Stellar Merger trees

Introduction

- Galaxy and clump detection
- Group finder
- Decomposition of the density field into a tree structure
- Merger history
- Clump tracking

Analysis

- Co-rotating clumps? Origin of the stellar population
- Conclusion
- How can I help

Hydro ART simulations sample Stellar Merger Trees

Dylan Tweed dylan.tweed@googlemail.com

Racah Institute of Physics, HUJI, Jerusalem

CANDELS Theory Workshop - UCSC -August 8th – 10th 2012

Analysis of ART simulations.

Stellar Merger trees

Introduction

Galaxy and clump detection

- Group finder
- Decomposition of the density field into a tree structure
- Clump tracking

- Co-rotating clumps? Origin of the stellar population
- Conclusion
- How can I help

- Collaborators, Daniel Ceverino, Nir Mandelker, Adi Zolotov, Marcello Cacciatto, Loren Hoffman, Avishai Dekel, Joel Primack.
- AMR simulation hydro ART, (Kratsov, Klypin), 30 zoom-in simulations of high redshift galaxies, spatial resolution 35-70 kpc.
- Main focus, VDI, disc evolution, bulge formation.

Intro section

Stellar Merger trees

Introduction

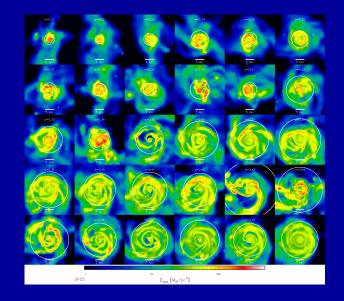
Galaxy and clump detection

- Group finder
- Decomposition of the density field into a tree structure
- Merger history
- Clump tracking

Analysis

- Co-rotating clumps? Origin of the stellar population
- Conclusion
- How can I help

Sample http://www.wikihost.org/w/art_hydrocosmosims

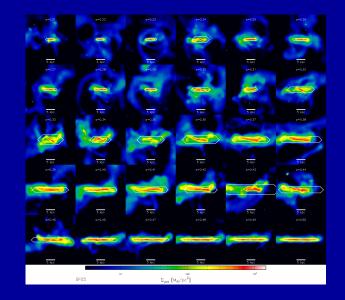

Galaxy	Target M _v	R _v	Mv	M _{star}	Mg	a _{fin}
	$10^{12} M_{\odot}$	kpc	$10^{12} M_{\odot}$	$10^{11}~\text{M}_{\odot}$	10^{11} M _{\odot}	
MW01	1.53	102	0.81	0.72	0.57	0.42
MW02	1.21	105	0.89	2.56	1.12	0.34
MW03	1.93	099	0.73	0.60	0.51	0.42
MW04	4.01	123	1.42	1.41	0.89	0.42
MW06	40.9	106	0.92	1.06	0.49	0.50
MW07	1.70	073	0.30	0.30	0.22	0.50
MW08	1.41	071	0.28	0.28	0.15	0.50
MW09	1.10	059	0.16	0.19	0.08	0.50
MW10	1.53	102	0.82	0.72	0.44	0.50
MW11	1.42	088	0.53	0.51	0.28	0.40
MW12	1.69	130	1.70	2.06	1.01	0.48
VL01	2.00	117	1.23	1.54	0.75	0.37
VL02	2.00	101	0.81	0.89	0.46	0.50
VL03	2.04	117	1.22	1.44	0.76	0.33
VL04	2.06	109	1.01	1.33	0.51	0.50
VL05	2.00	118	1.28	1.29	0.75	0.41
VL06	2.01	099	0.75	0.94	0.32	0.50
VL07	2.61	129	1.66	2.15	0.82	0.35
VL08	2.66	112	1.09	1.35	0.46	0.50
VL09	2.59	086	0.49	0.61	0.24	0.34
VL10	2.59	102	0.81	0.95	0.44	0.50
VL11	2.64	130	1.73	2.02	0.81	0.50
VL12	2.61	105	0.90	0.96	0.51	0.50
SFG1	3.30	129	1.66	2.10	0.87	0.46
SFG4	3.29	112	1.09	1.16	0.66	0.42
SFG5	3.33	123	1.38	1.52	0.78	0.50
SFG8	6.59	121	1.38	1.70	0.72	0.35
SFG9	5.17	135	1.89	2.44	1.22	0.49

