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Outline

L15 WMAP 5-year Data and Papers Released
Grand Unification of Forces
Phase Transitions in the Early Universe
Topological Defects: Strings, Monopoles
L16 Problems Solved by Cosmic Inflation
Simple Models of Cosmic Inflation
Generic Predictions of Inflation
Details on Some Simple Inflation Models

Note: I edited much of the material in the Topological Defects slides from
the website http://www.damtp.cam.ac.uk/user/gr/public/cs top.html



http://www.damtp.cam.ac.uk/user/gr/public/cs_top.html
http://www.damtp.cam.ac.uk/user/gr/public/cs_top.html

GUT Monopoles

A simple SO(3) GUT illustrates how nonsingular monopoles arise. The Lagragian

1S 1 a a 1 a auy 1 axa 2\2
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The masses of the resulting charged vector and Higgs bosons after spontaneous

symmetry breaking are
Y Y & Mf, = 820'2,

M} = do%
If the Higgs field @2 happens to rotate about a sphere in SO(3) space as one
moves around a sphere about any particular point in x-space, then it must vanish
at the particular point. Remarkably, if we 1dentify the massless vector field as the
photon, this configuration corresponds to a nonsingular magnetic monopole, as

was independently discovered by ‘tHooft and Polyakov. The monopole has
magnetic charge twice the minimum Dirac value, g = 2n/e = (4n/e?)(e/2) = 67.5 e.

The singular magnetic field is cut off at scale o, and as a result the GUT
monopole has mass M, .o = My/0 = Mgy /o = 1018 GeV, which is about
0.5x10'¢ times the mass of a gold atom!



GUT Monopole Problem

The Kibble mechanism produces ~ one GUT monopole per horizon volume when
the GUT phase transition occurs. These GUT monopoles have a number density
over entropy

ny/s ~ 102 (Toy/Mpp)? ~ 1013

(compared to ng/s ~ 10~ for baryons) Their annihilation is inefficient since they are
so massive, and as a result they are about as abundant as gold atoms but 106 times
more massive, so they “overclose” the universe. This catastrophe must be avoided!
This was Alan Guth’s initial motivation for inventing cosmic inflation.

Inflation

I will summarize the key ideas of inflation theory, following my lectures at the
Jerusalem Winter School, published as the first chapter in Avishai Dekel &
Jeremiah Ostriker, eds., Formation of Structure in the Universe (Cambridge
University Press, 1999), and Dierck-Ekkehard Liebscher, Cosmology (Springer,
2005) (available electronically through the UCSC library).



Motivations for Inflation

PROBLEM SOLVED

Horizon Homogeneity, Isotropy, Uniform T
Flatness/Age Expansion and gravity balance
“Dragons” Monopoles, doman walls,.. . banished
Structure Small fluctuations to evolve into galaxies,

clusters, voids

Cosmological constant A > () = space repels space, so the more space the more
repulsion, = de Sitter exponential expansion a eV At

Inflation is exponentially accelerating expansion caused by effective cosmological
constant (“false vacuum” energy) associated with hypothetical scalar field
(“inflaton™).

FORCES OF NATURE Spin
Known { Gravity 2
Strong, weak, and electromagnetic |
Goal of LHC Mass (Higgs Boson) 0
Early universe Inflation (Inflaton) 0

Inflation lasting only ~10~3%s suffices to solve all the problems listed above.
Universe must then convert to ordinary expansion through conversion of false to
true vacuum (“re-" heating).
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Inflation Basics

The basic idea of inflation is that before the universe entered the present
adiabatically expanding Friedmann era, it underwent a period of de Sitter
exponential expansion of the scale factor, termed inflation (Guth 1981).
Actually, inflation is never precisely de Sitter, and any superluminal
(faster-than-light) expansion is now called inflation. Inflation was originally
invented to solve the problem of too many GUT monopoles, which, as
mentioned in the previous section, would otherwise be disastrous for
cosmology.

