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The Initial Fluctuations

At Inflation: Gaussian, adiabatic

Fourier transform:

Power Spectrum: P(k) =<6 (k) > o k"

klnaX
rms perturbation: [JEEEIEERKN A ISV

Correlation function:

Er)=<0(x)0(x+7r)> :xﬂb(/\ oIk F 337 o 1 ~(n43)

dP =[1+&(r)|ndV



Scale-Invariant Spectrum (Harrison-Zel'dovich)

mass
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{ time
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Gravitational Instability

Small fluctuations: [SREONNERI] comoving coordinates

Continuity:  [NEREIERANTIER( H=ala, Q)

Euler: v+ 20+ (v v = -Vo IR
Poisson: Vip = (3/2)H*Qd

Linear approximation: KEIcCEiCIRIIESD

growing mode:



Thus far, we have considered only the evolution of fluctuations in the dark matter.
But of course we have to consider also the ordinary matter, known in cosmology as
“pbaryons” (implicitly including the electrons). See Madau’s lectures “The Astrophysics
of Early Galaxy Formation (http:/arxiv.org/abs/0706.0123v1 ) for a recent summary. We have
already seen that the baryons are primarily in the form of atoms after z ~ 1000, with a
residual ionization fraction of a few x 10-4. They become fully reionized by z ~ 6, but
they were not reionized at z~20 since the COBE satellite found that “Compton
parameter” y < 1.5 x 107, where

“ kpTe. dr.
Y= / dz
0

me(“2 dz i

This implies that {x.T.}[(1 + = )2/2 _ 1] <4 x 107 K. Thus, for example, a universe that
was reionized and reheated at z =20 to (Xe, Te) = (1, > 4x10° K) would violate the
COBE Y'limit. /1 T TTTTTT] T T T 11T L | 7T

The figure at right shows the
evolution of the radiation (dashed
line, labeled CMB) and matter
(solid line, labeled GAS)
temperatures after recombination,
in the absence of any reheating
mechanism.

(From Madau’s lectures.)

log Temperature (K)



http://arxiv.org/abs/0706.0123v1
http://arxiv.org/abs/0706.0123v1

The linear evolution of sub-horizon density perturbations in the dark matter-baryon
fluid is governed in the matter-dominated era by two second-order differential equations:

- . 3 v e - .
ddm + 2H ddm = SHQQ:n (fdmOdm + fbob ) (1)
for the dark matter, and / ‘Hubble friction”
. -~ 3 22 4 ~ R (ﬁ 2 <
op + 2Hdp = jH O (fdmddm + fods) — 0_2]“ Ob

for the baryons, where dm(k) and b(k) are the Fourier components of the density
fluctuations in the dark matter and baryons,{ fam and f, are the corresponding mass
fractions, cs is the gas sound speed, k is the (comoving) wavenumber, and the derivatives
are taken with respect to cosmic time. Here

(2

-
~
“=m

= 87Gp(t)/3H? = Qn(1+2)3/[Qm(1+2)3+ Q] 2)

is the time-dependent matter density parameter, and p(t) is the total background

matter density. Because there is ~5 times more dark matter than baryons, it is the former
that defines the pattern of gravitational wells in which structure formation occurs. In
the case where f, = 0 and the universe is static (H = 0), equation (1) above becomes

T For each fluid component (i = b, dm) the real space fluctuation in the density field,
d;(x) = dpi(x)/pi, can be written as a sum over Fourier modes,

di(x) = f d’k (2m) 72 5;(k) exp ik-x.



’Sdm
2
‘dyn

ddm = 4TGPdgm =

where tqyn denotes the dynamical timescale. This equation admits solution

(—Sdll] - -‘11 OXI) l:t’.""td_\; n ,| + -"12 OXI)( _t'.";t-dyn ) .

After a few dynamical times, only the exponentially growing term is significant: gravity

tends to make small density fluctuations in a static pressureless medium grow
exponentially with time. Sir James Jeans (1902) was the first to discuss this.

The additional term o Hégy, present in an expanding universe can be thought as a
“Hubble friction” term that acts to slow down the growth of density perturbations.
Equation (1) admits the general solution for the growing mode:

N -1 S “ da
()dn] l. a ) — L H()Z H / . (3)
JO

¢ ((:I., )3 ?

—

so that an Einstein-de Sitter universe gives the familiar scaling dam(a) = a with
coefficient unity. The right-hand side of equation (3) is called the linear growth factor
D(a) = D.(a). Different values of 2., Q24 lead to different linear growth factors.

