Astr 233 Physical Cosmology Spring 2011

Homework Set 3 — Solutions

DUE: Thursday May 19

1. ACDM Fluctuation Power Spectrum

(a) Explain why the ACDM power spectrum P(k) is maximum near a specific wave number
Emax and why it asymptotically approaches P, o k~3log?(k) at k > kmax. (A simple
derivation of the log2 k factor is sketched in my lectures at the 1984 Varenna School* — see
especially page 91.) What is the physical origin of the scale corresponding to kmas?

1). The power spectrum of fluctuations has a turnover/maximum at the wavenumber cor-
responding to the size of the horizon at the time of matter-radiation equality, i.e. the size
of the last fluctuation to come inside the horizon before the transition to matter-dominated
growth; because it was the last to come into the horizon, this fluctuation was suppressed
the least. The spectrum tends towards P o k3 at high k because at higher wavenumbers
the fluctuations enter the horizon earlier and earlier in the radiation-dominated era; the
primordial k! spectrum is correspondingly suppressed by an additional factor of k~%. The
log2k factor derives from the contribution of the decaying mode during the radiation dom-
inated era, which acts more strongly on smaller fluctuations that spend more time within
the horizon during this era.

(b) Carry out the calculation outlined in slide 5 of the Week 6 lecture slides** and derive

the equation for the linear growth of density fluctuations § + 2H 5= A7Gp,,d, and verify

that the growing mode grows as scale factor a in the matter dominated era and as a? in

the radiation dominated era.

Applying the 00 component of Einstein’s equations R= :—4:—6(0 +3p)R.
to both the fluctuation and background in the figure in my Week 6, page 5, notes
one finds R(1+a)+2Ra+ Ra= —(47G/3)pR(1 + a + §),
or 5+ 2(R/R)6 = 47 Gpé.

Substituting (R2/R) = 3t valid for a flat (k = 0) matter-dominated universe,
and trying & = %, one finds (a+ 1)(a — 3) = 0. The general solution of (2.52)
is thus

§= A + Bt~ (2.53)

Notice that the amplitude of the fluctuation in the growing mode has the same

rate of growth as the scale factor R in the matter-dominated universe.



An analogous calculation for a radiation-dominated universe gives
§= At + Bt (2.54)

This time the growing mode for the amplitude grows as the square of the scale
factor (i.e., § & R?) in the radiation-dominated universe. The solution (2.54) is
actually relevant only on scales larger than the horizon, since once the fluctua-

tions come within the horizon, the radiation and baryons start to oscillate and the
neutrinos freely stream away. (This is from my Varenna Lectures.)

Top-Hat Model for Galaxy formation

Assume that a proto-galaxy is a sphere of uniform density p,(t), whose time evolution
can be described by a bound-closed Friedmann model (i.e. a “mini-universe” with k = 1
and A = 0). Assume that this sphere is embedded in a background universe which is
Einstein-deSitter (i.e. & = 0, A = 0) of mean density p(t). (At early times, the E-dS
model is always a good approximation, since the dark energy contribution only became
important at fairly low redshift.) We wish to determine the way the density contrast p,/p
evolves in time. Following is a guide, step by step.

2. From a small density perturbation until maximum expansion

(a) The Friedmann equation of an Einstein-deSitter model in the matter era is

. 2a* . Ar
a? = . -k, a E?Gpoag,

where pg and ag are the values of the universal density and expansion factor today.
Write the implicit solution for the universal expansion factor a(t) in terms of the
mass constant a* and the conformal time 7 [defined by dn = dt/a(t)], namely
write the expressions for a(n) and ¢(n7). Do the same for the perturbation, where
you denote the corresponding quantities as a,, a,, 7, etc.

(b) Relate the solutions inside the perturbation and in the background by demanding
that the physical time ¢ is the same in both. Use this to relate 1 to 7,, and then to

express a in terms of 7, (rather than 7). Recall that we defined a*  pgag = pa®
(and a;, in analogy), and show that

po _ I(np —sinp)?
p o 2(1—cosmp)®’



(a) [o find the expansion factor in terms of conformal time:
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For the perturbation (k = 1) the situation is more complicated:
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The boundary conditions imply that C' = 7 /2, so the full equation for a, is:
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— Elizabeth Lovegrove



(b) Time can be found from conformal time and a:
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Since physical time must be the same in both universes:
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— Elizabeth Lovegrove

and use Taylor expansions to show that in the linear regime, when the perturba-
tion is small, dp/p < 1, namely at early times, 7, < 1, the perturbation growth
rate is

% x t2/3,

P
Compare to what we obtained using linear perturbation analysis.