The de Sitter cosmology corresponds to the solution of Friedmann’s
equation in an empty universe (i.e., with p = ) with vanishing curvature

(k = 0) and positive cosmological constant (A > 0). The solution is
a = a,e’, with constant Hubble parameter H = (A/3)/2. There are
analogous solutions for ¥ = 41 and k¥ = -1 with a  cosh Ht and

a  sinh It respectively. The scale factor expands exponentially because the
positive cosmological constant corresponds effectively to a negative pressure.
de Sitter space is discussed in textbooks on general relativity (for example,
Rindler 1977, Hawking & FEllis 1973) mainly for its geometrical interest.
Until cosmological inflation was considered, the chief significance of the de
Sitter solution in cosmology was that it is a limit to which all indefinitely
expanding models with A > () must tend, since as a = oo, the cosmological
constant term ultimately dominates the right hand side of the Friedmann
equation.



As Guth (1981) emphasized, the de Sitter solution might also have been
important in the very early universe because the vacuum energy that plays
such an important role in spontaneously broken gauge theories also acts as
an effective cosmological constant. A period of de Sitter inflation preceding
ordinary radiation-dominated Friedmann expansion could explain several
features of the observed universe that otherwise appear to require very
special initial conditions: the horizon, flatness/age, monopole, and structure
formation problems. (See Table 1.6.)

Let us illustrate how inflation can help with the horizon problem. At
recombination (p* + ¢~ — H), which occurs at a/a, ~ 1077 the
mass encompassed by the horizon was My =~ 10"™Mg, compared to
My, ~ 10°* M, today. Equivalently, the angular size today of the causally
connected regions at recombination is only A# ~ 3°. Yet the fluctuation
in temperature of the cosmic background radiation from different regions
is very small: AT/T ~ 107°. How could regions far out of causal
contact have come to temperatures that are so precisely equal? This is

the “horizon problem™. With inflation, it is no problem because the entire
observable universe initially lay inside a single causally connected region that

subsequently inflated to a gigantic scale. Similarly, inflation exponentially
dilutes any preceeding density of monopoles or other unwanted relics (a
modern version of the “dragons™ that decorated the unexplored borders of
old maps).



In the first inflationary models, the dynamics of the very early universe
was typically controlled by the self-energy of the Higgs field associated with
the breaking of a Grand Unified Theory (GUT) into the standard 3-2-1
model: GUT— SU(3) cotor @ [SU(2) @ U(1)]etectroweak- This occurs when the
cosmological temperature drops to the unification scale Ty ~ 101 GeV at
about 1073 s after the Big Bang. Guth (1981) initially considered a scheme
in which inflation occurs while the universe is trapped in an unstable state
(with the GUT unbroken) on the wrong side of a maximum in the Higgs
potential. This turns out not to work: the transition from a de Sitter to a
Friedmann universe never finishes (Guth & Weinberg 1981). The solution in
the “new inflation” scheme (Linde 1982; Albrecht and Steinhardt 1982) is for
inflation to occur after barrier penetration (if any). It is necessary that the
potential of the scalar field controlling inflation (“inflaton”) be nearly flat
(i.e., decrease very slowly with increasing inflaton field) for the inflationary
period to last long enough. This nearly flat part of the potential must then
be followed by a very steep minimum, in order that the energy contained in
the Higgs potential be rapidly shared with the other degrees of freedom
(“reheating”). A more general approach, “chaotic” inflation, has been
worked out by Linde (1983, 1990) and others; this works for a wide range of
inflationary potentials, including simple power laws such as A¢?. However,
for the amplitude of the fluctuations to be small enough for consistency with
observations, it is necessary that the inflaton self-coupling be very small, for
example A ~ 107 for the ¢* model. This requirement prevents a Higgs field
from being the inflaton, since Higgs fields by definition have gauge couplings
to the gauge field (which are expected to be of order unity), and these would
generate self-couplings of similar magnitude even if none were present.




It turns out to be necessary to inflate by a factor 2 €% in order to solve

the flatness problem, i.e., that Q¢ ~ 1. (With H~! ~ 10™* s during the de
Sitter phase, this implies that the inflationary period needs to last for only
a relatively small time 7 2 107 s.) The “flatness problem™ is essentially
the question why the universe did not become curvature dominated long
ago. Neglecting the cosmological constant on the assumption that it is
unimportant after the inflationary epoch, the Friedmann equation can be