Growing modes actually decrease in density, but not as fast as the average universe.
Note how, in contrast to the exponential growth found in the static case, the growth of
perturbations even in the case of an Einstein-de Sitter (€2, =1) universe is just
algebraic. This was discovered by the Russian physicist Lifshitz (1946).



Since cosmological curvature is at most marginally important at the present
epoch, it was negligible during the radiation-dominated era and at least the begin-
ning of the matter-dominated era. But for k = —1, 1.e. < 1, the growth of §
slows for (R/R,) = Q. as gravity becomes less important and the universe begins
to expand freely. To discuss this case, it 1s convenient to introduce the variable

r=QYt)-1=(Q;! —1)R(t)/R,. (2.55)

(Note that Q(t) — 1 at early times.) The general solution in the matter-
dominated era is then (Peebles, 1980, §11)

6 = ADy(t) + BDs(t), (2.56)

where the growing solution is

3 3(1+x)? 12 _1/2 -
Di=l+>+=—p—n [(l+x) —z ] (2.57)

and the decaying solution is
Dy = (1 +z)4/2 /232, (2.58)

These agree with the Einstein-de Sitter results (2.53) at early times (¢ < to, z < 1).
For late times (t = t,,z = 1) the solutions approach

Di=1,Dy =271 (2.59)

in this limit the universe is expanding freely and the amplitude of fluctuations
stops growing.



The consequence is that dark matter é
fluctuations grow proportionally to the scale

T

radiation dominates | matter dominates
<>

factor a(t) when matter is the dominant i
component of the universe, but only =er ———_
logarithmically when radiation is dominant. , _, | 2
Thus there is not much difference in the g

amplitudes of fluctuations of mass M < 101> -8

Miun, which enter the horizon before zy: ~ 4
x103, while there is a stronger dependance on
M for fluctuations with M > 10!5 M. 0=

There i1s a similar suppression of the growth of matter fluctuations once the gravitationally

dominant component of the universe is the dark energy, for example a cosmological constant.
Lahav, Lilje, Primack, & Rees (1991) showed that the growth factor in this case is well
approximated by

B [ e (Q2)2 200 1
(-Sdm(a‘):D(a):ﬁ (Q;r.)4 - 1110 +14O“Qm+m

Here ()7 isagain given by QF =87Gp(t)/3H? = Qun(1+2)%/[Qm(1+2)°+ Q4]



CDM Power Spectrum
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Formation of Large-Scale Structure

2/3
Fluctuation growth in the linear regime: 0 <<1 - 5 ot

rms fluctuation at mass scale M: oM™ 0O<a=<s2/3
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The observed uniformity of the CMB gnarantees that density fluctuations must have
been quite small at decoupling, implying that the evolution of the density contrast can
be studied at z = zgec using linear theory, and each mode §(k) evolves independently.
The inflationary model predicts a scale-invariant primordial power spectrum of density
fluctuations P(k) = (|6(k)|?) o< k™, with n = 1 (the so-called Harrison-Zel’dovich spec-
trum). It is the index n that governs the balance between large and small-scale power.
In the case of a Gaussian random field with zero mean, the power spectrum contains
the complete statistical information about the density inhomogeneity. It is often more
convenient to use the dimensionless quantity A7 = [k*P(k)/27?%], which is the power
per logarithmic interval in wavenumber k. In the matter-dominated epoch, this quantity
retains its initial primordial shape (A7 o< k"*3) only on very large scales. Small wave-
length modes enter the horizon earlier on and their growth is suppressed more severely
during the radiation-dominated epoch: on small scales the amplitude of A% is essentially
suppressed by four powers of k (from k"+3 to k™~1). If n = 1, then small scales will have
nearly the same power except for a weak. logarithmic dependence. Departures from the
initially scale-free form are described by the transfer function 7T'(k), defined such that

T0)=1: 112
P(k,z) = AE" [%] T*(k),

where A is the normalization.



An approximate fitting function for T(k) in a ACDM universe is (Bardeen et al. 1986)

~ In(1+ 2.34q)
T T34
where (Sugayama 1995)

[1+3.80g+ (16.19)? + (5.460)" + (6.719)*] ",

k/Mpc—1
Qmh2exp(—Qp — % /Qm)

qg =

For accurate work, for example for starting high-resolution N-body simulations, it is

best to use instead of fitting functions the numerical output of highly accurate
integration of the Boltzmann equations, for example from CMBFast

http://cfa-www.harvard.edu/~mzaldarr/CMBFAST/cmbfast.html

Welcometothe CMBFAST Website!

