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MNRAS 336 (2002) 112 
The abundance and clustering of dark haloes in 

the standard Lambda CDM cosmogony 
H. J. Mo, S.D.M. White

We define the characteristic properties of a dark halo within a sphere of radius r200 chosen so that the mean enclosed 
density is 200 times the mean cosmic value.  Then

and the growth factor is 

and equation (9) then follows by differentiation.

Lahav, Lilje, Primack, & Rees 1991



Numerical simulations show that although the scaling properties implied by the PS 
argument hold remarkably well for a wide variety of hierarchical cosmogonies, 
substantially better fits to simulated mass functions are obtained if the error
function in equation (12) is replaced by a function of slightly different shape. Sheth & 
Tormen (1999) suggested the following modification of equation (9)

[See Sheth, Mo & Tormen (2001) and Sheth & Tormen (2002) for a justification of this 
formula in terms of an ellipsoidal model for perturbation collapse.] The fraction of all 
matter in haloes with mass exceeding M can be obtained by integrating equation (14). 
To good approximation,

In a detailed comparison with a wide range of simulations, Jenkins et al. (2001) 
confirmed that this model is indeed a good fit provided haloes are defined at the 
same density contrast relative to the mean in all cosmologies. 

The PS formula is

(14)

(9)



Improved Press-Schechter Halo Number Density
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Dashed red curves: halo number density for log M/Msun
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Cosmological Simulation Methods
Dissipationless Simulations

Particle-Particle (PP) - Aarseth NbodyN, N=1,...,6
Particle Mesh (PM) - see Klypin & Holtzman 1997
Adaptive PM (P3M) - Efstathiou et al.
Tree - Barnes & Hut 1986, PKDGRAV Stadel
TreePM - GADGET2, Springel 2005
Adaptive Mesh Refinement (AMR) - Klypin (ART)

Hydrodynamical Simulations
Fixed grid - Cen & Ostriker
Smooth Particle Hydrodynamics (SPH) - GADGET2, Springel 2005
                       - Gasoline, Wadsley, Stadel, & Quinn
Adaptive grid - ART+hydro - Klypin & Kravtsov

Initial Conditions
Standard: Gaussian P(k) realized uniformly, Zel’dovich displacement
Multimass - put lower mass particles in a small part of sim volume
Constrained realization - small scale: simulate individual halos (NFW)

  large scale: simulate particular region
Reviews

Bertschinger ARAA 1998, Klypin lectures 2002, U Washington website



Navarro, Frenk, White
1996     1997

Structure of Dark Matter Halos

NFW formula works for all models



Table 2

Comparison of NFW and Moore et al. profiles

Parameter NFW Moore et al.

Density ρ = ρs

x(1 + x)2
ρ = ρs

x1.5(1 + x)1.5

x = r/rs ρ ∝ x−3 for x " 1 ρ ∝ x−3 for x " 1
ρ ∝ x−1 for x # 1 ρ ∝ x−1.5 for x # 1
ρ/ρs = 1/4 at x = 1 ρ/ρs = 1/2 at x = 1

Mass
M = 4πρsr3

sf(x) f(x) = ln(1 + x) − x
1 + x f(x) = 2

3 ln(1 + x3/2)

= Mvirf(x)/f(C)
Mvir = 4π

3 ρcrΩ0δtop−hatr3
vir

Concentration CNFW = 1.72CMoore CMoore = CNFW/1.72
for halos with the same Mvir and rmax

C = rvir/rs C1/5 ≈ CNFW
0.86f(CNFW) + 0.1363

C1/5 = CMoore

[(1 + C3/2
Moore)

1/5 − 1]2/3

error less than 3% for CNFW =5-30 ≈ CMoore

[C3/10
Moore − 1]2/3

Cγ=−2 = CNFW Cγ=−2 = 23/2CMoore

≈ 2.83CMoore

Circular Velocity

v2
circ =

GMvir

rvir

C

x

f(x)

f(C)
xmax ≈ 2.15 xmax ≈ 1.25

= v2
max

xmax

x

f(x)

f(xmax)
v2
max ≈ 0.216v2

vir

C

f(C)
v2
max ≈ 0.466v2

vir

C

f(C)

v2
vir =

GMvir

rvir
ρ/ρs ≈ 1/21.3 at x = 2.15 ρ/ρs ≈ 1/3.35 at x = 1.25
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Dark Matter Halo Radial Profile

Klypin, Kravtsov, Bullock & Primack 2001



the radius at which the logarithmic slope of the
density profile is equal to −2. This scale corre-
sponds to rs for the NFW profile and ≈ 0.35rs for
the Moore et al. profile.