written

a\* 8rGnr’ kT?
(E) =3 30/ 7 - @

where the first term on the right hand side is the contribution of the energy
density in relativistic particles and g(7) is the effective number of degrees of
freedom. The second term on the right hand side is the curvature term. Since
aT ~ constant for adiabatic expansion, it is clear that as the temperature
T drops, the curvature term becomes increasingly important. The quantity
K = k/(aT)? is a dimensionless measure of the curvature. Today, |K| =
Q=1 H2/T? < 2 x 107%. Unless the curvature exactly vanishes, the
most “natural” value for K is perhaps K ~ 1. Since inflation increases
a by a tremendous factor e//™ at essentially constant T (after reheating),
it increases al by the same tremendous factor and thereby decreases the
curvature by that factor squared. Setting e~ 277 < 2x 10~ gives the needed
amount of inflation: Mt & 66. This much inflation turns out to be enough
to take care of the other cosmological problems mentioned above as well.



Inflationary Fluctuations

Thus far, it has been sketched how inflation stretches, flattens, and smooths
out the universe, thus greatly increasing the domain of initial conditions
that could correspond to the universe that we observe today. But inflation
also can explain the origin of the fluctuations necessary in the gravitional
instability picture of galaxy and cluster formation. Recall that the very
existence of these fluctuations is a problem in the standard Big Bang picture,
since these fluctuations are much larger than the horizon at early times. How

could they have arisen?



The answer in the inflationary universe scenario is that they arise from
quantum fluctuations in the inflaton field ¢ whose vacuum energy drives
inflation. The scalar fluctuations d¢ during the de Sitter phase are of the
order of the Hawking temperature H/27w. Because of these fluctuations,
there is a time spread Al =~ &b/d; during which different regions of the
same size complete the transition to the Friedmann phase. The result is
that the density fluctuations when a region of a particular size re-enters
the horizon are equal to (Guth & Pi 1982; see Linde 1990 for alternative
approaches) dy = (dp/p)uy ~ At/ty = HAL. The time spread At can be
estimated from the equation of motion of ¢ (the free Klein-Gordon equation
in an expanding universe): ¢+ 3H¢ = —(9V/3¢). Neglecting the ¢ term,
since the scalar potential V' must be very flat in order for enough inflation
to occur (this is called the “slow roll” approximation), ¢ ~ —V'/(3H), so
S~ H?/V' ~ V32/V' Unless there is a special feature in the potential
V(@) as ¢ rolls through the scales of importance in cosmology (producing
such “designer inflation” features generally requires fine tuning — see e.g.
Hodges et al. 1990), V and V' will hardly vary there and hence §z will
be essentially constant. These are fluctuations of all the contents of the
universe, so they are adiabatic fluctuations.




Thus inflationary models lypically predicl a nearly constant curvalure
spectrum 6 = constant of adiabatic flucluations. Some time ago Harrison
(1970), Zel’dovich (1972), and others had emphasized that this is the only
scale-invariant (i.e., power-law) fluctuation spectrum that avoids trouble at
both large and small scales. If §y o« Myg™, where My is the mass inside
the horizon, then if —a is too large the universe will be less homogeneous
on large than small scales, contrary to observation; and if « is too large,
fluctuations on sufficiently small scales will enter the horizon with é > 1
and collapse to black holes (see e.g. Carr, Gilbert, & Lidsey 1995, Bullock
& Primack 1996); thus a@ &~ (0. The a = () case has come to be known as the
Zel’dovich spectrum.

Inflation predicts more: it allows the calculation of the value of the
constant 4y in terms of the properties of the scalar potential V(¢).
Indeed, this proved to be embarrassing, at least initially, since the
Coleman-Weinberg potential, the first potential studied in the context of
the new inflation scenario, results in §g ~ 10? (Guth & Pi 1982) some
six orders of magnitude too large. But this does not seem to be an
insurmountable difficulty; as was mentioned above, chaotic inflation works,
with a sufficiently small self-coupling. Thus inflation at present appears to
be a plausible solution to the problem of providing reasonable cosmological
initial conditions (although it sheds no light at all on the fundamental
question why the cosmological constant is so small now). Many variations of
the basic idea of inflation have been worked out



Many
Inflation
Models

How INFLATION BEGINS
Old Inflation  Ti,itia) high, ¢i, & 0 is false vacuum until phase transition
Ends by bubble creation; Reheat by bubble collisions
New Inflation  Slow roll down V(¢), no phase transition
Chaotic Inflation ~ Similar to New Inflation, but ¢, essentially arbitrary:
any region with $¢? + 5(9;¢)? < V(¢) inflates

