increase in random kinetic energy, with approximate stability being reached when the ratio of kinetic energy of rotation to total gravitational energy, designated \(t \), is reduced to the value of \(0.14 \pm 0.02 \). Parameter studies indicate that the result probably is not due to inadequacies of the numerical N-body simulation method. A survey of the literature shows that a critical value for limiting stability \(t \approx 0.14 \) has been found by a variety of methods.

Models with added spherical (halo) component are more stable. It appears that halo-to-disk mass ratios of 1 to 2\(\frac{1}{2} \), and an initial value of \(t \approx 0.14 \pm 0.03 \), are required for stability. If our Galaxy (and other spirals) do not have a substantial unobserved mass in a hot disk component, then apparently the halo (spherical) mass interior to the disk must be comparable to the disk mass. Thus normalized, the halo masses of our Galaxy and of other spiral galaxies exterior to the observed disks may be extremely large.
A LONGSTANDING unresolved problem in galactic astronomy is the mass discrepancy observed in clusters of galaxies. The virial mass of the cluster per galaxy and the mass–luminosity ratio are considerably larger than the corresponding quantities for individual galaxies. This discrepancy cannot be a result of expansion or be because of the recent origin of clusters: these ideas contradict our present knowledge of the physical evolution and ages of galaxies. Therefore it is necessary to adopt an alternative hypothesis: that the clusters of galaxies are stabilised by hidden matter.

Both papers: $\Omega_m \approx 0.2$
THE ENORMOUS MASS OF THE ELLIPTICAL GALAXY M87: A MODEL FOR THE EXTENDED X-RAY SOURCE*

WILLIAM G. MATHEWS

Lick Observatory, Board of Studies in Astronomy and Astrophysics, University of California, Santa Cruz

Received 1977 March 28; accepted 1977 July 20

ABSTRACT

An analysis of the X-ray data from the Virgo cluster indicates that the mass of the giant elliptical galaxy M87 exceeds $10^{13} \, M_\odot$ and may be $\sim 10^{14} \, M_\odot$ or greater. This large mass is required in order to confine the extended thermal X-ray source to its observed projected size—provided the gas which radiates X-rays is essentially isothermal ($T = 3 \times 10^7$ K) and in hydrostatic equilibrium. Isothermality follows from the efficiency of heat conduction and the suggested origin of the gas. If these reasonable assumptions are correct, the bulk of the mass in M87 must be distributed in a low-density, low-luminosity component quite unlike the distribution of luminous matter. The mass of this component, which is uncertain by a factor of about 2, could account for the “missing mass” in the Virgo cluster.

MASSES AND MASS-TO-LIGHT RATIOS OF GALAXIES

S. M. Faber
Lick Observatory, Board of Studies in Astronomy and Astrophysics, University of California, Santa Cruz, California 95064

J. S. Gallagher
Department of Astronomy, University of Illinois, Urbana, Illinois 61801

ARAA 1979

After reviewing all the evidence, it is our opinion that the case for invisible mass in the Universe is very strong and getting stronger. Particularly encouraging is the fact that the mass-to-light ratio for binaries agrees so well with that for small groups. Furthermore, our detailed knowledge of the mass distribution of the Milky Way and Local Group is reassuringly consistent with the mean properties of galaxies and groups elsewhere. In sum, although such questions as observational errors and membership probabilities are not yet completely resolved, we think it likely that the discovery of invisible matter will endure as one of the major conclusions of modern astronomy.
1980 - Most astronomers are convinced that dark matter exists around galaxies and clusters - but is it Hot or Cold? Theorists usually assumed $\Omega_m=1$, but observers typically found $\Omega_m \approx 0.2$.

The Hot-Warm-Cold DM terminology was introduced by Dick Bond and me in our talks at the 1983 Moriond Conference.

1973 - Marx & Szalay, Cowsik & McClelland: $m_\nu < 100$ eV

1980 - Zel’dovich group develops Hot Dark Matter (HDM) theory

1983 - White, Frenk, Davis: simulation rules out HDM

In ~1980, when purely baryonic adiabatic fluctuations were ruled out by the improving upper limits on CMB anisotropies, theorists led by Zel’dovich turned to what we now call the HDM scenario, with light neutrinos making up most of the dark matter. However, in this scheme the fluctuations on small scales are damped by relativistic motion ("free streaming") of the neutrinos until $T<m_\nu$, which occurs when the mass entering the horizon is about 10^{15} M_{sun}, the supercluster mass scale. Thus superclusters would form first, and galaxies later form by fragmentation. This predicted a galaxy distribution much more inhomogeneous than observed.

Some steps toward cosmic structure formation

Many people thought the early universe was complex (e.g. mixmaster universe Misner, explosions Ostriker, …).

But Zel’’dovich assumed that it is fundamentally simple, with just a scale-free spectrum of adiabatic fluctuations of
 (a) baryons
and when that failed $[(\Delta T/T)_{\text{CMB}} < 10^{-4}]$ and Moscow physicists thought they had discovered neutrino mass
 (b) hot dark matter.