Figure 3 presents the comparison between the
analytic profiles normalized to have the same virial
mass and the same radius rmax. We show results
for halos of low and high values of concentration
representative of cluster- and low-mass galaxy ha-
los, respectively. The bottom panels show the pro-
files, while the top panels show the corresponding
logarithmic slope as a function of radius. The fig-
ure shows that the two profiles are very similar
throughout the main body of the halos. Only in
the very central region do the differences become
significant. The difference is more apparent in the
logarithmic slope than in the actual density pro-
files. Moreover, for galaxy-mass halos the differ-
ence sets in at a rather small radius ! 0.01rvir,
which would correspond to scales < 1 kpc for the
typical dark matter dominated dwarf and LSB
galaxies. At the observationally interesting scales
the differences between NFW and Moore et al.
profiles are fairly small and the NFW profile pro-
vides an accurate description of the halo density
distribution.

Note also that for galaxy-size (e.g., high-
concentration) halos the logarithmic slope of the
NFW profile has not yet reached its asymptotic
inner value of −1 even at scales as small as
0.01rvir. At this distance the logarithmic slope
of the NFW profile is ≈ −1.4 − 1.5 for halos with
mass ∼ 1012h−1M". For cluster-size halos this
slope is ≈ −1.2. This dependence of the slope at a
given fraction of the virial radius on the virial mass
of the halo is very similar to the results plotted
in Figure 3 of Jing & Suto (2000). These authors
interpreted it as evidence that halo profiles are
not universal. It is obvious, however, that their
results are consistent with NFW profiles and the
dependence of the slope on mass can be simply a
manifestation of the well-studied cvir(M) relation.

The NFW and Moore et al. profiles can be
compared in a different way. We can approximate
the Moore et al. halo of a given concentration with
the NFW profile. Fractional deviations of the fits
depend on the halo concentration and on the range
of radii used for the fits. A low-concentration halo
has larger deviations, but even for C = 7 case, the
deviations are less than 15% if we fit the halo at

Fig. 3.— Comparison of the Moore et al. and the
NFW profiles. Each profile is normalized to have the
same virial mass and the same radius of the maximum
circular velocity. Left panels: High-concentration halo
typical of small galaxy-size halos CNFW = 17. Right

panels: Low-concentration halo typical of cluster-size
halos. The deviations are very small (< 3%) for radii
r > rs/2. Top panels show the local logarithmic slope
of the profiles. Note that for the high concentration
halo the slope of the profile is significantly larger than
the asymptotic value -1 even at very small radii r ≈

0.01rvir.

scales 0.01 < r/rvir < 1. For a high-concentration
halo with C = 17, the deviations are much smaller:
less than 8% for the same range of scales.

To summarize, we find that the differences be-
tween the NFW and the Moore et al. profiles are
very small (∆ρ/ρ < 10%) for radii above 1% of
the virial radius for typical galaxy-size halos with
CNFW

>∼ 12. The differences are larger for halos
with smaller concentrations. In the case of the
NFW profile, the asymptotic value of the central
slope γ = −1 is not achieved even at radii as small
as 1%-2% of the virial radius.

3.2. Convergence study

The effects of numerical resolution can be stud-
ied by resimulating the same objects with higher
force and mass resolution and with a larger num-
ber of time steps. In this study we performed
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Fig. 1.— Example of the construction of mass re-
finement in lagrangian space (here for illustration we
show a 2D case). Three central blocks of particles
were marked for highest mass resolution. Each block
produces 162 particles of the smallest mass. Adjacent
blocks correspond to the four times lower resolution
and produce 82 particles each. The procedure is re-
peated recursively until we reach the lowest level of
resolution. The region of the highest resolution can
have arbitrary shape.

Figure 2 shows an example of mass refinement
for one of the halos in our simulations. A large
fraction of high resolution particles ends up in
the central halo, which does not have any larger
mass particles (see insert in the bottom panel). At
z = 10, the region occupied by the high resolution
particles is non-spherical: it is substantially elon-
gated in the direction perpendicular to the large
filament clearly seen at z = 0.

After the initial conditions are set, we run the
simulation again allowing the code to perform
mesh refinement based only on the number of par-
ticles with the smallest mass.