Stellar Merger trees

Introduction

- Galaxy and clump detection
- Group finder
- Decomposition of the density field into a tree structure Merger history
- Clump tracking

- Co-rotating clumps? Origin of the stellar population
- Conclusion
- How can I help

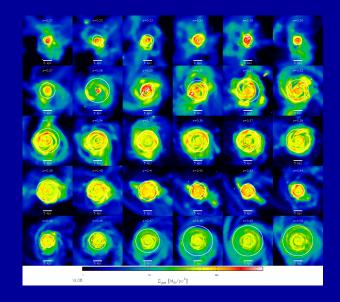


Stellar Merger trees

Introduction

- Galaxy and clump detection
- Group finder
- Decomposition of the density field into a tree structure Merger history
- Clump tracking

- Co-rotating clumps? Origin of the stellar population
- Conclusion
- How can I help

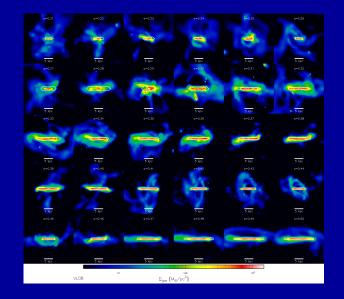


Stellar Merger trees

Introduction

- Galaxy and clump detection
- Group finder
- Decomposition of the density field into a tree structure Merger history
- Clump tracking

- Co-rotating clumps? Origin of the stellar population
- Conclusion
- How can I help



Stellar Merger trees

Introduction

- Galaxy and clump detection
- Group finder
- Decomposition of the density field into a tree structure Merger history
- Clump tracking

- Co-rotating clumps? Origin of the stellar population
- Conclusion
- How can I help

Overview

Stellar Merger trees

Introduction

Galaxy and clump detection

- Group finder
- Decomposition of the density field into a tree structure
- Clump tracking

Analysis

- Co-rotating clumps? Origin of the stellar population
- Conclusion
- How can I help

Introduction

Galaxy and clump detection

- Group finder
- Decomposition of the density field into a tree structure
- Merger history
- Clump tracking

Analysis

- Co-rotating clumps?
- Origin of the stellar population

Conclusion

Pipeline

Stellar Merger trees

Introduction

Galaxy and clump detection

- Group finde
- Decomposition of the density field into a tree structure
- Clump tracking

- Co-rotating clumps? Origin of the stellar population
- Conclusion
- How can I help

- Group finding on stellar component: Galaxies, clumps.
- Merger trees.
- Analysis: Galaxy evolution, In-situ clump, Ex-situ clump (mergers/interactions)

AdaptaHOP

Stellar Merger trees

Introduction

Galaxy and clump detection

Group finder

Decomposition of the density field into a tree structure Merger history Clump tracking

Analysis

Co-rotating clumps? Origin of the stellar population

Conclusion

- AdaptaHOP: group-finder algorithm, inspired from SUBFIND and HOP
- Written in 2003 by Stéphane Colombi.
- Incorporated to SAM GalICS (Galaxies In Cosmological Simulations) from 2005 as part of the Horizon Project (http://www.projet-horizon.fr/, PI: Romain Teyssier)
- Also used to detect clumps in AMR zoom-in simulations Ramses (Devriendt) ART (Tweed).

Basic idea

Stellar Merger trees

Introduction

Galaxy and clump detection

Group finder

Decomposition of the density field into a tree structure Merger history Clump tracking

Analysis

Co-rotating clumps? Origin of the stellar population

Conclusion

- Gets a SPH density for each particle n closest neighbors Oct-tree scheme.
- Groups particles around local density maxima.
- Maps those maxima in a structure tree.
- Defines galaxies and clumps from the hierarchy of density peaks.
- Note: Galaxies and clumps are not stripped of unbound particles.