Extended Inflation Like Old Inflation, but slower (e.g., power a o ),
so phase transition can finish

POTENTIAL V(¢) DURING INFLATION

Chaotic typically V(¢) = A¢™, can also use V = Vpe*?, etc.
=axt’, p=16r/a®>1

How INFLATION ENDS

First-order phase transition — e.g., Old or Extended inflation
Faster rolling — oscillation — e.g., Chaotic V(¢)2A¢"
“Waterfall” — rapid roll of & triggered by slow roll of ¢

(RE)HEATING

Decay of inflatons
“Preheating” by parametric resonance, then decay

BEFORE INFLATION?

Eternal Inflation? Can be caused by
e Quantum d¢ ~ H/2m > rolling Adp = dAt = dH ' V'V
e Monopoles or other topological defects



Inflaton Theory in More Detail

Action of gravity + scalar inflaton field:

i

) C |
S = /d“ll‘ \/—clot‘ Gmn R

167G
1 0 O .. o
+ /cH;r \/—dot. Gmn I (5 5t Dok gzk vV [(;,)]>
. - : o 1 m?c? 9
The simplest V is just quadratic  V[9] = 3 3¢

which just gives the inflaton field a mass m. The model of
symmetry breakdown requires a more complicated potential

V [o]. It must contain degenerate minima that allow ground states
with @ = 0. In such a ground state, the mass 1s defined for small

perturbations by
, h*d?v

m° = ——.
c* do*




The energy—momentum tensor 1s given by

dp ¢ 1 dd 0o
T = he| ——— — Im 5 Y _Vie
=R <) 5k~ Jik <3J LV 1))

which implies that the energy density and pressure are given by

1 -5 1 1 _ ..
£ = hC < 4 a9 (:)H + — (V(I))‘?)

2c4 2 a2 [l‘]
and
1 ) ) ]. J. _..)
» = he | % — — (Vo) | .
P u( +-c.“” 62 [] ) ) >

Thus a scalar field with a nearly constant potential V corresponds to
oc® = = —p (= heV[g]).
Since w = p/e = -1, this 1s effectively a cosmological constant. More

generally, a scalar field that 1s not at the minimum of its potential
generates generates “dark energy’.



The field equation for the inflaton in expanding space 1s

92 1 3ad AV
— +

c20t2 a2 | 2a do

(+3HI¢?) =0.

This becomes the following equation if the spatial variations of
@ (and the last term) can be neglected
24V (9]

do

()-l- 3H[f]() = —

This equation must be solved along with the Einstein equations:

. 887G h | hG -,
H2 — _2 (‘r + 5. (:)2> and H = —47 2. ¢‘-

3 ¢ 2C- c3

With a suitably chosen potential V, the inflaton will quickly reach its
ground state and inflation will end. The term in parenthesis allows
the inflaton to decay into other fields at the end of inflation, thus
reheating the universe.



The last equation leads to

dH [( )] h (7 i

H = = —471 T

do

which allows us to write the Friedmann equation as

(dH> = 12’773{] H? — 3271’)h ( i [()]

d Q

When the inflaton is rolling slowly, the evolution of the inflaton 1s
governed by

-_

3H do 3¢

(‘.2 dV H‘) 8mhG V.

Then the number N of e-folds of the scale factor a is given by

®1 @1

7(1 H hG V
N = hl — = /Hclz‘ — /d()— : d(;‘)? ~ & 13 ‘/d(j)‘T/.

o)) (o))




Inflationary Models in More Detail
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Generating the Primordial Density Fluctuations

Early Development
of the Universe

Early phase of exponential expansion

) BB PLus Ti 1
S (Inflationary epoch)

(107%)

Zero-point fluctuations of quantum

2\ Bic Bane PLUS fields are stretched and frozen
7 300,000 YEARS

Cosmic density fluctuations are

Bia BanG Puus oz ‘ frozen quantum fluctuations
15 BiLLion YEARS \g: R 2ol
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Eternal Inflation