2.3. Numerical simulations

We simulated a flat low-density cosmological
model (ΛCDM) with Ω0 = 1 − ΩΛ = 0.3, the
Hubble parameter (in units of 100 kms−1Mpc−1)
h = 0.7, and the spectrum normalization σ8 = 0.9.
We have run two sets of simulations. The first set

Fig. 2.— Distribution of particles of different masses
in a thin slice through the center of halo A1 (see Ta-
ble 1) at z = 10 (top panel) and at z = 0 (bot-
tom panel). To avoid crowding of points the thick-
ness of the slice is made smaller in the center (about
30h−1kpc) and larger (1h−1Mpc) in the outer parts
of the forming halo. Particles of different mass are
shown with different symbols: tiny dots, dots, large
dots, squares, and open circles.

used 1283 zeroth-level grid in a computational box
of 30h−1Mpc. The second set of simulations used
2563 grid in a 25h−1Mpc box and had higher mass
resolution. In the simulations used in this paper,
the threshold for cell refinement (see above) was
low on the zeroth level: nthresh(0) = 2. Thus, ev-
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Fig. 8.— Analytic fits to the density profile of the
halo A1 from our set of simulations. The fits are of
the form ρ(r) ∝ (r/r0)

−γ [1 + (r/r0)
α]−(β−α)/γ . The

legend in each panel indicates the corresponding val-
ues of α, β, and γ of the fit; the digit in parenthesis
indicates whether the parameter was kept fixed (0) or
not (1) during the fit. Note that various sets of param-
eters α, β, γ provide equally good fits to the simulated
halo profile in the whole range resolved range of scales
≈ 0.005 − 1rvir. This indicates a large degree of de-
generacy in parameters α, β, and γ

their profiles. Based on the results of the conver-
gence study presented in the previous section, we
will consider profiles of these halos only at scales
above four formal resolutions and not less than 200
particles. There is an advantage in analyzing halos
at a relatively high redshift. Halos of a given mass
will have lower concentration (see Bullock et al.
2000). Lower concentration implies a large scale
at which the asymptotic inner slope is reached.

We found that substantial substructure is
present inside the virial radius in all three ha-
los at z = 1. Figure 7 shows profiles of these
halos at z = 0 (top) and z = 1 (bottom). The
z = 0 profiles are smoother than profiles at z = 1.
Note that bumps and depressions visible in the
profiles have amplitude that is significantly larger
than the shot noise. Halo C3 appeared to be the
most relaxed of the three halos. This halo had

Fig. 9.— Circular velocity profiles for the halos B1,
C1, and D1 normalized to halo’s virial velocity. Halos
are well resolved on all shown scales. Although the
halos have very similar masses, the profiles are very
different; the differences are due to real differences in
the concentration parameters.

its last major merger somewhat earlier than the
other two. Halo D3 had a major merger event at
z ≈ 2. A remnant of the merger is still visible as a
bump at r ∼ 100h−1kpc. The non-uniformities of
profiles caused by substructure may substantially
bias analytic fits if one uses the entire range of
scales below the virial radius. Therefore, we used
only the central, presumably more relaxed, regions
in the analytic fits: r < 50h−1kpc for halo D and
r < 100h−1kpc for halos B and C (fits using only
central 50h−1kpc did not change results).

The best fit parameters were obtained by min-
imizing the maximum fractional deviation of the
fit: max[abs(log ρfit − log ρhalo)]. Minimizing the
sum of squares of deviations (χ2), as is often done,
can result in larger errors at small radii with the
false impression that the fit fails because it has
a wrong central slope. The fit that minimizes
maximum deviations improves the NFW fit for
points in the range of radii (5− 20)h−1kpc, where
the NFW fit would appear to be below the data
points if the fit was done by the χ2 minimization.
For example, if we fit halo B by minimizing χ2,
the concentration slightly decreases from 12.3 (see
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Maximum 
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Bullock, Dekel, Kolatt,  
Primack, & Somerville 
2001, ApJ, 550, 21



2001 MNRAS 321, 559 

Dependence of Halo Concentration on 
Mass and Redshift



Concentration falls as 
mass increases

Concentration falls 
even faster for 

subhalos as mass 
increases

Concentration rises as 
density increases



Spread of Halo Concentrations



Evolution of Halo Concentration with Redshift

Concentration falls as 
redshift increases

Cvir ∝ 1/(1+z)
at fixed mass



Merger Trees Based on our ART simulations, Wechsler 
created the first structural merger trees 
tracing the merging history of thousands 
of halos with structural information on 
their higher-redshift progenitors, 
including their radial profiles and spins. 
This led to the discovery that a halo’s 
merging history can be characterized by 
a single parameter ac which describes 
the scale factor at which the halo’s mass 
accretion slows, and that this parameter 
correlates very well with the halo 
concentration, thus showing that the 
distribution of dark matter halo 
concentrations reflects mostly the 
distribution of their mass accretion rates. 
We found that the radius of the inner part 
of the halo, where the density profile is 
roughly 1/r, is established during the 
early, rapid-accretion phase of halo 
growth (a result subsequently confirmed 
and extended by other groups, e.g., 
Zhao et al. 2003, Reed et al. 2004).