(c) Taylor-expanding this equation produces the limit (dropping all constant factors):
5pp _ (o —mp+1p—mp)°
p (A-1+n—mn)?
_ mp(l—mp)°

=P P
g1 —n?)?
1
1—n2
~mp4+1-1

— Elizabeth Lovegrove



(d) Show that at maximum expansion, when the perturbation turns around, the
density contrast is
Pp _ 9
p 16
Note that this is true for any spherical perturbation, no matter when it reaches
its maximum expansion.
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(d) The perturbation scale factor a, reaches its maximum when 7, = 7, so the density at
maximum expansion is:

3. Dark-matter collapse

(a) Let the mass inside the perturbation be M, and its radius at maximum expansion
be R,,4-. Assume that the kinetic energy at maximum expansion is zero (namely
no non-radial motions). Assume that the collapse ends in virial equilibrium,
where the kinetic energy equals - half the potential energy:

~_GM

Rvir .
Use energy conversation during the collapse of dark matter (as was done in class)
to show that

V2

1
Rvir - §R4naz-

What is the corresponding growth of density inside the halo between maximum
expansion and virialization?

(b) What is the density contrast in the virialized halo relative to the background
cosmological density at the time of virialization? In addition to the two factors
already computed above, we have to include the decrease of the cosmological den-
sity between the time of maximum expansion (¢,,,.) and the time of virialization
(tyir). Take this time to be roughly the time of collapse of the closed “mini-
universe”, namely when 7, = 27. Show that the density contrast at virialization
is

Pe _ 17s.
p



3). At maximum expansion the kinetic energy is zero, so total energy E' = W,,,, where W,
is the potential energy at maximum. At virialization:

1
GM? _ GM 2
2R4)ir R‘m
1
Rvir = ERm
The density of the perturbation grows as:
,  3M
Pr= 4w RS,
B 3M
~ 4m(1/2Rm)3
= 8pp

In a flat FRW universe, density goes as p = 1/(67Gt2). At maximum extension ¢ = Ty,
and at virialization ¢t = 2may, so p’ = p/4.

— Elizabeth Lovegrove

4. The epoch of galaxy formation

(a) Let the observed mean density in a galactic halo be p,;,, when the cosmological
density today is pp. Based on the above computation, what is the epoch of
formation (namely virialization) of this halo? Express it in terms of redshift z,;,
(recall 1+ z = ag/a), and alternatively in terms of time £, /t.

(b) Express pg in terms of £2,,, and the Hubble constant h (where Hy = 100h kms™'Mpc™1).
Show that

. 1/3
(14 2)vir =6 (L) (2 h?%)~1/3,
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(c) A halo is observed to have a flat rotation curve with velocity V = 220kms~! and
a virial radius of R = 100h~! kpc. What can we say about its formation epoch?

(d) The gas loses energy by radiation and by dissipation during the collapse. By
observing the density of the gas (and stellar) component today, what can we say
about the epoch of galaxy formation?



(a) For virialized halos, pp/p = (9/2)(2m)? = 178. After virialization pp is (approx-

imately) constant while p = poa™2. So to determine a,; set pp/p = (pp/po)a,s,
avir = (178p0/pvir)*/® = (1 + zy;)~'. For simplicity assuming an Einstein-de Sitter
3/2

universe, ty; = a,;. to-
(b) For E-dS, pop = p. = 3H?/(87G) = 1.36 x 101h%, M, Mpc—3. More generally, py =
Qmpe. Using the latter,

(1+ Zvir) = (Pvir)1/3(178QmPC)_1/3 = 6‘7(pvir/10_24g Cm_3)1/3(th2)_1/3

(c) The circular velocity V satisfies V2 = GM/R, so plugging in the values V = 220 km/s
and R = 100h~! kpc, puir = (RV?/G) 3/(47R3) = 1.8 x 1072%h% g cm™3. Then using
the result from (b), (1 + zyir) = 6(0.018)1/30,,"% = 1.37Q0/%. For Q,,, = 0.27, this is
(1+ zoir) = 2.43.

(d) Because of dissipative energy loss, the gas and stars will have much higher central
density than the dark matter. If one were to use that density in the above calculation, one
would get a higher formation redshift than that of the halo, which would be misleading.
On the other hand, the redshift calculated in part (c) is that of the entire halo. But
dark matter halos don’t have constant density; instead, the central region has much higher
density — which indicates that it formed at higher redshift.