This is the most extensively used code for computing cosmic microwave background
anisotropy, polarization and matter power spectra. The code has been tested over a wide
range of cosmological parameters. We are continuously testing and updating the code based
on suggestions from the cosmological community. Do not hesitate to contact us if you have
any questions or suggestions.

U. Seljak & M. Zaldarriaga


http://cfa-www.harvard.edu/~mzaldarr/CMBFAST/cmbfast.html
http://cfa-www.harvard.edu/~mzaldarr/CMBFAST/cmbfast.html

1 rtﬁlrlllr#l[ttllvl

; e -Q=1Q,=0
e L . T—— Q=03Q=0 -
0.8 -
S 24 AT 5 Y W Q.=0.3 .=0.74
06
+ i F
o ] :
04 R N g
- .
02 - &
-‘! Log o Top a-piilligiss .-....l..L,l“.ll....l....

0 5 04 bE R B -
a A

Fig.7.3. Growth factor D for three different cosmological
models, as a function of the scale factor a (left panel) and
of redshift (right panel). It is clearly visible how quickly
D decrcases with increasing redshift in the EAS model, in
comparison to the models of lower density

From Peter Schneider, Extragalactic
Astronomy and Cosmology (Springer, 2006)
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Fig. 7.6. The current power spectrum of density fluctuations
for CDM models. The wave number & is given in units of Hy/c.
and (Hy/c)? P(k) is dimensionless. The various curves have
different cosmological parameters: EdS: 2, =1, 2,4 =0:
OCDM: 2, =0.3, 24 =0; ACDM: 2, =0.3, 2, =0.7.
The values in parentheses specify (og, I'), where oy is the
normalization of the power spectrum (which will be discussed
below), and where I" is the shape parameter. The thin curves
correspond to the power spectrum Py (k) linearly extrapolated
to the present day, and the bold curves take the non-linear
evolution into account
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On large scales (k small), the gravity of the dark matter dominates. But on small
scales, pressure dominates and growth of baryonic fluctuations is prevented. Gravity
and pressure are equal at the Jeans scale

a -
kj = C—‘\/ 47«'(7'/)

Q

The Jeans mass is the dark matter + baryon mass enclosed within a sphere of
radius ma/ky,

3 3/2 3/2
47 Ta 4 SmkrT ! - . d
.'\.[J = —p l_(l — P ) ‘_' il ~ 8.8 X 104 I\’I[;, aTe .
3 kg : 12G pmg - 1

where 1 1s the mean molecular weight. The evolution of My is shown below, assuming
that reionization occurs at z=135:
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Jeans-type analysis for HDM, WDM, and CDM



GRAVITY - The Ultimate Capitalist Principle

Astronomers say that a region of the universe with more matter is “richer.”
Gravity magnifies differences—if one region 1s slightly denser than average,
it will expand slightly more slowly and grow relatively denser than its
surroundings, while regions with less than average density will become
increasingly less dense. The rich always get richer, and the poor poorer.

The early universe expands
almost perfectly uniformly.
But there are small
differences in density from
place to place (about 30
parts per million).

Because of gravity, denser
regions expand more
slowly, less dense regions
more rapidly. Thus gravity
amplifies the contrast
between them, until...

Temperature map at 380,000 years after the
Big Bang. Blue (cooler) regions are slightly
denser. From NASA’s WMAP satellite, 2003.



Structure Formation by Gravitational Collapse
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When any region and starts falling Through Violent
becomes about together. The forces  Relaxation the dark
twice as dense as between the matter quickly reaches
typical regions its subregions generate  a stable configuration
size, 1t reaches a velocities which that’s about half the
maximum radius, prevent the materital  maximum radius but
stops expanding, from all falling denser in the center.

toward the center. Simulation of top-hat collapse:

P.J.E. Peebles 1970, Apl, 75, 13.
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Growth and Collapse of
Fluctuations

Schematic sketches of radius, density, and density
contrast of an overdense fluctuation. It initially
expands with the Hubble expansion, reaches a
maximum radius (solid vertical line), and undergoes
violent relaxation during collapse (dashed vertical
line), which results in the dissipationless matter
forming a stable halo. Meanwhile the ordinary matter
pb continues to dissipate kinetic energy and contract,
thereby becoming more tightly bound, until dissipation
is halted by star or disk formation, explaining the
origin of galactic spheroids and disks.

(This was the simplified discussion of ; the
figure is from my 1984 lectures at the Varenna school.
Now we take into account halo growth by accretion,
and the usual assumption is that spheroids form mostly
as a result of galaxy mergers )



Halo and Galaxy
Merging and
Spheroid Formation

dynamical
friction

mergers can trigger starburst, subsequent cooling forms disk
forming spheroid