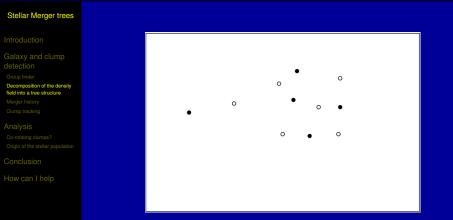
Selection of clumps candidates

Stellar Merger trees

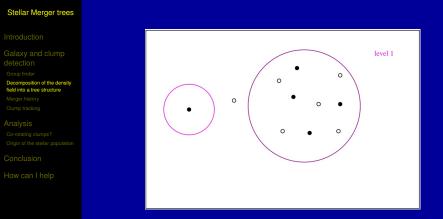
Introduction

Galaxy and clump detection

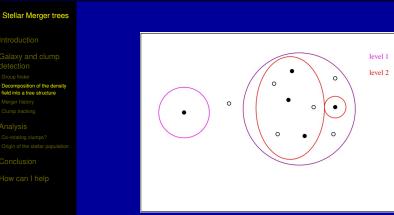
Group finder

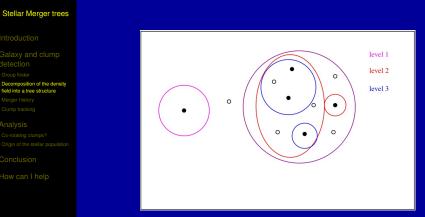

Decomposition of the density field into a tree structure Merger history Clump tracking

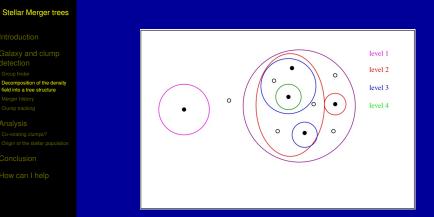
Analysis


Co-rotating clumps? Origin of the stellar population

Conclusior


- Number of particles: "mass" thresholding.
- shape selection $\rho_{\max} \alpha > \langle \rho_{node} \rangle$, size $r > r_{\epsilon}$.
- Removing Poisson noise, $< \rho_{node} > > \rho_t * [1 + fudge/\sqrt{N}]$
- Only topological, no unbinding.


Symbols: filled: local maxima, open: local saddle point Density distribution= groups of particles around maxima connected by saddle points.


Symbols: filled: local maxima, open: local saddle point First density thresholding, cut haloes from the background. $\rho_t = 80 < \rho_{\rm DM} >$ analog to FOF b=0.2.

Symbols: filled: local maxima, open: local saddle point Separating local maxima into nodes by increasing density of saddle points

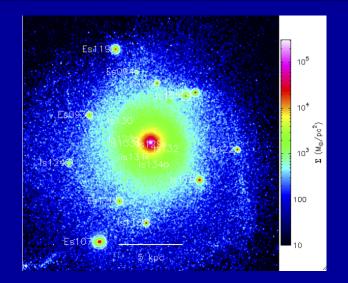
Symbols: filled: local maxima, open: local saddle point Separating local maxima into nodes by increasing density of saddle points

Symbols: filled: local maxima, open: local saddle point Some density peak might not be isolated as node (low number of particles, Poisson noise)

Merger trees

Stellar Merger trees

Introduction

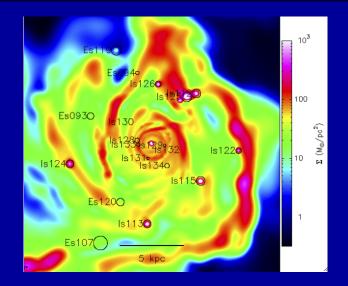

- Galaxy and clump detection
- Group finder
- Decomposition of the density field into a tree structure
- Merger history
- Clump tracking
- Analysis
- Co-rotating clumps? Origin of the stellar population
- Conclusion
- How can I help

- Star particles used as tracer.
- One descendent per galaxy/clump
- In-situ clump: no progenitor detected as the separate galaxy.
- Ex-situ clump: at least one progenitor detected as a separate galaxy.
- 6 merger fraction.

