Astronomy 233 Physical Cosmology Spring 2011

Homework Set 2 — Solutions
DUE: Thursday May 5

1. One version of the “tired light” hypothesis states that the universe is not expanding,
but that photons lose energy per unit distance

dE _
dr
Show that this hypothesis gives a distance-redshift relation that is linear in the limit z < 1.

What value of K gives a Hubble constant k = (.77 Give some arguments against the “tired
light” hypothesis?

~-KE.

1. TIRED LIGHT

The redshift of light emitted with wavelength A, and observed to have wavelength A5
is defined via
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Meanwhile, the energy of a photon is of course
he
E = } = -,
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and the solution to the given / assumed differential equation is just
}
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When this photon has travelled a distance D and is observed, this becomes
h he
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Rearranging and substituting the expression for z from equation 1, we get
A
(5) P =29 _ 14, = KD=In(1+2)
Acm

For z < 1, the right hand side may be approximated by the lowest-order term in the Taylor
series expansion, namely In(1 + z) = z, and so in this limit

(6) 2z~ KD

Comparing this to Hubble’s Law, we see that K = Hy/c = h/c 100 km/s/Mpc, and so for
h = 0.7, we obtain K = 0.23/Gpc. That is, a photon would lose (1/e) of its energy roughly
every 4 Gpe. — John Forbes

Besides the lack of energy conservation and physical motivation, the “tired light” relation
between redshift and distance is completely different from the Hubble law except at small
redshifts — but Type 1la supernovae and other measurements of distance and redshift sepa-
rately from nearby back to the Cosmic Background Radiation are in good agreement with
the predictions of the standard ACDM cosmology with current cosmological parameters,
and therefore incompatible with “tired light.” — added by Joel



2. Consider a "power-law” cosmology, where the scale factor a{t) = (t/t;)" where n is
some number. For example, for the Einstein-de Sitter cosmology, n = 2/3.

(a) Verify that the Hubble radius is dyy = ¢/Hy = ety /n. Consider a galaxy that radiated
at emission redshift z., corresponding to scale factor a, = 1/(1 + z.), light that we see

today. Using
to dt
d t =Te = / _— Y
»(to) ., aft)
show that the proper distance today to this galaxy is

dylto) = §

and that the proper distance at the time of emission was

n -
adn(l- a7

d,(t.) = a.r,

Note that the emission distance d,(f.) vanishes for {. = 0 (the Big Bang) and for £, = ;.
Check that these formulas agree with the usual results for the E-dS case.

2.1. Distances. Given this scale factor-time relation, we can directly compute the deriv-
ative of the scale factor,

A ~ - a(t - n—1)/x
(7 a(t) = ntg'(t/to)" ! = na(t)/t = nt_o#)l/" = ntga(t)"" /"
and so with the definition of the Hubble parameter, we have
_ _ _ falt)y _ 1 _
(8) dy = C/Ho =c/H(ty) =c (_d(to)) = c——ntal = cto/n

The scale factor-time relation also makes the comoving distance easy to calculate

(9)
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which, when compared with the assumed form of a(t) is just

(10) dp(to) = re = dyy—— (1 - af!=™/")

The proper distance at a particular time is in general given by
obs Te tobs
(11) dy(t) = / ds = / a(t)dre = a(t)/ cdt/a(t) = a(t)re
em 0 tem
and so at the time of emission, the proper distance is simply

(12) dp(te) = a(te)re = aere

For an Einstein-deSitter Universe, n = 2/3, which gives dp(tp) = 2dp(1 —a.lg/ 2) and dy(te) =

2dpae(l — aé/ 2). These results agree with e.g. Ryden’s equations 5.60 and 5.61 so long as
one replaces a, = 1/(1 + z) and dy = ¢/Hy.