Vilenkin (1983) and Linde (1986, 1990) pointed out that if one extrapolates
inflation backward to try to imagine what might have preceeded it, in many
versions of inflation the answer is “eternal inflation”: in most of the volume
of the universe inflation is still happening, and our part of the expanding
universe (a region encompassing far more than our entire cosmic horizon)
arose from a tiny part of such a region. To see how eternal inflation works,
consider the simple chaotic model with V(¢) = (m*/2)¢*. During the de
Sitter Hubble time H~', where as usual H? = (827G /3)V, the slow rolling
of ¢ down the potential will reduce it by

Ab = oat = - ViAo M 1.7
$=9 T 3H A (1.7)

Here mpy is the Planck mass (Mp,,= 1/G'").  But there will also be quantum
fluctuations that will change ¢ up or down by
H  mo
2T \/3rmp

These will be equal for ¢, = 7rzi{2/‘2-rrzl/2, V(g = (m/S8mp)mp;. I ¢ 2 b,

posilive quantum fluctualions dominale the evolution: after At ~ H™1 an
3

do = (1.8)

initial region becomes ~ € regions of size ~ H™!, in half of which ¢ increases

to ¢+ d¢. Since H o ¢, this drives inflation faster in these regions.



Supersymmetric Inflation

When Pagels and I (1982) first suggested that the lightest supersymmetric
partner particle (LSP), stable because of R-parity, might be the dark
matter particle, that particle was the gravitino in the early version of
supersymmetry then in fashion. Weinberg (1982) immediately pointed
out that if the gravitino were not the LSP, it could be a source or real
trouble because of its long lifetime ~ AJE,I/mg/.Z ~ (‘n'),g,/-z/Te\"')"3103
s, a consequence of its gravitational-strength coupling to other fields.
Subsequently, it was realized that supersymmetric theories can naturally
solve the gauge hierarchy problem, explaining why the electroweak scale
Mpw ~ 10? GeV is so much smaller than the GUT or Planck scales. In
this version of supersymmetry, which has now become the standard one,
the gravitino mass will typically be mgy;; ~ TeV; and the late decay of
even a relatively small number of such massive particles can wreck BBN
and/or the thermal spectrum of the CBR. The only way to prevent this is
to make sure that the reheating temperature after inflation is sufficiently
low: Tru < 2 x 107 GeV (for msj, = TeV) (Ellis, Kim, & Nanopoulos 1984,
Ellis et al. 1992).



Basic Predictions of Inflation

1. Flat universe. This is perhaps the most fundamental prediction of inflation. Through
the Friedmann equation it implies that the total energy density is always equal to the
critical energy density; it does not however predict the form (or forms) that the critical
density takes on today or at any earlier or later epoch.

2. Nearly scale-invariant spectrum of Gaussian density perturbations. These
density perturbations (scalar metric perturbations) arise from quantum-mechanical
fuctuations 1n the field that drives inflation; they begin on very tiny scales (of the
order of 10-23 cm, and are stretched to astrophysical size by the tremendous growth of
the scale factor during inflation (factor of ¢ or greater). Scale invariant refers to the
fact that the fuctuations in the gravitational potential are independent of length scale;
or equivalently that the horizon-crossing amplitudes of the density perturbations are
independent of length scale. While the shape of the spectrum of density perturbations
1s common to all models, the overall amplitude 1s model dependent. Achieving
density perturbations that are consistent with the observed anisotropy of the CBR and
large enough to produce the structure seen in the Universe today requires a horizon
crossing amplitude of around 2 x10-,

3. Nearly scale-invariant spectrum of gravitational waves, from quantum-mechanical
fluctuations in the metric itself . These can be detected as CMB “B-mode” polarization,
or using special gravity wave detectors such as LIGO and LISA.



