Lecture Hierarchical Clustering

Press Schechter: Halo Distribution Extended PS: Merging Tree Biasing: Galaxies/Subhalos in Halos HOD: Halo Occupation Distribution

Press Schechter Formalism halo mass function n(M,a)

Gaussian random field $P(\delta) = (2\pi\sigma^2)^{-1/2} \exp(-\delta^2/2\sigma^2)$ random spheres of mass M linear-extrapolated δ_{rms} at a: $\sigma(M,a) = \sigma_0(M) D(a)$

fraction of spheres with $\delta > \delta_c = 1.68$:

$$F(M,a) = \int_{\delta_c}^{\infty} d\delta \left[2\pi\sigma^2(M,a) \right]^{-1/2} \exp\left[-\delta^2 / 2\sigma^2(M,a) \right]$$
$$= (2\pi)^{-1/2} \int_{\delta_c / \sigma(M,a)}^{\infty} dx \exp(-x^2 / 2)$$
$$v_c \equiv \frac{\delta_c}{D(a) \sigma_0(M)}$$

PS ansaz: F is the mass fraction in halos >M (at a)

derivative of F with respect to M:

$$n(M,a)dM = -\left(\frac{2}{\pi}\right)^{1/2} \frac{\overline{\rho}}{M} v_c \frac{d\ln\sigma_0}{d\ln M} \exp\left(-\frac{v_c^2}{2}\right) \frac{dM}{M}$$

nonlinear σ linear a(t) $a_0 = 1$

Mo & White 2002

Press Schechter Formalism cont.

$$n(M,a)dM = -\left(\frac{2}{\pi}\right)^{1/2} \frac{\overline{\rho}}{M} v_c \frac{d \ln \sigma_0}{d \ln M} \exp\left(-\frac{v_c^2}{2}\right) \frac{dM}{M}$$
Example: $P_k \propto k^n \rightarrow \sigma_0(M) \propto M^{-\alpha} \rightarrow v_c = (M/M_*)^{\alpha}$
 $\alpha = (3+n)/6$ $\frac{d \ln \sigma_0}{d \ln M} = \alpha$
 $n(M) \propto \alpha \tilde{M}^{\alpha-2} \exp(-\tilde{M}^{2\alpha}/2) \tilde{M} = M/M_*$
self-similar evolution, scaled with M.
 $v_c \equiv \frac{\delta_c}{D(a) \sigma_0(M)} M_*(a)$ defined by $\sigma(M_*, a) \equiv \delta_c$
time P_k $h_*(a) = M_{*0}D(a)^{1/\alpha} \sim 10^{13} M_* a^5$
 $\sigma^2(R) = (2\pi)^{-1} \int_0^{\infty} dk k^2 P(k) \tilde{W}^2(kR)$
Top Hat
 $W_R(x) = \Theta(x/R) \tilde{W}_R(k) = 3[\sin(kR) - kR\cos(kR)]/(kR)^3$
 $in a flat universe$
 $D(a) = a g(a)/g(1)$
 $g(a) \approx \frac{5}{2} \Omega_m(a) \left(\Omega_m(a)^{4/7} - \Omega_n(a) + \frac{1+\Omega_m(a)/2}{1+\Omega_n(a)/70}\right)^3$
 $\Omega_m(a) = \frac{\Omega_m a^3}{\Omega_A + \Omega_m a^{-3}}$

Press Schechter cont.