Stellar Merger trees

Introduction

- Galaxy and clump detection
- Group finder
- Decomposition of the density field into a tree structure
- Merger history
- Clump tracking
- Analysis
- Co-rotating clumps? Origin of the stellar population
- Conclusion
- How can I help


Stellar Merger trees

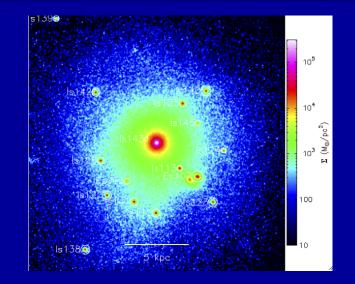
Introduction

- Galaxy and clump detection
- Group finder
- Decomposition of the density field into a tree structure
- Clump tracking

Analysis

- Co-rotating clumps? Origin of the stellar population
- Conclusion
- How can I help

a=0.37


D. P. Tweed Racah Institute

Stellar Merger trees

Introduction

- Galaxy and clump detection
- Group finder
- Decomposition of the density field into a tree structure
- Merger history
- Clump tracking

- Co-rotating clumps? Origin of the stellar population
- Conclusion
- How can I help

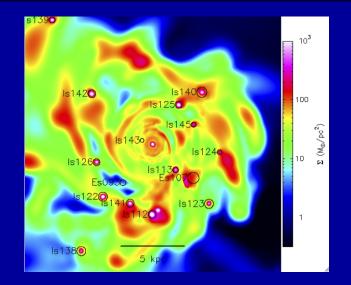
Stellar Merger trees

Introduction

Galaxy and clump detection

Group finder

Decomposition of the density field into a tree structure

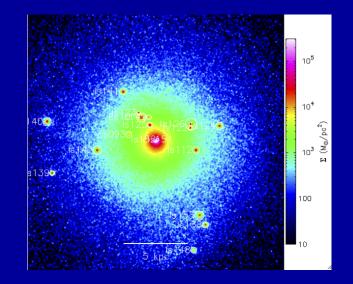

Clump tracking

Analysis

Co-rotating clumps? Origin of the stellar population

Conclusion

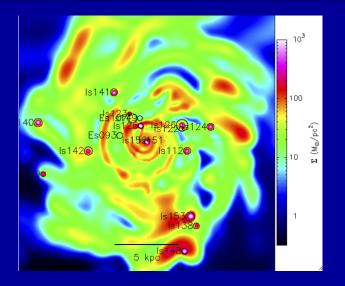
How can I help


Stellar Merger trees

Introduction

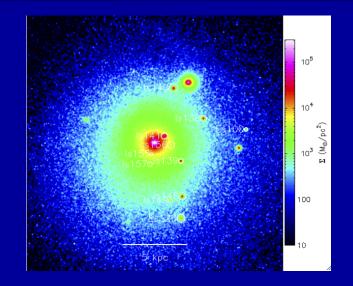
- Galaxy and clump detection
- Group finder
- Decomposition of the density field into a tree structure
- Clump tracking

Analysis

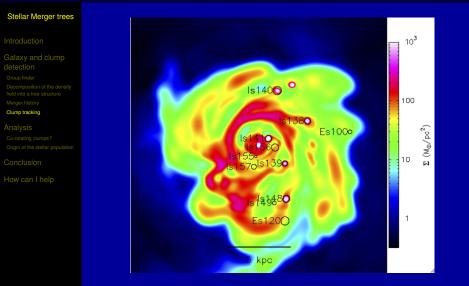

- Co-rotating clumps? Origin of the stellar population
- Conclusion
- How can I help

Introduction

- Galaxy and clump detection
- Group finder
- Decomposition of the density field into a tree structure
- Merger history
- Clump tracking
- Analysis
- Co-rotating clumps? Origin of the stellar population
- Conclusion
- How can I help

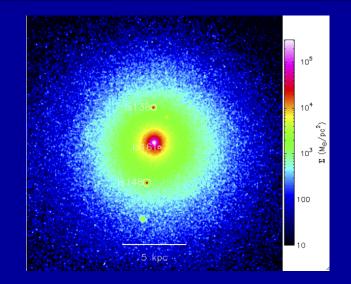


Stellar Merger trees


Introduction

- Galaxy and clump detection
- Group finder
- Decomposition of the density field into a tree structure
- Clump tracking

- Co-rotating clumps? Origin of the stellar population
- Conclusion
- How can I help

