Lecture

Hierarchical Clustering

Press Schechter: Halo Distribution
Extended PS: Merging Tree
Biasing: Galaxies/Subhalos in Halos
HOD: Halo Occupation Distribution
Press Schechter Formalism \(n(M,a) \)

Gaussian random field \(P(\delta) = (2\pi\sigma^2)^{-1/2} \exp(-\delta^2 / 2\sigma^2) \)

random spheres of mass \(M \)

linear-extrapolated \(\delta_{\text{rms}} \) at \(a \): \(\sigma(M,a) = \sigma_0(M) D(a) \)

fraction of spheres with \(\delta > \delta_c = 1.68 \):

\[
F(M,a) = \int_{\delta_c}^{\infty} d\delta [2\pi\sigma^2(M,a)]^{-1/2} \exp[-\delta^2 / 2\sigma^2(M,a)]
\]

\[
= (2\pi)^{-1/2} \int_{\delta_c/\sigma(M,a)}^{\infty} dx \exp(-x^2 / 2)
\]

\[
\nu_c \equiv \frac{\delta_c}{D(a) \sigma_0(M)}
\]

PS ansaz: \(F \) is the mass fraction in halos \(> M \) (at \(a \))

derivative of \(F \) with respect to \(M \):

\[
n(M,a) dM = - \left(\frac{2}{\pi} \right)^{1/2} \frac{\bar{\rho}}{M} \nu_c \frac{d \ln \sigma_0}{d \ln M} \exp \left(- \frac{\nu_c^2}{2} \right) \frac{dM}{M}
\]

Mo & White 2002
Press Schechter Formalism cont.

\[n(M,a)dM = -\left(\frac{2}{\pi}\right)^{1/2} \frac{\bar{\rho}}{M} \nu_c \frac{d \ln \sigma_0}{d \ln M} \exp\left(-\frac{\nu_c^2}{2}\right) \frac{dM}{M} \]

Example: \[P_k \propto k^n \rightarrow \sigma_0(M) \propto M^{-\alpha} \rightarrow \nu_c = (M/M_*)^\alpha \]
\[\alpha = (3+n)/6 \quad \frac{d \ln \sigma_0}{d \ln M} = \alpha \]

\[n(M) \propto \alpha \tilde{M}^{\alpha-2} \exp(-\tilde{M}^{2\alpha}/2) \quad \tilde{M} = M/M_* \]

self-similar evolution, scaled with \(M_* \)

\[\nu_c \equiv \frac{\delta_c}{D(a) \sigma_0(M)} \quad M_*(a) \text{ defined by } \sigma(M_*,a) \equiv \delta_c \]

\[\sigma^2(R) = (2\pi)^{-1} \int_0^\infty dk k^2 P(k) \tilde{W}^2(kR) \]

Top Hat
\[W_R(x) = \Theta(x/R) \quad \tilde{W}_R(k) = 3[\sin(kR) - kR \cos(kR)]/(kR)^3 \]

approximate
\[M_*(a) = M_0 D(a)^{1/\alpha} \sim 10^{13} M_0 a^5 \]
in a flat universe
\[D(a) = a g(a)/g(1) \]
\[g(a) \approx \frac{5}{2} \Omega_0(a) \left(\Omega_0(a)^{4/7} - \Omega_\Lambda(a) + \frac{1+\Omega_0(a)/2}{1+\Omega_\Lambda(a)/70} \right)^{-1} \]
\[\Omega_0(a) = \frac{\Omega_m a^{-3}}{\Omega_\Lambda + \Omega_m a^{-3}} \]
Better fit using ellipsoidal collapse (Sheth & Tormen 2002)

\[F(> M, a) \approx 0.4(1 + 0.4 / \nu^{0.4}) \text{erfc}(0.85 \nu / 2^{1/2}) \]

1\(\sigma\), 2\(\sigma\), 3\(\sigma\) 22%, 4.7%, 0.54%

Comparison of PS to N-body simulations
Press-Schechter in ΛCDM

$$\Omega_m = 0.3, \Omega_\Lambda = 0.7, h = 0.7, \sigma_8 = 0.9$$

$$\log M_* \approx 13.13 - 1.3z \quad (z \leq 2)$$
Press-Schechter by Excersion Set: \(n(M,a) \)

Linear \(\delta(x) \) at some fiducial \(a \) when \(D(a)=1 \)

Top-hat smoothing in k-space:

\[
\delta_s(x; k_c) = \int_{k<k_c} d^3k \delta(k) e^{-ikx}
\]

At a fixed point \(x \). As \(k_c \) varies, \(\delta_s \) executes a random walk:

\[
\Delta \delta_s = \delta_s(x; k_c + \Delta k_c) - \delta_s(x; k_c) = \int_{k<k_c+\Delta k_c} d^3k \delta(k) e^{-ikx}
\]

\[
\Delta \sigma_0^2 = \sigma_0^2(k_c + \Delta k_c) - \sigma_0^2(k_c)
\]

\[
\sigma_0^2(k_c) = \int d^3k P(k)
\]

\(\Delta \delta_s \) is a Gaussian random variable, independent of \(\delta_s \): Markov random walk.