(b) Show using Hubble's law that the velocity of this galaxy away from us today (i.e., at
t= to) is

ne
v(tg) = ——(1 —a /"
(to) = 7 )
and that the galaxy’s velocity at the time of emission {. was

ne
l1—-n

u(t.) = (ac("_l)/" -1)

Note that when z, is small (i.e., a. is near 1), both recession velocities reduce to v = ez,
as expected. (A graph of these velocities vs. redshift for the E-dS case was shown in class.)

2.2. Velocities. Hubble’s Law is the statement that proper distance is proportional to
recessional velocity, which must be true in an isotropically expanding universe where ve-
locities are dominated by the Hubble flow

(13)  v(t) = H(t)dy(t) = %a(t)re = ntyla(t) "V r, = (c/dg)a(t) /" 1,

Evaluating this expression at the present day,

cn N
(14) v(to) = (c/dp)re = T— (1= afi=rm)
and at the time of emission,
(15)
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(c) Show that the distance to the particle horizon is dyn /(1 —n). Show that whenn > 1/2
the radius of the observable universe is larger than the Hubble radius, and that in the limit

n — 1 there is no particle horizon. (The case n = 1 corresponds to an empty universe,
also called the Milne cosmology.)

2.3. Particle Horizon Distance. The particle horizon is like an object from which light
was emitted at a.,t, — 0 and is observed today. The proper distance to such an object is
(16) dy(to) = dn g (1= 00-/") = dy

If we consider the regime where 0 < n < 1, then for increasing n, the numerator monoton-
ically increases and the denominator monotonically decreases, hence the overall expression
must monotonically increase. For n = 1/2, we have dy(to) = dy, so clearly for n > 1/2, it
follows that dp(to) > dp. As n approaches 1, dp(to) approaches infinity, which physically
means that an object which emitted light at the big bang whose light is just now reaching
us must be infinitely far away, in other words light has had time to reach us from all closer
objects, and so if every object in the universe is a closer object, there is no particle horizon,
i.e. no distance beyond which we cannot see.




(d) Show that Hubble's law implies that the velocity at the particle horizon is en/(1 — n).
Show that the velocity of the particle horizon itself is ¢/(1 — n), and that this means that
the particle horizon sweeps past the galaxies at the particle horizon at the speed of light.

2.4. Particle Horizon Velocity. Using the formula from part b for v(tg) with a, = 0
gives

cn - cn
(17) Vrecessional (t0) = = (1 -t ")/") = -

The velocity of the particle horizon itself may be found by taking the time derivative of
the proper distance

18) v= 20 = 5 (o) [ ) = & (a0 7200 ) = 4 (T2 0/00)

Evaluating the derivative is now trivial, and using the value of the Hubble radius confirmed
in part a, we have

n dH n c c
1 -
(19) v= l—nto l—nn 1—n

Now if we take the difference between the recessional velocity, which is the velocity relative
to us of galaxies currently at the particle horizon, and the velocity of the horizon itself, we
will get the velocity of the particle horizon relative to those galaxies

c cn

(20) Urel=v_vrecessional=l_n—l_n-:l_n(l—'n):c.

— John Forbes



3. Short calculations:

(a) If a neutrino has mass m,, and decouples at T,; ~ 1 MeV, show that the contribution
of this neutrino and its antiparticle to the cosmic density today is (Dodelson Eq. 2.80)

My,

L = Sihev

3). The neutrino number density can be found from the photon number density as:

]
vERT

Given the current temperature of the universe, this works out to = 112 em™>. At late times
the energy density of massy neutrines p, reduces to m,n,, giving the following equation

for neutrino density:
P 8=CGn,
o VT3HE
_ . B7Gny ( hp /2% )?
Y3 2.133 x 10~33h eV
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Qu-:

=m,

N
2
94h? eV — Elizabeth Lovegrove

(b) Verify that n; = ny/n., is given by (Dodelson Eq. 3.11; Weinberg, Cosmology, pp.