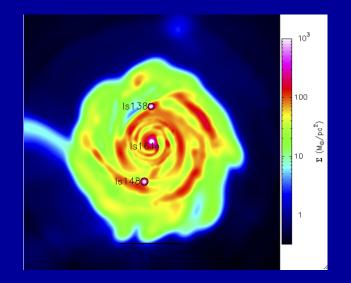


Stellar Merger trees

Introduction

- Galaxy and clump detection
- Group finder
- Decomposition of the density field into a tree structure
- Clump tracking

- Co-rotating clumps? Origin of the stellar population
- Conclusion
- How can I help



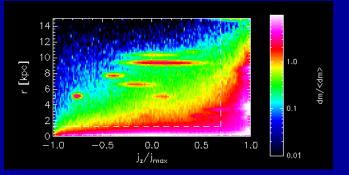
Stellar Merger trees

Introduction

- Galaxy and clump detection
- Group finder
- Decomposition of the density field into a tree structure
- Clump tracking
- A
- Co-rotating clumps? Origin of the stellar population
- Conclusion
- How can I help

Clumps co-rotating with the disc.

Stellar Merger trees


Introductior

- Galaxy and clump detection
- Group finder
- Decomposition of the density
- Merger history
- Clump tracking

Analysis

- Co-rotating clumps?
- Conclusion
- How can I help

Visualization in the rotation frame of the galaxy¹

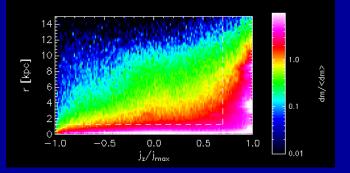
Smooth component + In-situ clumps + Ex-situ clumps

$$^{1}j_{z} = \mathbf{L}_{\text{star}}.\mathbf{L}_{\text{gal}} \text{ and } j_{\text{max}} = |r_{\text{star}}| * |v_{\text{star}}|$$

Stellar Merger trees

Clumps co-rotating with the disc.

Stellar Merger trees


Introduction

- Galaxy and clump detection
- Group finder
- Decomposition of the density
- Morgor history
- Clump tracking

Analysis

- Co-rotating clumps?
- Conclusion
- How can I help

Visualization in the rotation frame of the galaxy¹

Smooth component + In-situ clumps

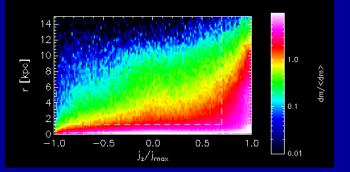
$$^{1}j_{z} = \mathbf{L}_{\text{star}}.\mathbf{L}_{\text{gal}} \text{ and } j_{\text{max}} = |r_{\text{star}}| * |v_{\text{star}}|$$

D. P. Tweed Racah Institute

Stellar Merger trees

Clumps co-rotating with the disc.

Stellar Merger trees


Introduction

- Galaxy and clump detection
- Group finder
- Decomposition of the density
- Morgor history
- Clump tracking

Analysis

- Co-rotating clumps?
- Conclusion
- How can I help

Visualization in the rotation frame of the galaxy¹

Smooth component

$$^{1}j_{z} = \mathbf{L}_{\text{star}}.\mathbf{L}_{\text{gal}} \text{ and } j_{\text{max}} = |r_{\text{star}}| * |v_{\text{star}}|$$

Stellar Merger trees

3 criteria classification

Stellar Merger trees	
Galaxy and clump detection	
	2
Co-rotating clumps? Origin of the stellar population	
Conclusion	3

- structural decomposition: (Clump finder), smooth, In-situ clumps, Ex-situ clumps
- kinematic decomposition: stellar halo, stellar bulge, stellar disc.
 - Stellar origin: (merger trees), star is born in the halo, bulge or disc component, born in a In-situ clump, born ex-situ (merger fraction)

3 criteria classification

Stellar Merger trees

Introduction

Galaxy and clump detection

- Group finder
- Decomposition of the density field into a tree structure
- Merger history
- Clump tracking