Better fit using ellipsoidal collapse (Sheth & Tormen 2002)

 $F(>M,a) \approx 0.4(1+0.4/\nu^{0.4}) \operatorname{erfc}(0.85\nu/2^{1/2})$

 $1\sigma, 2\sigma, 3\sigma$ 22%, 4.7%, 0.54%

Comparison of PS to N-body simulations

Press-Schechter in **ACDM**

Proof:

Fraction of mass in halos >M = fraction of trajectories $\delta_s(x;k_c)$ which first cross δ_c/D at $k_c < k(M)$

 $n(M) \propto \alpha \ \widetilde{M}^{\alpha-2} \exp(-\widetilde{M}^{2\alpha}/2) \quad \widetilde{M} \equiv M/M_*$

Mass versus Light Distribution

Conditional Merger Tree: Extended Press-Schechter

Merger Tree: conditional probability

Extended Press-Schechter (EPS): Merger Tree

Given that a mass element belongs to halo M_1 at z_1 , what is the probability that it belonged to halo M_2 (M_1) at z_2 (z_1)?

Equivalent:

Given that $\delta_s(x;k_c)$ first crossed $\delta_c/D(a_1)$ at $k_c=k(M_1)$, what is the probability that it first crossed $\delta_c/D(a_2)$ at $k_c=k(M_2)$.

The same problem as before but with the origin shifted:

$$n(M_2, z_2 \mid M_1, z_1) dM_2 = -\left(\frac{2}{\pi}\right)^{1/2} \frac{M_1}{M_2} \frac{\delta_c (D_2^{-1} - D_1^{-1})}{(\sigma_2^2 - \sigma_1^2)^{1/2}} \frac{d\ln(\sigma_2^2 - \sigma_1^2)^{1/2}}{d\ln M_2} \exp\left(\frac{\delta_c^2 (D_2^{-1} - D_1^{-1})^2}{2(\sigma_2^2 - \sigma_1^2)}\right) \frac{dM_2}{M_2}$$

- # of bright E galaxies in a cluster: $M=10^{15}$ today, how many 10^{12} progenitors at z=2?
- descendents of LGBs: massive halos at z=3 have n=10⁻²Mpc⁻¹, what mass halos do they inhibit today?
- When did the most massive progenitor include half its current mass?
- How often do two 10¹² halos merge?
- Infall rate of spirals into clusters: How often does a 10¹⁵ halo accrete a 10¹² halo?

Formation of galaxies in a cluster

GIF

Orbits that lead to Mergers

Galaxy/Halo Biasing

Examples:

- cluster clustering
- bright galaxies (LBG)
- clustering of different galaxy types

Elliptical galaxies in the local universe: biased with respect to the dark matter

ACDM CR : E and SO galaxies Credits : Mathis, Lemson, Springel, Kauffmann, White and Dekel. GIF simulation

Massive Ellipticals in Clusters

Nonlinear Stochastic Biasing D

Dekel & Lahav

Correlation Function and HOD

Galaxy type correlated with large-scale structure

elliptical elliptical bulge+disk disk

Semi-Analytic Modeling

Power Spectrum

ACDM Power Spectrum

$P(k) \propto k T^2(k)$

$$T(k) = \frac{\ln(1+2.34q)}{2.34q} \left(1+3.89q + (16.1q)^2 + (5.46q)^3 + (6.71q)^4\right)^{-1/4} \quad q = \frac{k}{\Omega_m h^2 M p c^{-1}}$$

normalization:

$$\sigma_8 \equiv \sigma_{tophat} (R = 8h^{-1}Mpc)$$

Correlation Function

 $\xi(r) = \frac{V}{2\pi} \int \left\langle \left| \delta_k \right|^2 \right\rangle e^{-ik \cdot r} d^3 k$

$$\xi(r) \equiv \left\langle \delta(\vec{x}) \delta(\vec{x} + \vec{r}) \right\rangle_{\vec{x}} \quad (1) \qquad \rightarrow \xi(r) = \left\langle \sum_{k} \sum_{k'} \widetilde{\delta}_{k} \widetilde{\delta}_{k'} e^{i(k' - k) \cdot x} e^{-ik \cdot x} \right\rangle_{\vec{x}}$$