Blumenthal and I thought simplicity a good approach, but we tried other simple candidates for the dark matter, first
 (c) warm dark matter, and then, with Faber and Rees,
 (d) cold dark matter, which moved sluggishly in the early universe.
Types of Dark Matter

Ω_i represents the fraction of the critical density $\rho_c = 10.54 \ h^2 \ \text{keV/cm}^3$ needed to close the Universe, where h is the Hubble constant H_0 divided by 100 km/s/Mpc.

<table>
<thead>
<tr>
<th>Dark Matter Type</th>
<th>Fraction of Critical Density</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baryonic</td>
<td>$\Omega_b \sim 0.04$</td>
<td>about 10 times the visible matter</td>
</tr>
<tr>
<td>Hot</td>
<td>$\Omega_\nu \sim 0.001-0.1$</td>
<td>light neutrinos</td>
</tr>
<tr>
<td>Cold</td>
<td>$\Omega_c \sim 0.3$</td>
<td>most of the dark matter in galaxy halos</td>
</tr>
</tbody>
</table>

Dark Matter and Associated Cosmological Models

Ω_m represents the fraction of the critical density in all types of matter. Ω_Λ is the fraction contributed by some form of "dark energy."

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Cosmological Model</th>
<th>Flourished</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDM</td>
<td>hot dark matter with $\Omega_m = 1$</td>
<td>1978–1984</td>
</tr>
<tr>
<td>SCDM</td>
<td>standard cold dark matter with $\Omega_m = 1$</td>
<td>1982–1992</td>
</tr>
<tr>
<td>CHDM</td>
<td>cold + hot dark matter with $\Omega_c \sim 0.7$ and $\Omega_\nu = 0.2–0.3$</td>
<td>1994–1998</td>
</tr>
<tr>
<td>ΛCDM</td>
<td>cold dark matter $\Omega_c \sim 1/3$ and $\Omega_\Lambda \sim 2/3$</td>
<td>1996–today</td>
</tr>
</tbody>
</table>
Weakly Interacting Massive Particles (WIMPs) as Dark Matter

However, the idea of weakly interacting massive particles as dark matter is now standard.

Neutrinos with masses of 10s of eV (hot dark matter) are no longer a good candidate.
Giant voids in the Universe

Ya. B. Zeldovich*, J. Einasto†† & S. F. Shandarin

Neutrino dominated Universe

Perhaps the weakest point in the adiabatic scenario is its need for too large an amplitude of density perturbations at the decoupling era: $\delta \rho / \rho \approx 10^{-3}$ if $\Omega = 1$ and $\delta \rho / \rho \approx 10^{-1}$ if $\Omega = 0.02$ (ref. 40). As noted already by Silk23, density fluctuations at the epoch of decoupling correspond to similar angular fluctuations of the temperature of the microwave background. $\delta T / T \sim 1/3 \delta \rho / \rho$. On the other hand, observations give an upper limit of temperature fluctuations of the order 10^{-4} (refs 22, 23).

This controversy would be solved if the Universe were neutrino dominated with the neutrino mass $m \approx 10$ eV. Neutrino gas does not interact with radiation, thus perturbations in the neutrino gas could develop much earlier than in the baryon dominated Universe and could have the necessary amplitude. Baryon gas is bound to radiation and has smaller density fluctuations, after decoupling it simply flows to gravitational wells formed in the neutrino gas.

Thus in the neutrino dominated Universe one has low baryon density $\Omega_b \approx 0.01-0.1$ while the total density is close to the closure once $\Omega_t = \Omega_\nu = 1$.

The formation of the structure in a neutrino dominated Universe is, essentially, an adiabatic scenario$^{44-51}$. The initial ratio of baryons to neutrinos is the same everywhere (the entropy is constant), small-scale fluctuations are damped, the characteristic mass of objects to form first is $10^{13} M_\odot$ as in the conventional adiabatic scenario.
CLUSTERING IN A NEUTRINO-DOMINATED UNIVERSE

Simon D. M. White,¹,² Carlos S. Frenk,¹ and Marc Davis¹,³
University of California, Berkeley
Received 1983 June 17; accepted 1983 July 1

ABSTRACT

We have simulated the nonlinear growth of structure in a universe dominated by massive neutrinos using initial conditions derived from detailed linear calculations of earlier evolution. Codes based on a direct N-body integrator and on a fast Fourier transform Poisson solver produce very similar results. The coherence length of the neutrino distribution at early times is directly related to the mass of the neutrino and thence to the present density of the universe. We find this length to be too large to be consistent with the observed clustering scale of galaxies if other cosmological parameters are to remain within their accepted ranges. The conventional neutrino-dominated picture appears to be ruled out.
1967 - Lynden-Bell: violent relaxation (also Shu 1978)
1976 - Binney, Rees & Ostriker, Silk: Cooling curves
1977 - White & Rees: galaxy formation in massive halos
1980 - Fall & Efstathiou: galactic disk formation in massive halos
1982 - Guth & Pi; Hawking; Starobinski: Cosmic Inflation $P(k) = k^1$
1982 - Pagels & Primack: lightest SUSY particle stable by R-parity: gravitino
1982 - Blumenthal, Pagels, & Primack; Bond, Szalay, & Turner: WDM
1982 - Peebles: CDM $P(k)$ - simplified treatment (no light neutrinos)
1983 - Goldberg: photino as SUSY CDM particle
1983 - Preskill, Wise, & Wilczek; Abbott & Sikivie; Dine & Fischler: Axion CDM
1983 - Blumenthal & Primack; Bond & Szalay: CDM $P(k)$
1984 - Blumenthal, Faber, Primack, & Rees: CDM compared to CfA data
1984 - Peebles; Turner, Steigman, Krauss: effects of Λ
1984 - Ellis, Hagelin, Nanopoulos, Olive, & Srednicki: neutralino CDM
1985 - Davis, Efstathiou, Frenk, & White: 1st CDM, ΛCDM simulations
Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering

S. D. M. White and M. J. Rees Institute of Astronomy, Madingley Road, Cambridge

Summary. We suggest that most of the material in the Universe condensed at an early epoch into small ‘dark’ objects. Irrespective of their nature, these objects must subsequently have undergone hierarchical clustering, whose present scale we infer from the large-scale distribution of galaxies. As each stage of the hierarchy forms and collapses, relaxation effects wipe out its substructure, leading to a self-similar distribution of bound masses of the type discussed by Press & Schechter. The entire luminous content of galaxies, however, results from the cooling and fragmentation of residual gas within the transient potential wells provided by the dark matter. Every galaxy thus forms as a concentrated luminous core embedded in an extensive dark halo. The observed sizes of galaxies and their survival through later stages of the hierarchy seem inexplicable without invoking substantial dissipation; this dissipation allows the galaxies to become sufficiently concentrated to survive the disruption of their halos in groups and clusters of galaxies. We propose a specific model in which \(\Omega \approx 0.2 \), the dark matter makes up 80 per cent of the total mass, and half the residual gas has been converted into luminous galaxies by the present time. This model is consistent with the inferred proportions of dark matter, luminous matter and gas in rich clusters, with the observed luminosity density of the Universe and with the observed radii of galaxies; further, it predicts the characteristic luminosities of bright galaxies and can give a luminosity function of the observed shape.
Supersymmetry, Cosmology, and New Physics at Teraelectronvolt Energies

Heinz Pagels
The Rockefeller University, New York, New York 10021

and

Joel R. Primack
Physics Department, University of California, Santa Cruz, California 95064
(Received 17 August 1981)

If one assumes a spontaneously broken local supersymmetry, big-bang cosmology implies that the universe is filled with a gravitino \(g_{3/2}\) gas—possibly its dominant constituent. From the observational bound on the cosmological mass density it follows that \(m_{g_{3/2}} \approx 1\) keV. Correspondingly, the supersymmetry breaking parameter \(F\) satisfies \(\sqrt{F} \approx 2 \times 10^3\) TeV, requiring new supersymmetric physics in the teraelectronvolt energy region. An exact sum rule is derived and used to estimate the threshold and cross section for the production of the new states.
Galaxy formation by dissipationless particles heavier than neutrinos

George R. Blumenthal*, Heinz Pagels†
& Joel R. Primack‡

* Lick Observatory, Board of Studies in Astronomy and Astrophysics, ‡ Board of Studies in Physics, University of California, Santa Cruz, California 95064, USA
† The Rockefeller University, New York, New York 10021, USA

In a baryon dominated universe, there is no scale length corresponding to the masses of galaxies. If neutrinos with mass <50 eV dominate the present mass density of the universe, then their Jeans mass $M_J \sim 10^{16} M_\odot$, which resembles supercluster rather than galactic masses. Neutral particles that interact much more weakly than neutrinos would decouple much earlier, have a smaller number density today, and consequently could have a mass >50 eV without exceeding the observational mass density limit. A candidate particle is the gravitino, the spin 3/2 supersymmetric partner of the graviton, which has been shown\(^1\) to have a mass ≲1 keV if stable\(^2\). The Jeans mass for a 1-keV noninteracting particle is $\sim 10^{12} M_\odot$, about the mass of a typical spiral galaxy including the nonluminous halo. We suggest here that the gravitino dominated universe can produce galaxies by gravitational instability while avoiding several observational difficulties associated with the neutrino dominated universe.
LARGE-SCALE BACKGROUND TEMPERATURE AND MASS FLUCTUATIONS DUE TO SCALE-INVARIENT PRIMEVAL PERTURBATIONS

P. J. E. Peebles
Joseph Henry Laboratories, Physics Department, Princeton University
Received 1982 July 2; accepted 1982 August 13

ABSTRACT

The large-scale anisotropy of the microwave background and the large-scale fluctuations in the mass distribution are discussed under the assumptions that the universe is dominated by very massive, weakly interacting particles and that the primeval density fluctuations were adiabatic with the scale-invariant spectrum $P \propto \text{wavenumber}$. This model yields a characteristic mass comparable to that of a large galaxy independent of the particle mass, m_x, if $m_x \approx 1 \text{ keV}$. The expected background temperature fluctuations are well below present observational limits.