Analysis

- Co-rotating clumps?
- Conclusion
- How can I help

Classification scheme

	Smooth			In-situ clumps			Ex-situ clumps		
	Н	В	D	Н	В	D	Н	В	D
born in halo	000	010	020	001	011	021	002	012	022
born in bulge	100	110	120	101	111	121	102	112	122
born in disc	200	210	220	201	211	221	202	212	222
born in clump	300	310	320	301	311	321	302	312	322
1:∞ <f<1:30< td=""><td>400</td><td>410</td><td>420</td><td>401</td><td>411</td><td>421</td><td>402</td><td>412</td><td>422</td></f<1:30<>	400	410	420	401	411	421	402	412	422
1:30 <f<1:10< td=""><td>500</td><td>510</td><td>520</td><td>501</td><td>511</td><td>521</td><td>502</td><td>512</td><td>522</td></f<1:10<>	500	510	520	501	511	521	502	512	522
1:10 <f<1:3< td=""><td>600</td><td>610</td><td>620</td><td>601</td><td>611</td><td>621</td><td>602</td><td>612</td><td>622</td></f<1:3<>	600	610	620	601	611	621	602	612	622
1:3 <f< td=""><td>700</td><td>710</td><td>720</td><td>701</td><td>711</td><td>721</td><td>702</td><td>712</td><td>722</td></f<>	700	710	720	701	711	721	702	712	722

3 criteria classification

Stellar Merger trees

Introduction

Galaxy and clump detection

- Group finder
- Decomposition of the density field into a tree structure
- Merger history
- Clump tracking

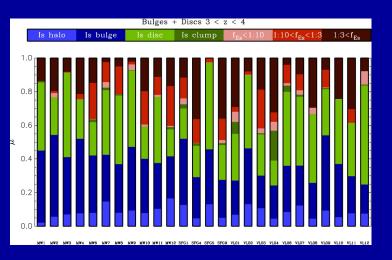
Analysis

- Co-rotating clumps?
- Origin of the stellar population
- Conclusion
- How can I help

Useful fraction for Bulge(j=1) Disc (j=2) • $\mu_{IsDisc}(j) = \sum_{k=0}^{2} m(2jk) / \left(\sum_{i=0}^{7} \sum_{k=0}^{2} m(ijk)\right)$ • $\mu_{IsClump}(j) = \sum_{k=0}^{2} m(3jk) / \left(\sum_{i=0}^{7} \sum_{k=0}^{2} m(ijk)\right)$ • $\mu_{Ex-situ}(j) = \left(\sum_{i=4}^{7} \sum_{k=0}^{2} m(ijk)\right) / \left(\sum_{i=0}^{7} \sum_{k=0}^{2} m(ijk)\right)$ • $\mu_{f>10}(j) = \left(\sum_{i=6}^{7} \sum_{k=0}^{2} m(ijk)\right) / \left(\sum_{i=0}^{7} \sum_{k=0}^{2} m(ijk)\right)$ • $\mu_{3}(j) = \left(\sum_{k=0}^{2} m(7jk)\right) / \left(\sum_{i=0}^{7} \sum_{k=0}^{2} m(ijk)\right)$

• $\mu_{\text{IS}}(j) = \sum_{i=0}^{7} m(ij1) / \left(\sum_{i=0}^{5} \sum_{k=0}^{2} m(ijk) \right)$

Stellar fractions


Stellar Merger trees

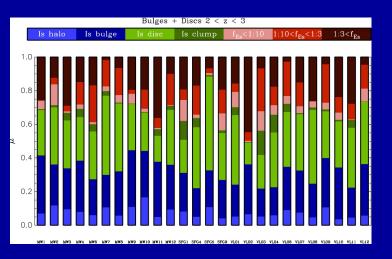
Introduction

Galaxy and clump detection

- Group finder
- Decomposition of the density
- field into a tree structu
- Merger histor
- Clump tracking

- Co-rotating clumps?
- Origin of the stellar population
- Conclusior
- How can I help

Stellar fractions


Stellar Merger trees

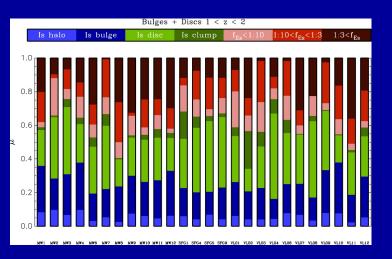
Introduction

Galaxy and clump detection

- Group finder
- Decomposition of the density
- field into a tree structi
- Merger histor
- Clump tracking

- Co-rotating clumps?
- Origin of the stellar population
- Conclusior
- How can I help