Density Fluctuations from Inflation

The relationship between the inflationary potential and the power spectrum of density
perturbations today (P(k) = (|6x|*)) is given by

2Ur3 I 73 o\ 7l -
P(k) — 10:4 k V. (L) T2(_k)
|

5 Hg mpSV/? \ k.
1 ' ‘“H 2 ‘ . ‘;I /
n—1 = - ke 0T I O RO generally nonzero
st \ Vi 47 Vv,
dn 1 mpPV"\ [ mp, V!
dink 3272 V. v

1 (mp2V2 (mp V)’ 3 [ W 4
=l )\ ) T we e

T{q) In (1 +2.34¢q) /2.34¢
q) = s sy
[1+3.80q + (16.1q)* + (5.46¢)° + (6.71q)*]

1/4°

where V(¢) is the inflationary potential, prime denotes d/d¢, V., is the value of the scalar
potential when the scale £, crossed outside the horizon during inflation, 7'(k) is the transfer
function which accounts for the evolution of the mode k& from horizon crossing until the

yresent, ¢ = k/hlC, and ' >~ Qurh is the “shape” parameter
] :



Gravity Waves from Inflation

Unlike the scalar perturbations, which must have an amplitude of around 10~—° to seed

structure formation, there is no astrophysical clue as to the amplitude of the tensor pertur-
bations. They can be characterized by their power spectrum today

3V o\ nr—3
Pr(k) = ([l S (i) Tr(k)

3r mpr* \ k.

) =
(mpl\ )
1N\ 2 N\ 4
dnp mMp V 1 mip V I 1 .
= — = —nr[(n—1)—n

dlnk Vv 3972\ Vv nr{(n —1) —nr]

4

3

k 5 k L
—+ = | — . 11
keq 2 keq (11)
where Tr(k) is the transfer function for gravity waves and describes the evolution of mode
k from horizon crossing until the present, kpq = 6.22 x 102 Mpec~! ('91\411,2]'\/ 9+/3.36) is the
scale that crossed the horizon at matter-radiation equality, (2 is the fraction of critical
density in matter, and g, counts the effective number of relativistic degrees of freedom (3.36

. . . 3 . f / ¢
for photons and three light neutrino species). The quantity &3/2|hg|/v/ 272 corresponds to
the dimensionless strain (metric perturbation) on length scale A = 27 /k.

nr =

OO

12

Tr(k) 1+



Stochastic Background
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L.ISA: Science Goals

 Beyond Einstein science

determine how and when massive
black holes form

investigate whether general
relativity correctly describes
gravity under extreme conditions

determine how black hole growth
is related to galaxy evolution

determine if black holes are
correctly described by general
relativity

investigate whether there are
gravitational waves from the early
universe

determine the distance scale of the
universe

e Broader science

— determine the distribution of binary

systems of white dwarfs and
neutron stars in our Galaxy

Galactic Binaries,
including future
type la supernovae

— Formation of
Massive Black Holes,
cores of active galactic nuclei,
formed before most stars

Compact Objects Orbiting
Masslve Black Holes,
high-precision probes

of strong-field gravity

Fluctuations from
Early Universe, ‘
before recombination
formed ¥ background
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LLISA: Science Goals

e Beyond Einstein science ‘ @
— determine how and when massive s am
black holes form Spacecraft #3 Secondaries s -

— 1nvestigate whether general
relativity correctly describes
gravity under extreme conditions

@3"4— —_— -(

— determine how black hole growth
is related to galaxy evolution

— determine if black holes are
correctly described by general
relativity

— 1nvestigate whether there are
gravitational waves from the early
universe

— determine the distance scale of the
universe

e Broader science

— determine the distribution of binary
systems of white dwarfs and
neutron stars in our Galaxy



TABLE 2.F 3 LISA: Bevond Einstein Science Programs

Science Program Program Characteristics Program Significance
Science Formation of Science Question | How and when do Observations will detect
, , , , Definition Massive Black massive black holes massive black hole binary
= | Programs Holes form? mergers to 7=15 and shed
b} ' i Measurements | Gravitational light on when massive black
c s waveform shape asa | holes formed
g 2 BAAANANAANNN ‘"\ )‘" ‘ I function of time from
AV VYV I ‘\ | massive bl;ck—hnle
e ! , binary mspiral and
et M‘”\ J . merger
319 ' s i Quantities Mass and spin of
o w00 0% ) g 2000 Determined black holes as a
«w Time (seconds) function of distance
Test General Science Question | Does general Measurement of the detailed

Relativity in the
Strong-Field
Regime

relatrvity correctly
describe gravity under
extreme conditions?

MMeasurements

Gravitational
waveform shape as a
function of time from
massive black-hole
binary inspiral and
merger

Quantities
Determined

Evolution of
dynamucal spacetime
geometry, mass and
spin of mitial and
final holes

gravitational waveform will
test whether general
relativity accurately
describes gravity under the
most extreme conditions

History of galaxy
and black hole
co-evolution

Science Question

How 15 black hole
growth related to
galaxy evolution?