REFERENCES

Lubin, P. M. 1982, paper presented at the 85th course of the International School of Physics, Varenna.

THE COLLISIONLESS DAMPING OF DENSITY FLUCTUATIONS IN AN EXPANDING UNIVERSE

J. R. Bond AND A. S. Szalay

ABSTRACT

The best candidate for the dark matter is a massive collisionless non-baryonic relic of the early universe. The most natural type of initial density fluctuations expected are of the adiabatic rather than of the isothermal type. We calculate the temporal evolution of the (initially adiabatic) fluctuation spectrum by numerical integration of the coupled Einstein-Boltzmann equations for scalar perturbations in the metric and in the density of photons, neutrinos, and collisionless relics. Our output linear perturbation spectrum, which is itself input to the nonlinear problem of large scale structure formation, is shown to be characterized by two scales: the damping mass and the horizon mass when the energy density in relativistic particles equals that in nonrelativistic ones, M_{Heq}. Collisionless relics which decouple when relativistic may be of two basic types if they are to dominate the mass of the universe: massive neutrinos of 10–100 eV, or massive gravitinos (or other weakly interacting particles) of mass about 1 keV. For massive neutrinos, both scales are of supercluster size; and the Zel’dovich pancake picture, in which a large scale is the first to collapse, is expected, regardless of initial spectrum. For massive gravitinos, the damping mass is of galactic scale. Depending upon the initial spectrum, one can get either hierarchical clustering from the damping scale upward or fragmentation of the large M_{Heq} scale. Collisionless relics which decouple when nonrelativistic have negligible damping masses; again, hierarchical clustering from very small scales or large scale fragmentation is possible in this adiabatic picture.
Early History of Cold Dark Matter

1967 - Lynden-Bell: violent relaxation (also Shu 1978)
1976 - Binney, Rees & Ostriker, Silk: Cooling curves
1977 - White & Rees: galaxy formation in massive halos
1980 - Fall & Efstathiou: galactic disk formation in massive halos
1982 - Guth & Pi; Hawking; Starobinski: Cosmic Inflation $P(k) = k^1$
1982 - Pagels & Primack: lightest SUSY particle stable by R-parity: gravitino
1982 - Blumenthal, Pagels, & Primack; Bond, Szalay, & Turner: WDM
1982 - Peebles: CDM $P(k)$ - simplified treatment (no light neutrinos)
1983 - Goldberg: photino as SUSY CDM particle
1983 - Preskill, Wise, & Wilczek; Abbott & Sikivie; Dine & Fischler: Axion CDM
1983 - Blumenthal & Primack; Bond & Szalay: CDM $P(k)$
1984 - Blumenthal, Faber, Primack, & Rees: CDM cp. to CfA data
1984 - Peebles; Turner, Steigman, Krauss: effects of Λ
1984 - Ellis, Hagelin, Nanopoulos, Olive, & Srednicki: neutralino CDM
1985 - Davis, Efstathiou, Frenk, & White: 1st CDM, ΛCDM simulations
Formation of galaxies and large-scale structure with cold dark matter

George R. Blumenthal* & S. M. Faber*

* Lick Observatory, Board of Studies in Astronomy and Astrophysics, University of California, Santa Cruz, California 95064, USA

Joel R. Primack†§ & Martin J. Rees‡§

† Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305, USA
‡ Institute of Theoretical Physics, University of California, Santa Barbara, California 93106, USA

The dark matter that appears to be gravitationally dominant on all scales larger than galactic cores may consist of axions, stable photinos, or other collisionless particles whose velocity dispersion in the early Universe is so small that fluctuations of galactic size or larger are not damped by free streaming. An attractive feature of this cold dark matter hypothesis is its considerable predictive power: the post-recombination fluctuation spectrum is calculable, and it in turn governs the formation of galaxies and clusters. Good agreement with the data is obtained for a Zeldovich (|δ(k)|^2 ∝ k) spectrum of primordial fluctuations.
Formation of galaxies and large-scale structure with cold dark matter

... We conclude that a straightforward interpretation of the evidence summarized above favours $\Omega \approx 0.2$ in the cold DM picture, but that $\Omega = 1$ is not implausible. ...

Conclusions

We have shown that a Universe with ~ 10 times as much cold dark matter as baryonic matter provides a remarkably good fit to the observed Universe. This model predicts roughly the observed mass range of galaxies, the dissipational nature of galaxy collapse, and the observed Faber-Jackson and Tully-Fisher relations. It also gives dissipationless galactic haloes and clusters. In addition, it may also provide natural explanations for galaxy-environment correlations and for the differences in angular momenta between ellipticals and spiral galaxies. Finally, the cold DM picture seems reasonably consistent with the observed large-scale clustering, including superclusters and voids. In short, it seems to be the best model available and merits close scrutiny and testing.