 δ real, can replace by complex conjugate $\widetilde{\delta}_{k'}(-k') = \widetilde{\delta}_{k'}^{*}(k')$

all cross terms k≠k' vanish on average because of periodic boundary conditions

isotropy $\left\langle \left| \delta_k \right|^2 (\vec{k}) \right\rangle = \left| \delta_k \right|^2$

$$|^{2}(k)\rangle = |\delta_{k}|^{2}(k)$$

angular integ

$$\rightarrow \xi(r) = \frac{V}{2\pi} \int P(k) \frac{\sin kr}{kr} 4\pi k^2 dk$$

ration
$$\int_0^1 \cos(kr\cos\theta) \sin\theta \,d\theta = (kr)^{-1} \int_0^{kr} \cos y \,dy$$

$$dk \quad \text{example } P(k) \propto k^n \quad \rightarrow \xi(r) \propto r^{-(n+3)} \int_{kr=0}^{\infty} dx \; x^{n+1} \sin x$$

Alternative interpretation:

Construct a realization: select $\rho(x_1)$ and $\rho(x_2)$ from an ensemble. Place a galaxy at volume δV with probability $\delta P = \rho(x) \delta V$ $\delta P_{1,2} = \rho(x_1) \delta V_1 \rho(x_2) \delta V_2$ $\delta = (\rho - \langle \rho \rangle) / \langle \rho \rangle \quad \rightarrow^{(1)} \quad \langle \rho(x)\rho(x+r) \rangle = \langle \rho \rangle^2 [1 + \xi(r)] \quad (2)$ $\langle \delta P \rangle_{ensemble} = \langle \rho(x_1) \rho(x_2) \rangle \delta V_1 \delta V_2 = {}^{(2)} \langle \rho \rangle^2 [1 + \xi(r)] \delta V_1 \delta V$ Exess probability over Poisson $1 + \xi(r) = \frac{\# pairs(r)}{\# Poisson pairs(r)}$

Galaxy Correlation Function

Crude Description: power law

$$\xi(r) = \left(\frac{r}{r_0}\right)^{-\gamma} \quad r_0 \approx 5 \ h^{-1} Mpc \quad \gamma \approx 1.8$$

Zehavi et al. 2004 SDSS

Measured Correlation Functions

redshift distortions

angular separation

$$v_{obs} = cz = Hr + v_{pec}$$

Davis & Peebles 83

Galaxy Correlation Function

Zehavi et al. 04 SDSS

Luminosity Dependence of Galaxy Clustering

Luminosity —

Biasing: color

Luminosity function: Early vs Late type

SDSS Baldry et al. 04

HOD model of Clustering

HOD = Halo Occupation Distribution Galaxies m>m_{min} in a halo M: conditional probability P(N|M)

 $\xi(r) = 1 + \xi_{1h}(r) + \xi_{2h}(r)$

$$+\xi_{1h}(r) = \frac{1}{2\pi r^2 \overline{n}_g^2} \int_0^\infty \frac{1}{2R(M)} \frac{dn}{dM} dM \frac{1}{2} \langle N(N-1) \rangle_M f\left(\frac{r}{2R(M)}\right)$$

Poisson pairs n(M) av. # pairs # pairs (r)
in halo from universal $\rho(r)$

$$\xi_{2h}(r) = \left\langle n(M) \left\langle N \right\rangle_M \xi_{halos M}(r) \right\rangle$$

Dark-Matter Halo Occupation Distribution

Kravtsov et al. 04, N-body simulations

 $M \sim M_{\star}(t) \rightarrow group \quad \text{at } z=0 \sim 10^{13} M_{\odot} \quad \text{at } z=1 \sim 10^{12} M_{\odot}$

 $M \ll M_*(t) \rightarrow$ early formation, satellites decay by dynamical friction

$$\frac{m_{sat}}{M_{halo}} < (0.01 - 0.1) \left(\frac{M_{halo}}{M_{*0}}\right)^{0.3}$$

HOD from Correlation Function

Zehavi et al. 04 SDSS

Biasing: Luminosity

Zehavi et al. 04, SDSS

Biasing: Luminosity

Biasing: color