PS ansatz: mass element initially at \(x \) belongs to halo of mass \(M \) at \(a \) if the random walk first crosses \(\delta_c/D(a) \) at \(\sigma_0^2(M) \)

Fraction of mass in halos \(\gg M \) = fraction of trajectories \(\delta_s(x; k_c) \) which first cross \(\delta_c/D \) at \(k_c<k(M) \)

Solution:

\[
n(M, a) dM = -\left(\frac{2}{\pi} \right)^{1/2} \frac{\rho_c}{M} \frac{d \ln \sigma_0^2}{d \ln M} \exp \left(-\frac{\nu_c}{2} \right) \frac{dM}{M} \quad \nu_c \equiv \frac{\delta_c}{D(a) \sigma_0(M)}
\]

Markov: Past of \(x \) (right) independent of its future (left), so the history of halos of mass \(M \) is superclusters and in voids are statistically identical, i.e. their galaxy populations should be identical.
Proof:

Fraction of mass in halos $\geq M = $

fraction of trajectories $\delta_s(x; k_c)$ which first cross δ_c/D at $k_c < k(M)$

For a given a and $k_c = K_c$, δ_s is Gaussian:

$$P(\delta_s) = [2\pi D(a) \sigma_0(K_c)]^{-1/2} \exp(-\delta_s^2 / 2D^2 \sigma_0^2)$$

#(points $\delta_s < \delta_c$ for all $k_c < K_c$) =

#($\delta_s < \delta_c$ for $k_c = K_c$)

- #($\delta_s < \delta_c$ for $k_c = K_c$ but $\delta_s > \delta_c$ at some $k_c < K_c$)

$$P_{\text{first}}(\delta_s) = \frac{1}{(2\pi \sigma^2)^{1/2}} \left[\exp\left(-\frac{\delta_s^2}{2\sigma^2}\right) - \exp\left(-\frac{(2\delta_c - \delta_s)^2}{2\sigma^2}\right) \right]$$

$$F(> K_c) = \int_{-\infty}^{\delta_c} P(\delta_s) d\delta_s = \int_{-\infty}^{\delta_c/\sigma} \frac{dx}{(2\pi)^{1/2}} e^{-x^2/2} - \int_{\delta_c/\sigma}^{\infty} \frac{dx}{(2\pi)^{1/2}} e^{-x^2/2}$$

Differentiate with respect to k_c (or M):

$$n(M, a) dM = \left(\frac{2}{\pi}\right)^{1/2} \frac{\bar{\rho}}{M} \nu_c d\ln \sigma_0 \exp\left(-\frac{\nu_c}{2}\right) \frac{dM}{M} \nu_c = \frac{\delta_c}{D(a) \sigma_0(M)}$$

$$n(M) \propto \alpha \tilde{M}^{\alpha - 2} \exp\left(-\tilde{M}^{2\alpha} / 2\right) \tilde{M} \equiv M / M_*$$
Mass versus Light Distribution

- Halo mass
- Bright-end problem
- Faint-end problem
- Galaxy stellar mass
- 40% of baryons

Graph showing the distribution of mass versus light, with markers for halo mass, galaxy stellar mass, and bright-end problem.
Conditional Merger Tree: Extended Press-Schechter
Merger Tree: conditional probability
Extended Press-Schechter (EPS): Merger Tree

Given that a mass element belongs to halo M_1 at z_1, what is the probability that it belonged to halo $M_2 (<M_1)$ at $z_2 (>z_1)$?

Equivalent:

Given that $\delta_s(x;k_c)$ first crossed $\delta_c/D(a_1)$ at $k_c=k(M_1)$, what is the probability that it first crossed $\delta_c/D(a_2)$ at $k_c=k(M_2)$.