Measurements

Gravitational
waveform shape as a
function of time from
massive black-hole
binary mspiral and
merger

Observations will trace the
evolution of massive black
hole masses as a function of
distance or tume, and will
shed light on how black
hole growth and galactic
evolution may be linked




Science Program Program Characteristics Program Significance
Quanftities Mass as a function of
Determined distance
Additional Map black-hole | Science Question | Are black holes Observations will yield
Beyond spacetimes correctly described by | maps of the spacetime
Einstein general relativity? geometry surrounding
Science Measurements | Gravitational massive black holes, and
waveform shape from | will test whether they are
small bodies spiraling | descnibed by the Kerr
into massive black geometry predicted by
holes (EMRI) general relativity. They will
Quantities Mass, spin, multipole | also measure the parameters
Determined moments, spacetime (mass, spin, shape) of the

geometry close to
hole

holes, and test whether they
obey the no-hair theorems

6 55 45 -4 .35 .3

Log (frequehcy)

-1.5 -1.0 -05

Distance = ¢

of GR
Cosmological Science Question | Are there First-order phase transitions
backgrounds gravitational waves Of cosmmc strings in the
tosmic ﬁc_m the early early umverse could leave a
/T ) universe? background of detectable
puperstring Measurements | Stochastic waves
loop bursts background of
gravitational waves
Quantities Effective energy
Determined density of waves vs.
frequency
Cosmography, Science Question | What 1s the distance If redshift of source or host
Dark energy scale of the universe? | galaxy can be determined.

% Measurements | Gravitational then precise, calibration-
waveform shape and | free measurements of the
amplitude Hubble parameter and other

| measurements yield cosmological parameters
luminosity distance of | could be done, significantly
sources directly constraining dark energy
Quantities Luminosity distance
Determined

frequency” x t chirp X @Mplitude




Inflation Summary

The key features of all inflation scenarios are a period of superluminal
expansion, followed by (“re-")heating which converts the energy stored in
the inflaton field (for example) into the thermal energy of the hot big bang.

Inflation is generic: it fits into many versions of particle physics, and
it can even be made rather natural in modern supersymmetric theories as
we have seen. The simplest models have inflated away all relics of any
pre-inflationary era and result in a flat universe after inflation, i.e., 2 =1
(or more generally €25 4+ €24 = 1). Inflation also produces scalar (density)
fluctuations that have a primordial spectrum

(SP 2 VB/‘Z - .
(7) - (m%zV') A -

where V' is the inflaton potential and n, is the primordial spectral index,

which is expected to be near unity (near-Zel’dovich spectrum). Inflation
also produces tensor (gravity wave) fluctuations, with spectrum
V 2
Pi(k) ~ (—) x k™, (1.13)
mpy

where the tensor spectral index ny; &~ (1 — n,) in many models.



The quantity (1 —n,) is often called the “tilt” of the spectrum; the larger
the tilt, the more fluctuations on small spatial scales (corresponding to large
k) are suppressed compared to those on larger scales. The scalar and tensor
waves are generated by independent quantum fluctuations during inflation,
and so their contributions to the CMB temperature fluctuations add in
quadrature. The ratio of these contributions to the quadrupole anisotropy
amplitude @ is often called T/S = Q?/Q?; thus the primordial scalar
fluctuation power is decreased by the ratio 1/(14+7"/S) for the same COBE
normalization, compared to the situation with no gravity waves (7" = 0). In
power-law inflation, 7/S = 7(1 — n,). This is an approximate equality in
other popular inflation models such as chaotic inflation with V(¢) = m?¢?
or A¢*. But note that the tensor wave amplitude is just the inflaton
potential during inflation divided by the Planck mass, so the gravity wave
contribution is negligible in theories like the supersymmetric model discussed
above in which inflation occurs at an energy scale far below mp;. Because
gravity waves just redshift after they come inside the horizon, the tensor
contributions to CMB anisotropies corresponding to angular wavenumbers
¢ > 20, which came inside the horizon long ago, are strongly suppressed
compared to those of scalar fluctuations.