Risa
Wechsler

2001



ApJ 568 (2002) 52-70 

Average mass accretion 
histories, normalized at a = 1. 
The three green curves 
connect the averages of
M(a)/M0 at each output time. 
The pair of dotted lines shows 
the 68% spread about the 
middle case. Red dot-dashed 
lines correspond to early 
formers (typically low mass 
halos), blue dashed lines to 
late formers (typically higher 
mass halos). We see that 
massive halos tend to form 
later than lower mass halos, 
whose mass accretion rate 
peaks at an earlier time.



Structural 
merger trees 
for two halos. 
The radii of 
the outer and 
inner (filled) 
circles are 
proportional 
to the virial 
and inner 
NFW radii, 
Rvir and Rs, 
respectively, 
scaled such 
that the two 
halos have 
equal sizes at 
a = 1. Lines 
connect halos 
with their 
progenitor 
halos.

a

2.8x1014 Msun/h 2.9x1012 Msun/h

cvir = 5.9 cvir = 12.5

For halos without recent mergers, cvir 
is higher and the scatter is reduced to 
log cvir ≈ 0.10.

Wechsler et al. 2002



<s> = short / 
long axis of 
dark halos vs. 
mass and 
redshift.  Dark 
halos are more 
elongated the 
more massive 
they are and the 
earlier they 
form.  We found 
that the halo 
<s> scales as a 
power-law in 
Mhalo/M*.  Halo 
shape is also 
related to the 
Wechsler halo 
formation scale 
factor ac.

Allgood et al. 2006

Halo Shapes

z=0

z=2

z=1



Halo shape 
s = c / a   vs. 
scale factor 
a=1/(1+redshift) 
for halos of 
mass between 
3.2 and 6.4 x 
1012 Msun that 
form at different 
scale factors ac. 
Halos become 
more spherical 
after they form, 
and those that 
form earlier (at 
lower ac) 
become more 
spherical faster.time



Halos become 
more spherical at 
larger radius and 
smaller mass.  
As before, 
s = short / long 
axis.  These 
predictions can 
be tested against 
cluster X-ray data 
and galaxy weak 
lensing data.

[These figures are from 
Brandon Allgood’s PhD 
dissertation.]



Springel et al. 2005



doubling every 
~16.5 months

Particle number in cosmological N-body simulations vs. pub date

Millennium 
Run 



Galaxy 2-point correlation function at the present epoch.
Springel et al. 2005

dark matter

simulated galaxies

observed galaxies (2dF)

UNDERSTANDING GALAXY 
CORRELATIONS





Whatever Happened to Hot Dark Matter?
In ~1980, when purely baryonic adiabatic fluctuations were ruled out by the improving 
upper limits on CMB anisotropies, theorists led by Zel’dovich turned to what we now 
call the HDM scenario, with light neutrinos making up most of the dark matter.  
However, in this scheme the fluctuations on small scales are damped by relativistic 
motion (“free streaming” of the neutrinos until T becomes less than mν, which occurs 
when the mass entering the horizon is about 1015 solar masses, the supercluster mass 
scale.  Thus superclusters would form first, and galaxies later by fragmentation.  This 
predicted a galaxy distribution much more inhomogeneous than observed.

Since 1984, the most successful structure formation scenarios have been those in which 
most of the matter is CDM.  With the COBE CMB data in 1992, two CDM variants 
appeared to be viable: ΛCDM with Ωm≈0.3, and Ωm=1Cold+Hot DM with Ων≈0.2.  A 
potential problem with ΛCDM was that the correlation function of the dark matter was 
higher around 1 Mpc than the power-law ξgg(r)= (r/r0)-1.8 observed for galaxies, so 
“scale-dependent anti-biasing” was required (Klypin, Primack, & Holtzman 1996, 
Jenkins et al. 1998). A potential problem with CHDM was that, like all Ωm=1 theories, 
it predicted rather late structure formation.  

By 1998, the evidence of early galaxy and cluster formation and the increasing 
evidence that Ωm≈0.3 had doomed CHDM.  But now we also know from neutrino 
oscillations that neutrinos have mass.  The upper limit is Ωνh2  < 0.0076 (95% CL), 
corresponding to Σ mν < 0.7 eV (Spergel et al. 2003), with the slightly stronger 
constraint Σ mν < 0.4 eV including Lyα forest data (Seljak et al. 2005).



Colin et al. 1999

ΛCDM Scale-
Dependent 
Anti-Biasing

The dark matter correlation 
function ξmm for ΛCDM is 
3×ξgg at 1 Mpc. This 
disagreement was pointed 
out by Klypin, Primack, & 
Holtzman 1996.  When 
simulations could resolve 
galaxy halos, it turned out 
that the needed anti-biasing 
arises naturally. This occurs 
because of destruction of 
halos in dense regions 
because of merging and tidal 
disruption.