The same problem as before but with the origin shifted:

$$n(M_2|z_2,M_1,z_1)\,dM_2 = \left(\frac{2}{\pi}\right)^{1/2} \frac{M_1}{M_2} \frac{\delta_c(D_2^{-1}-D_1^{-1})}{\left(\sigma_2^2-\sigma_1^2\right)^{1/2}} \frac{d\ln(\sigma_2^2-\sigma_1^2)^{1/2}}{d\ln M_2} \exp\left(\frac{\delta_c^2(D_2^{-1}-D_1^{-1})^2}{2\left(\sigma_2^2-\sigma_1^2\right)}\right) \frac{dM_2}{M_2}$$

• # of bright E galaxies in a cluster: $M=10^{15}$ today, how many 10^{12} progenitors at $z=2$?
• descendents of LGBs: massive halos at $z=3$ have $n=10^{-2} \text{Mpc}^{-1}$, what mass halos do they inhibit today?
• When did the most massive progenitor include half its current mass?
• How often do two 10^{12} halos merge?
• Infall rate of spirals into clusters: How often does a 10^{15} halo accrete a 10^{12} halo?
Formation of galaxies in a cluster

GIF
Orbits that lead to Mergers

Binney & Tremaine
Galaxy/Halo Biasing

Examples:
- cluster clustering
- bright galaxies (LBG)
- clustering of different galaxy types
Biasing: Subhalos in Host Halos (from EPS)

Host halo: a sphere of radius R today, mass M.

$$\delta = \frac{M}{(4\pi / 3)\bar{\rho}R^3} - 1$$

comoving initial radius

$$R_0 = R(1+\delta)^{1/3}$$

linear-extrapolated to today

$$\delta_0(\delta; \Omega, \Lambda)$$

Subhalos: average # of subs (m, z) in host (R, δ), using EPS

$$N_{\text{subs}}(m, z | R_0, \delta_0)$$

Average over all δ's at fixed R

$$\bar{N}_{\text{halos}} = n_{\text{halos}}(m, z) (4\pi / 3)R^3$$

$$\delta_{\text{subs}} = N_{\text{subs}} / \bar{N}_{\text{halos}} - 1$$

Obtain from EPS for small subs and proto-host-halo

$$m \ll M, D\delta \ll \delta_c$$

$$\nu \equiv \frac{\delta_c}{D\sigma_0(m)}$$

$$\nu = 1 \text{ for } m = M_*(z)$$

Linear biasing factor: $b \approx 1$ for $m \approx M_*(z)$

Mo & White

Peak biasing in a Gaussian field

$$P(\delta > \nu\sigma) \propto \exp\left(-\frac{(\nu\sigma + \epsilon)^2}{2\sigma^2}\right)$$

Kaiser 1984, Bardeen et al. 86

$$\xi_{\text{subs}}(r) = (\nu / \sigma)^2 \xi_{\text{mass}}(r)$$
Elliptical galaxies in the local universe: biased with respect to the dark matter

ACDM CR : E and S0 galaxies
Credits: Mathis, Lemson, Springel, Kauffmann, White and Dekel.
Massive Ellipticals in Clusters

SDSS
Kauffmann et al. 04
Nonlinear Stochastic Biasing

\[b(\delta)\delta = \langle g \mid \delta \rangle = \int dg \, P(g \mid \delta) \, g \]

\[\epsilon = g - \langle g \mid \delta \rangle \]

mean biasing

\[\hat{b} = \langle (b(\delta)\delta^2) \rangle / \sigma^2 \]

“linear” biasing

\[\tilde{b}^2 = \langle (b(\delta)\delta^2)^2 \rangle / \sigma^2 \]

nonlinearity

biasing scatter

\[\sigma_b^2 = \langle \epsilon^2 \rangle / \sigma^2 \]
Correlation Function and HOD
Galaxy type correlated with large-scale structure

Semi-Analytic Modeling
Power Spectrum

![Power Spectrum Graph]

- Intergalactic hydrogen clumping
- Gravitational lensing
- Cluster abundance
- Cosmic microwave background
- SDSS galaxy clustering

Density fluctuations vs. Scale (millions of lightyears)
$\Lambda\text{CDM Power Spectrum}$

$$P(k) \propto k T^2(k)$$

$$T(k) = \frac{\ln(1 + 2.34q)}{2.34q} \left(1 + 3.89q + (16.1q)^2 + (5.46q)^3 + (6.71q)^4\right)^{-1/4}$$

$$q = \frac{k}{\Omega_m h^2 \text{Mpc}^{-1}}$$

normalization:

$$\sigma_8 \equiv \sigma_{\text{tophat}} (R = 8h^{-1}\text{Mpc})$$
Correlation Function

\[
\xi(r) = \langle \delta(\vec{x}) \delta(\vec{x} + \vec{r}) \rangle_{\vec{x}} \tag{1}
\]

\[
\rightarrow \xi(r) = \left\langle \sum_{k} \sum_{k'} \tilde{\delta}_k \tilde{\delta}_{k'} e^{i(k-k') \cdot \vec{r}} e^{-i k \cdot r} \right\rangle
\]