Blumenthal, Faber, Primack, & Rees 1984
CDM Spherical Collapse Model

The baryonic density vs. temperature as root-mean-square perturbations having total mass M become nonlinear and virialize. The numbers on the tick marks are the logarithm of M in units of M_\odot. This curve assumes $n = 1$, $\Omega = h = 1$ and a baryonic to total mass ratio of 0.07. The region where baryons can cool within a dynamical time lies below the cooling curves. Also shown are the positions of observed galaxies, groups and clusters of galaxies. The dashed line represents a possible evolutionary path for dissipating baryons.
CDM Correctly Predicted the Masses of Galaxies

Rees & Ostriker 77, Silk 77, Binney 77, White & Rees 1978
CDM: Blumenthal, Faber, Primack, & Rees 1984

CDM: Blumenthal, Faber, Primack, & Rees 1984

CDM Correctly Predicted the Masses of Galaxies

log gas density vs. virial velocity

10^4 T 10^5 10^6 10^7

10^4 10^5 10^6 10^7

+3 +1 -1 -3 -5

CDM

H2 T_{cool} < T_{ff}

H He

Brems.

galaxies clusters

10^8 10^{12}

10^12
Matter fluctuations that enter the horizon during the radiation dominated era, with masses less than about $10^{15} M_\odot$ grow only $\propto \log a$, because they are not in the gravitationally dominant component. But matter fluctuations that enter the horizon in the matter-dominated era grow $\propto a$. This explains the characteristic shape of the CDM fluctuation spectrum, with $\delta(k) \propto k^{-n/2-2} \log k$.

Primack & Blumenthal 1983

Blumenthal, Faber, Primack, & Rees 1984
Flatness of the Universe: Reconciling Theoretical Prejudices with Observational Data

Michael S. Turner
Theoretical Astrophysics, Fermi National Accelerator Laboratory, Batavia, Illinois 60510, and
The University of Chicago, Chicago, Illinois 60637

and

Gary Steigman
Bartol Research Foundation, University of Delaware, Newark, Delaware 19716

and

Lawrence M. Krauss
Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138
(Received 2 March 1984)

Theoretical prejudices argue strongly for a flat Universe; however, observations do not support this view. We point out that this apparent conflict could be resolved if the mass density of the Universe today were dominated by (i) relativistic particles produced by the recent decay of a massive, relic particle species, or by (ii) a relic cosmological constant. Scenario (i) has several advantages in the context of galaxy formation, but must confront the problem of a young Universe.
THE EVOLUTION OF LARGE-SCALE STRUCTURE IN A UNIVERSE DOMINATED BY COLD DARK MATTER

MARC DAVIS,1,2 GEORGE Efstathiou,1,3 CARLOS S. FRENK,1,4 AND SIMON D. M. WHITE1,5

Received 1984 August 20; accepted 1984 November 30

ABSTRACT

We present the results of numerical simulations of nonlinear gravitational clustering in universes dominated by weakly interacting, “cold” dark matter (e.g., axions or photinos). These studies employ a high resolution N-body code with periodic boundary conditions and 32,768 particles; they can accurately represent the theoretical initial conditions over a factor of 16 in length scale. We have followed the evolution of ensembles of models with $\Omega = 1$ and $\Omega < 1$ from the initial conditions predicted for a “constant curvature” primordial fluctuation spectrum. We also ran one model of a flat universe with a positive cosmological constant. Large filamentary structures, superclusters of clumps, and large low-density regions appear at certain times in all our simulations; however, we do not find large regions as extreme as the apparent void in Boötes. The evolution of the two-point correlation function, $\xi(r)$, is not self-similar; its effective power-law index becomes more negative with time. Models with $\Omega = 1$ are inconsistent with observation if galaxies are assumed to be unbiased tracers of the underlying mass distribution. The peculiar velocities of galaxies are predicted to be much too large. In addition, at times when the shape of $\xi(r)$ matches that observed, the amplitude of clustering is inferred to be too small for any acceptable value of the Hubble constant. Better agreement is obtained for $\Omega = 0.2$, but in both cases the rms relative peculiar velocity of particle pairs decreases markedly with pair separation, whereas the corresponding quantity for galaxies is observed to increase slowly. In all models the three-point correlation function ζ is found to fit the observed form, $\zeta \propto Q^2 \xi^2$, but with Q depending weakly on scale. On small scales Q substantially exceeds its observed value. Consistent with this, the mass distribution of clusters is very broad, showing the presence of clumps with a very wide range in mass at any given time. The model with a positive cosmological constant closely resembles an open model with the same value of Ω. If galaxies are a random sampling of the mass distribution, none of our models is fully consistent with observation. An alternative hypothesis is that galaxies formed only at high peaks of the initial density field. The clustering properties of such “galaxies” are biased; they appear preferentially in high-density regions and so are more correlated than the overall mass distribution. Their two- and three-point correlation functions and their relative peculiar velocity distribution may be consistent with observation even in a universe with $\Omega = 1$. If this is an appropriate model for galaxy formation, it may be possible to reconcile a flat universe with most aspects of the observed galaxy distribution.
Some Later Highlights of CDM

1983 - Milgrom: modified Newtonian dynamics (MOND) as alternative to dark matter to explain flat galactic rotation curves

1983 - CfA redshift survey finds galaxy correlation function $\xi_{gg}(r) = (r/r_0)^{-1.8}$