168-169)
2
e = 5.5 x 1071 (Q"—h’)
0.020

3.2. Baryon Fraction. As in the previous problem, we recall that n.(7) = 2¢(3)7~273.
Since the total number of baryons and photons is more or less conserved, we can evaluate
this for the present day temperature of the CMB and compare to the baryon fraction. The
baryon number density must be related to the cosmic baryon fraction via

Pb mynyp
2 Q= =
(27) b e 8.008 x 1011 )2eV4

Adopting the proton mass as the typical mass of a baryon, we obtain
(28)

—11p2,174 3
o = ny _ 8.098 X 10_2 h?eV Qz/mp (116051{) ( mp i ) — 274 % 10-5Quh2
Ny 2¢(3)7m2(2.725K) leV 938 x 106eV
so factoring out two percent from the baryon energy density,
Qph?
(29) m = 5.48 x 10710 (%)

— John Forbes



(c) Verify the time-temperature relation (Dodelson Eq. 3.30)

t = 132sec (0.1MeV/T')?

The time-temperature relation is found from:

1dT /8'.'er
Tdt \V 3

When decays become important and e”e” annihilation is complete, the energy density
becomes:

2
m

~ 336 T
P 30

Combining these two and integrating yields:
1dT _ o \/8176‘{3.361.'7/30)
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T — Elizabeth Lovegrove

(d) Calculate the redshift of matter-radiation equality z., in terms of ©,,, and h. Assume
that the photon temperature today is 7', = 2.73K and use the fact, derived in class {(and
Weinberg, Cosmology, Eq. 3.1.21), that the total energy density in radiation (i.e., photons
and three species of neutrinos of negligible mass) after ¢ e~ annihilation is p, = 1.68p,,
where p., is the photon energy density.

To find the redshift of matter-radiaton equality, we set the densities of matter and radiation
equal:
Q Oy
a*
_ 2
7 Qm
168 py
Qs per
1687 7*
Qs 15 per
- 18447°G T
45k k%’
415 %107
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Taking €2, = 0.27 and h = 0.7, 2., ~ 3200. added by Joel

H = kyh

= (1+Zeq)_1



4. It is possible that the universe contains a quantum field called “quintessence” which in
the simplest version has an equation of state parameter wg = pg/pg with energy density
po positive (of course) but pressure py negative. Suppose that the universe contains
nothing but pressureless matter, i.e. with w,,, = 0, and quintessence, with wg = —3/4. The
current density parameter of matter is 2,,, =~ 0.3 and that of quintessence is Qg = 1-0Q,,.
At what scale factor a,,p will the energy density of quintessence and matter be equal?
Solve the Friedmann equation to find a(t) for this universe. What is a(t) in the limit
a ¥ a,o? What is the current age of the universe, expressed in terms of H;, and Q,, o7

4. QUINTESSENCE

In general, the fluid energy equation implies that for a material of EoS parameter w, the
energy density evolves as

(39) p= poa-—:l(l-fw)

where of course we're familiar with the usual w = 1/3, w = 0, and w = —1 cases corre-

sponding to photons, cold matter, and a cosmological constant. This means that for this
quintessence-matter universe, the Friedmann equation is

(40) H? = H} (QQ,O/a:’/4 + Qmo/a’)
Setting the two energy densities equal and solving for a, we get
(41) am@ = (Qm,0/0)"° ~ 0.69
for a flat universe with ©,, 0 = 0.3. From the Friedmann equation, we have
“ d

(42) Hot = / a

0 \/QQa5/4 + Q/a
With the aid of Mathematica and the definition = a/a;nq, this evaluates to

3/2

_4ad*2B_,04(2/3,1/2) 4 g
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where the incomplete beta function is defined by

(43) Hot B_0/4(2/3,1/2)

z
(44) B.(a,b) = / o~ (1 — t)>"lat
0
Again with Mathematica’s help, I find that the leading order term in an expansion about
infinity is
Bosa(2/3,1/2) . ag

so for a > amg,
3/2
8 3/8
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or simplifying a bit,

3 8/3
(47) a= (gHOt\/Qm) a,;"z?