\(\delta\) real, can replace by complex conjugate \(\bar{\delta}_{k'}(-k') = \bar{\delta}_{k'}^*(k')\)

all cross terms \(k \neq k'\) vanish on average because of periodic boundary conditions

isotropy \(\langle |\delta_k|^2(k) \rangle = |\delta_k|^2(k)\)

angular integration \(\int_0^\pi \cos(k r \cos \theta) \sin \theta d\theta = (kr)^{-1} \int_0^{kr} \cos y dy\)

\[
\xi(r) = \frac{V}{2\pi} \int \left\langle |\delta_k|^2 \right\rangle e^{-ik \cdot r} d^3 k
\]

Example

\[
P(k) \propto k^n \rightarrow \xi(r) \propto r^{-(n+3)} \int_{kr=0}^{\infty} dx \ x^{n+1} \sin x
\]

Alternative interpretation:

Construct a realization: select \(\rho(x_1)\) and \(\rho(x_2)\) from an ensemble.

Place a galaxy at volume \(\delta V\) with probability \(\delta P = \rho(x) \delta V\)

\[
\delta = (\rho - \langle \rho \rangle) / \langle \rho \rangle \ \rightarrow \ \langle \rho(x) \rho(x+r) \rangle = \langle \rho \rangle^2 [1 + \xi(r)]
\]

Excess probability over Poisson

\[
1 + \xi(r) = \frac{\# \text{ pairs } (r)}{\# \text{ Poisson pairs } (r)}
\]
Galaxy Correlation Function

Crude Description: power law

\[\xi(r) = \left(\frac{r}{r_0} \right)^{-\gamma} \]

\[r_0 \approx 5 \ h^{-1} \text{Mpc} \quad \gamma \approx 1.8 \]

Zehavi et al. 2004
SDSS
Measured Correlation Functions

\[\xi(r_p, \pi) \]

\[\omega_p(r_p) = 2 \int_0^\infty d\pi \xi(r_p, \pi) \]

\[\omega_p(r_p) = 2 \int_0^\infty dy \xi[(r_p^2 + y^2)^{1/2}] \]

\[= 2 \int_{r_p}^\infty r \, dr \xi(r) (r^2 - r_p^2)^{-1/2} \]

\[\xi(r) = -\pi^{-1} \int_r^\infty \omega_p(r_p) (r_p^2 - r^2)^{-1/2} \, dr_p \]

\[v_{\text{obs}} = cz = Hr + v_{\text{pec}} \]
Galaxy Correlation Function

Zehavi et al. 04 SDSS
Biasing: Luminosity

\[\frac{b}{b_\star} = \frac{\omega_p(L)}{\omega_p(L_\star)} \text{ at } r_p = 2.7 h^{-1} \text{Mpc} \]

Zehavi et al. 04 SDSS
Luminosity Dependence of Galaxy Clustering

Correlation length (Mpc/h)

2dF Survey

Luminosity
Biasing: color

![Graph showing biasing color]
Luminosity function: Early vs Late type

$M_{*_{\text{crit}}} \sim 3 \times 10^{10} M_\odot$

SDSS
Baldry et al. 04
HOD model of Clustering

HOD = Halo Occupation Distribution

Galaxies $m > m_{\text{min}}$ in a halo M: conditional probability $P(N|M)$

Correlation Function

$$\xi(r) = 1 + \xi_{1h}(r) + \xi_{2h}(r)$$

$$1 + \xi_{1h}(r) = \frac{1}{2\pi r^2 n_g} \int_0^\infty \frac{1}{2R(M)} \frac{dn}{dM} dM \left[\frac{1}{2} \left\langle N(N-1) \right\rangle_M f \left(\frac{r}{2R(M)} \right) \right]$$

$\#$ Poisson pairs $n(M)$ av. $\#$ pairs in halo $\#$ pairs (r) from universal $\rho(r)$

$$\xi_{2h}(r) = \left\langle n(M) \left\langle N \right\rangle_M \xi_{\text{halos } M}(r) \right\rangle$$
Dark-Matter Halo Occupation Distribution

$M \sim M_\star(t) \rightarrow \text{group}$ at $z=0 \sim 10^{13}M_\odot$ at $z=1 \sim 10^{12}M_\odot$

$M \ll M_\star(t) \rightarrow \text{early formation, satellites decay by dynamical friction}$

$$\frac{m_{\text{sat}}}{M_{\text{halo}}} < (0.01 - 0.1) \left(\frac{M_{\text{halo}}}{M_\star(0)} \right)^{0.3}$$

$\text{Kravtsov et al. 04, N-body simulations}$

$n=5.86\times10^{-2}$ (h3 Mpc$^{-3}$)
HOD from Correlation Function

Zehavi et al. 04 SDSS
Biasing: Luminosity

Zehavi et al. 04, SDSS
Biasing: Luminosity
Biasing: color

Graphs showing the relationship between various parameters, including w_p, M_r, and N for different color categories (blue, red).