1986 - Blumenthal, Faber, Flores, & Primack: baryonic halo contraction

1986 - Large scale galaxy flows of ~600 km/s favor no bias

1989 - Holtzman: CMB and LSS predictions for 96 CDM variants

1992 - COBE: CMB fluctuations confirm CDM prediction $\Delta T/T \approx 10^{-5}$, favored variants are CHDM and ΛCDM

1996 - Seljak & Zaldarriaga: CMBfast code for $P(k)$, CMB fluctuations

1997 - Nararro, Frenk, & White: DM halo radial structure $\rho_{NFW}(r) \propto (r/r_s)^{-1}(1+r/r_s)^{-2}$

1997 - Hipparchos distance scale, SN Ia dark energy $\Rightarrow t_0 \approx 14$ Gyr, ΛCDM

2001 - Bullock et al.: concentration-mass-z relation for DM halos; universal angular momentum structure of DM halos

2002 - Wechsler et al.: halo concentration from mass assembly history

2003-present - WMAP and Large Scale Structure surveys confirm ΛCDM predictions with high precision
Lick Survey
1M galaxies
in angular bins

North Galactic Hemisphere
CfA survey: Great Walls

Northern Great Wall

Southern Great Wall

1/20 of the horizon
Nearby Galaxies to 2 billion light years
Luminous Red Galaxies to 6 billion light years
Quasars to 28 billion light years

Mapping the Galaxies Sloan Digital Sky Survey
GALAXIES MAPPED BY THE SLOAN SURVEY

Data Release 4:
565,715 Galaxies & 76,403 Quasars
GALAXIES MAPPED BY THE SLOAN SURVEY
Cosmic Spheres of Time

When we look out in space we look back in time...

Cosmic Horizon (The Big Bang)
Cosmic Background Radiation
Cosmic Dark Ages
Bright Galaxies Form
Big Galaxies Form
Earth Forms
Milky Way

Cosmic Spheres of Time
Cosmic Spheres of Time

46 Billion Light Years

Cosmic Spheres of Time
Max Tegmark

Shown at DM2000:

Shown at DM2002:

Shown at DM2004:

Shown at DM2006:
Big Bang Data Agrees with Double Dark Theory!

Double Dark theory

1992 COBE

2003
Distribution of Matter

Also Agrees with Double Dark Theory!
Latest Big Bang Data Strengthens the Agreement!

Double Dark theory

POWER

Angular Scale

WMAP 5-YEAR DATA

Released March 5, 2008

Ground-based data

Angular Scale

Double Dark theory
<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol</th>
<th>WMAP-only</th>
<th>WMAP+BAO+SN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age of universe</td>
<td>t_0</td>
<td>13.69 ± 0.13 Gyr</td>
<td>13.73 ± 0.12 Gyr</td>
</tr>
<tr>
<td>Hubble constant</td>
<td>H_0</td>
<td>$71.9^{+2.6}_{-2.7}$ km/s/Mpc</td>
<td>70.1 ± 1.3 km/s/Mpc</td>
</tr>
<tr>
<td>Baryon density</td>
<td>Ω_b</td>
<td>0.0441 ± 0.0030</td>
<td>0.0462 ± 0.0015</td>
</tr>
<tr>
<td>Physical baryon density</td>
<td>$\Omega_b h^2$</td>
<td>0.02273 ± 0.00062</td>
<td>0.02265 ± 0.00059</td>
</tr>
<tr>
<td>Dark matter density</td>
<td>Ω_c</td>
<td>0.214 ± 0.027</td>
<td>0.233 ± 0.013</td>
</tr>
<tr>
<td>Physical dark matter density</td>
<td>$\Omega_c h^2$</td>
<td>0.1099 ± 0.0062</td>
<td>0.1143 ± 0.0034</td>
</tr>
<tr>
<td>Dark energy density</td>
<td>Ω_Λ</td>
<td>0.742 ± 0.030</td>
<td>0.721 ± 0.015</td>
</tr>
<tr>
<td>Curvature fluctuation amplitude, $k_0 = 0.002$ Mpc$^{-1}$</td>
<td>Δ_R^2</td>
<td>$(2.41 \pm 0.11) \times 10^{-9}$</td>
<td>$(2.457^{+0.092}_{-0.093}) \times 10^{-9}$</td>
</tr>
<tr>
<td>Fluctuation amplitude at $8h^{-1}$ Mpc</td>
<td>σ_8</td>
<td>0.796 ± 0.036</td>
<td>0.817 ± 0.026</td>
</tr>
<tr>
<td>$l(l+1)C_{220}^{TT}/2\pi$</td>
<td>C_{220}</td>
<td>5756 ± 42 μK2</td>
<td>5748 ± 41 μK2</td>
</tr>
<tr>
<td>Scalar spectral index</td>
<td>n_s</td>
<td>$0.963^{+0.014}_{-0.015}$</td>
<td>$0.960^{+0.014}_{-0.013}$</td>
</tr>
<tr>
<td>Redshift of matter-radiation equality</td>
<td>z_{eq}</td>
<td>3176^{+151}_{-150}</td>
<td>3280^{+88}_{-89}</td>
</tr>
<tr>
<td>Angular diameter distance to matter-radiation eq.</td>
<td>$d_A(z_{eq})$</td>
<td>14279^{+186}_{-189} Mpc</td>
<td>14172^{+141}_{-139} Mpc</td>
</tr>
<tr>
<td>Redshift of decoupling</td>
<td>z_*</td>
<td>1090.51 ± 0.95</td>
<td>$1091.00^{+0.72}_{-0.73}$</td>
</tr>
<tr>
<td>Age at decoupling</td>
<td>t_*</td>
<td>380081^{+5843}_{-5841} yr</td>
<td>375938^{+3148}_{-3115} yr</td>
</tr>
<tr>
<td>Angular diameter distance to decoupling</td>
<td>$d_A(z_*)$</td>
<td>14115^{+188}_{-191} Mpc</td>
<td>14006^{+142}_{-141} Mpc</td>
</tr>
<tr>
<td>Sound horizon at decoupling</td>
<td>$r_s(z_*)$</td>
<td>146.8 ± 1.8 Mpc</td>
<td>145.6 ± 1.2 Mpc</td>
</tr>
<tr>
<td>Acoustic scale at decoupling</td>
<td>$l_A(z_*)$</td>
<td>$302.08^{+0.83}_{-0.84}$</td>
<td>$302.11^{+0.84}_{-0.82}$</td>
</tr>
<tr>
<td>Reionization optical depth</td>
<td>τ</td>
<td>0.087 ± 0.017</td>
<td>0.084 ± 0.016</td>
</tr>
<tr>
<td>Redshift of reionization</td>
<td>z_{reion}</td>
<td>11.0 ± 1.4</td>
<td>10.8 ± 1.4</td>
</tr>
<tr>
<td>Age at reionization</td>
<td>t_{reion}</td>
<td>427^{+88}_{-65} Myr</td>
<td>432^{+90}_{-67} Myr</td>
</tr>
</tbody>
</table>
Parameters for Extended Models