Meanwhile, evaluating equation 43 numerically for z = 1/0.69, the age of the universe
today is

(48) to =

Ho/Cim — John Forbes



Here’s an alternative solution by Elizabeth Lovegrove

4). The fluid equation states that:
a
€+ 3;(6 +P)=0

must hold for each component of the universe, where € is energy density. Integrating this
equation gives the evolution of energy density as:

€= eoa—&(l-w)

where w is the state parameter. Assuming a universe with a density of pressureless matter
Q, = 0.3,w,, = 0 and quintessence Q, = 1 — Q,,, w, = —3/4, these densities therefore

decline as Q,a~3,Q,a %%, They are equal when:

Qma_3 = (1 - Qm)a_3/4

Q
9/4 _ _fm
© T 1o,
Q, \¥°
Qg = (1 —Qm) = z = 0.457

Solving the Friedmann equation gives:

L\ 2

= Hpt

/ da
a\/Qma‘3 + Qa3

/ Qy ¢ F, 2 5 Q
Hyt =

3 Qm +an9"l 4
a

where 2Fi() is a hypergeometric function. When a > amq, quintessence dominates, and
the Friedmann equation reduces to:

a\? :
(&) - He@wa

8 .
"= 30,“
The current age of the universe can be found by setting a = 1 and solving for ¢ using the

full solution to the Friedmann equation; this cosmology gives an age of ¢t = 0.920923/Hy =
12.86 billion years.



5. Suppose that the neutron decay time were 7, = 1890 s instead of 7, = 890 s, with
all other physical parameters unchanged. Estimate Y}, the primordial mass fraction of
nucleons in *He, assuming for simplicity that all available neutrons are incorporated into
“He.

5. HALF HOUR NEUTRONS

The first place the neutron lifetime enters into the calculation is via the rate for neutron
to proton conversion.
49 - 255
( ) - Tuxs
where x is the inverse of the temperature in units of the difference in mass between the
neutron and proton, about 1 MeV. Assuming this mass difference is not affected by the
change in neutron lifetime, the relevant value of x where conversions become inefficient
is still about 1. This conversion rate is relevant through the evolution equation for the
neutron abundance,

(12 + 6z + z?)

(50) dX, _ TAnp
dx H(z=1)

Doubling the neutron’s lifetime approximately halves the RHS of this equation, but the
value which sets the helium abundance is this value at large values of x, for which the size
of Anp serves only to increase or (as in this case) decrease the speed with which the solution
approaches its asymptotic value. Thus I conclude that the primary effect of altering the
neutron’s lifetime will simply be from the alteration of the decay rate, while the asymptotic
neutron abundance neglecting decays will be similar to its previous value.

The time-temperature relation is also relatively unaffected, so the fraction of neutrons
which survive during a period of time where decays are the primary mechanism affecting
neutron abundance is

(51) exp [~At/7,] =~ exp [— (%920) ((?—017)2] = (.867

The left-hand side simply reflects the definition of neutron decay time if the primary
process is decay with some small probability of decay per neutron per unit time. The 132
is the scaling from the time-temperature relation, as is the fact that the temperature ratio,
0.1/0.07 is squared. A tenth of an MeV is simply the scaling of the time-temperature
relation, while 0.07 MeV is the temperature at which nucleosynthesis begins. Thus

(52) Yy ~ 2Xp(Thue) = 2 x 0.15 x 0.867 = 0.26

where 0.15 is the same asymptotic value of X, neglecting decays as is used in Dodelson
for the reasons mentioned above. Thus I estimate that a doubling of the neutron’s lifetime
results in an increase in the helium mass fraction from about 23% to 26%.

— John Forbes

(e = Xu(1+e™))