Stellar fractions


Stellar Merger trees

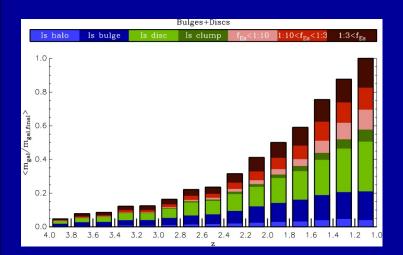
Introduction

Galaxy and clump detection

- Group finder
- Decomposition of the density
- field into a tree structure
- Merger histor
- Clump tracking

- Co-rotating clumps?
- Origin of the stellar population
- Conclusior
- How can I help

Stacked evolution



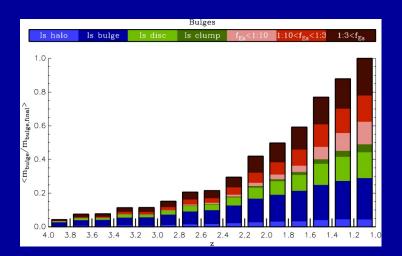
Introduction

Galaxy and clump detection

- Group finder
- Decomposition of the density
- field into a tree structur
- Merger histor
- Clump tracking

- Co-rotating clumps? Origin of the stellar population
- Origin of the stellar
- Conclusior
- How can I help

Stacked evolution



Introduction

Galaxy and clump detection

- Group finder
- Decomposition of the density
- field into a tree struc
- Merger histor
- Clump tracking

- Co-rotating clumps? Origin of the stellar population
- Chight of the stellar
- -----
- How can I help

Stellar Merger trees

Introduction

- Galaxy and clump detection
- Group finder
- Decomposition of the density
- field into a tree structu
- Merger history
- Clump tracking

Analysis

Co-rotating clumps? Origin of the stellar population

Conclusion

How can I help

A sample of 30 high redshift galaxies. (Same cosmology, resolution)

Stellar Merger trees

Introduction

Galaxy and clump detection

- Group finder
- Decomposition of the density field into a tree structure
- Merger history
- Clump tracking

Analysis

Co-rotating clumps? Origin of the stellar population

Conclusion

- A sample of 30 high redshift galaxies. (Same cosmology, resolution)
- Same Postprocessing pipeline
 - Group-finding on stars
 - Merger-trees.
 - In-situ, Ex-situ discrimination from merger tree

Stellar Merger trees

Introduction

Galaxy and clump detection

- Group finder
- Decomposition of the density field into a tree structure
- Merger history
- Clump tracking

Analysis

Co-rotating clumps? Origin of the stellar population

Conclusion

How can I help

A sample of 30 high redshift galaxies. (Same cosmology, resolution)

Same Postprocessing pipeline

- Group-finding on stars
- Merger-trees.
- In-situ, Ex-situ discrimination from merger tree

Further analysis

- Extra kinematic decomposition.
- Detailled stellar tracking according to both structural decomposition and kinematic decomposition.
- Define global measure and properties.

Stellar Merger trees

Introduction

- Galaxy and clump detection
- Group finder
- Decomposition of the density field into a tree structure
- Merger history
- Clump tracking

Analysis

Co-rotating clumps? Origin of the stellar population

Conclusion

- A sample of 30 high redshift galaxies. (Same cosmology, resolution)
- Same Postprocessing pipeline
 - Group-finding on stars
 - Merger-trees.
 - In-situ, Ex-situ discrimination from merger tree
- Further analysis
 - Extra kinematic decomposition.
 - Detailled stellar tracking according to both structural decomposition and kinematic decomposition.
 - Define global measure and properties.
- What's to be done.
 - DM merger trees
 - Gas inflow (wet mergers disc instabilities)

Stellar Merger trees

Introduction

Galaxy and clump detection

- Group finder
- Decomposition of the density field into a tree structure
- Merger history
- Clump tracking

Analysis

Co-rotating clumps? Origin of the stellar population

Conclusion

- All the simulations, post analysis are on the Jerusalem cluster. The wiki is a guide to find the data there.
- 2 Upgrade and advertise the wiki with mosaics.
- Share and enjoy
 - Make the stellar merger trees available. (standard format, what would you need?)
 - Provide DM merger trees as well.