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Value with HST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total density</td>
<td>Ω_{tot}</td>
<td>$1.099^{+0.100}_{-0.085}$</td>
</tr>
<tr>
<td>Equation of state</td>
<td>w</td>
<td>$-1.06^{+0.41}_{-0.42}$</td>
</tr>
<tr>
<td>Tensor to scalar ratio, $k_0 = 0.002 \text{ Mpc}^{-1}$</td>
<td>r</td>
<td>$< 0.43 \text{ (95% CL)}$</td>
</tr>
<tr>
<td>Running of spectral index, $k_0 = 0.002 \text{ Mpc}^{-1}$</td>
<td>$\frac{dn_s}{d\ln k}$</td>
<td>-0.037 ± 0.028</td>
</tr>
<tr>
<td>Neutrino density</td>
<td>$\Omega_\nu h^2$</td>
<td>$< 0.014 \text{ (95% CL)}$</td>
</tr>
<tr>
<td>Neutrino mass</td>
<td>$\sum m_\nu$</td>
<td>$< 1.3 \text{ eV (95% CL)}$</td>
</tr>
<tr>
<td>Number of light neutrino families</td>
<td>N_{eff}</td>
<td>$> 2.3 \text{ (95% CL)}$</td>
</tr>
</tbody>
</table>

The parameters reported in the first section assume the 6 parameter ΛCDM model, first using WMAP data only (Dunkley et al. 2008), then using WMAP+BAO+SN data (Komatsu et al. 2008).

$k = 0.002 \text{ Mpc}^{-1} \rightarrow l_{\text{eff}} \approx 30.$

Comoving angular diameter distance.

$d_A(z_*) \equiv \pi d_A(z_*) r_s(z_*)^{-1}.$

The parameters reported in the second section place limits on deviations from the ΛCDM model, first using WMAP data only (Dunkley et al. 2008), then using WMAP+BAO+SN data (Komatsu et al. 2008). A complete listing of all parameter values and uncertainties for each of the extended models studied is available on LAMBDA.

- Allows non-zero curvature, $\Omega_k \neq 0$.
- Allows $w \neq -1$, but assumes w is constant.
- Allows tensors modes but no running in scalar spectral index.
- Allows running in scalar spectral index but no tensor modes.
- Allows a massive neutrino component, $\Omega_\nu \neq 0$.
- Allows N_{eff} number of relativistic species. The last column adds the HST prior to the other data sets.
Considering a range of extended models, we continue to find that the standard ΛCDM model is consistently preferred by the data. The improved measurement of the third peak now requires the existence of light relativistic species, assumed to be neutrinos, at high confidence. The standard scenario has three neutrino species, but the three-year WMAP data could not rule out models with none. The CDM model also continues to succeed in fitting a substantial array of other observations. Certain tensions between other observations and those of WMAP, such as the amplitude of matter fluctuations measured by weak lensing surveys and using the Ly-\(\alpha\) forest, and the primordial lithium abundance, have either been resolved with improved understanding of systematics, or show promise of being explained by recent observations. With further WMAP observations we will better probe both the universe at a range of epochs, measuring fluctuation characteristics to probe the initial inflationary process, or other non-inflationary scenario, improving measurements of the composition of the universe at the recombination era, and characterizing the reionization process in the universe.
5 INDEPENDENT MEASURES AGREE: ATOMS ARE ONLY 4% OF THE COSMIC DENSITY

Galaxy Cluster in X-rays

Absorption of Quasar Light

& BAO WIGGLES IN GALAXY P(k)
My name is Fritz Zwicky,
I can be kind of prickly,
This song had better start
by giving me priority.
Whatever anybody says,
I said in 1933.
Observe the Coma cluster,
the redshifts of the galaxies
imply some big velocities.
They're moving so fast,
there must be missing mass!
Dark matter.

Dark matter: Do we need it? What is it? Where is it? How much?
Do we need it? Do we need it? Do we need it? Do we need it?

For nearly forty years, the dark matter problem sits. Nobody gets worried 'cause, "It's only crazy Fritz."
The next step's not 'til the early 1970s, Ostriker and Peebles, dynamics of the galaxies, cold disk instabilities.
They say: "If the mass, were sitting in the stars, all those pretty spirals, ought to be bars! Self-gravitating disks? Uh-uh, oh no.
What those spirals need is a massive halo. And hey, look over here, check out these observations, Vera Rubin's optical curves of rotation, they can provide our needed confirmation: Those curves aren't falling, they're FLAT! Dark matter's where it's AT!

Dark matter: Do we need it? What is it? Where is it? How much? What is it? What is it? What is it? What is it?

And so the call goes out for the dark matter candidates: black holes, snowballs, gas clouds, low mass stars, or planets. But we quickly hit a snag because galaxy formation requires too much structure in the background radiation if there's only baryons and adiabatic fluctuations.
The Russians have an answer: "We can solve the impasse. Lyubimov has shown that the neutrino has mass."
Zel'dovich cries, "Pancakes! The dark matter's HOT."
Carlos Frenk, Simon White, Marc Davis say, "NOT! Quasars are old, and the pancakes must be young. Forming from the top down it can't be done."
So neutrinos hit the skids, and the picture's looking black.
But California laid-back, Blumenthal & Primack say, "Don't have a heart attack. There's lots of other particles. Just read the physics articles. Take this pretty theory that's called supersymmetry. What better for dark matter than the L-S-P? The mass comes in at a ~ keV, and that's not hot, that's warm."
Jim Peebles says, "Warm? Don't be half-hearted. Let's continue the trend that we have started. I'll stake out a position that's bold: dark matter's not hot, not warm, but COLD."
Well cold dark matter causes overnight sensations: hand-waving calculations, computer simulations, detailed computations of the background fluctuations. Results are good, and the prospects look bright. Here's a theory that works! Well, maybe not quite.

Dark matter: Do we need it? What is it? Where is it? How much? Where is it? How much? Where is it? How much?
We have another puzzle that goes back to Robert Dicke. Finding a solution has proven kind of tricky. The CMB's so smooth, it's as if there'd been a compact between parts of the universe that aren't in causal contact. Alan Guth says, "Inflation, will be our salvation, give smoothness of the universe a causal explanation, and even make the galaxies from quantum fluctuations! There is one prediction, from which it's hard to run. If inflation is correct, then Omega should be one." Observers say, "Stop, no, sorry, won't do. Look at these clusters, Omega's point 2." The theorists respond, "We have an explanation. The secret lies in biased galaxy formation. We're not short of critical mass density. Just some regions, are missing luminosity." Observers roll their eyes, and they start to get annoyed, But the theorists reply, "There's dark matter in the voids."

Dark matter: Do we need it? What is it? Where is it? How much? Do we need it? Do we need it? Do we need it? Do we need it?
Along comes Moti Milgrom, who's here to tell us all: "This dark matter claptrap has got you on the wrong track. You're all too mired in conventionality, wedded to your standard theory of gravity, seduced by the elegance of General Relativity. Just change your force law, that's the key. Give me one free parameter, and I'll explain it all." "Not so," claim Lake, and Spergel, et al., "On dwarf galaxies, your theory does fall." The argument degenerates; it's soon a barroom brawl.

Dark matter: Do we need it? What is it? Where is it? How much? What is it? What is it? What is it? What is it?
New observations hit the theory like an ice cold shower. They show that cold dark matter has too little large scale power. Says Peebles: "Cold dark matter? My feeblest innovation. An overly aesthetic, theoretical abberation. Our theories must have firmer empirical foundation. Shed all this extra baggage, including the carry-ons. Use particles we know, i.e., the baryons. Others aren't convinced, and a few propose a mixture of matter hot and cold, perhaps with strings or texture. And nowadays some physicists are beginning to wonder if it's time to resurrect Einstein's "greatest blunder." Why seek exotic particles instead of just assume that the dark matter's all around us -- it's what we call the vacuum?

Who's right? It's hard to know, 'til observation or experiment gives overwhelming evidence that relieves our predicament. The search is getting popular as many realize that the detector of dark matter may well win the Nobel Prize.

So now you've heard my lecture, and it's time to end the session with the standard closing line: Thank you, any questions?