DEEP-Theory group meeting Monday 14 January 2019

Viraj Pandya - Aligned prolate galaxies project progress report
Galaxy 2-point angular correlation functions: mock & CANDELS agree

Christoph Lee - Deep Learning detection of clumps in CANDELS images

Note that Christoph will be defending his PhD dissertation in ISB 102
on Friday morning January 25

Brain and Cosmic Web Art Project - Joel, working with brain connection
expert Olaf Sporns (University of Indiana) and artists Esther Mallouh and
Forrest Stearns. Meeting Saturday February 16 in ISB 310 10 am to 3 pm
including them (Olaf electronically) and also Elliot Eckholm, Doug Hellinger,
and other interested participants.



Dec [deg]

Viraj Pandya - Aligned prolate galaxies project progress report
Galaxy 2-point angular correlation functions: mock & CANDELS agree
| finished doing the exercise of computing correlation functions in a square vs a rectangular field with the same
area (0.05 sq deg), as Sandy suggested. There is definitely a difference -- since the rectangular FOV allows for

larger pair separations (along the longer axis), you end up with a longer tail in the rectangular correlation function.
The square correlation function shows a steeper drop-off on the scale of the size (diagonal) of the square.

Square subfield Rectangular subfield
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For correlation functions in pencil beam surveys like CANDELS, geometry is important. So | extracted 5
CANDELS-sized fields from the larger mock lightcone, and computed the correlation function in each subfield
independently. The combined correlation functions in the 4 redshift slices and 1 stellar mass bin (below) agree
for the 5 combined mock subfields and CANDELS fields. The disagreement at z=1.8-2.2 (mock is lower than
CANDELS) is probably due to cosmic variance (the redshift distribution below shows that the mock has less #
galaxies per sq degree than the five CANDELS fields at z=1.8-2.2), though this is one last remaining thing |
need to check explicitly with a few of the other mock LCs....

red=GOODS-N, green=GOODS-S
blue=COSMOS, magenta=UDS, cyan=EGS
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Christoph Lee - Deep Learning detection of clumps in CANDELS images

I've now recomputed the clump detection probability comparison between the DL model and Yicheng's method,
using my new 128x128 cutouts with Yicheng's fake clumps added. Images that are not completely covered by
the camera are excluded (i.e. those which have any zero regions).

GDS (z=[1:2]) GDS (z=[1:2])
To generate these results, I'm using N = T
approximately 10,000 images (~330 1.0 New 1.0 | s New ...
different galaxies) from GOODSS v-band, z - 7 - 'W'\
= 1-2. The plot at right shows that the . Vi . \
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The plot at right shows a breakdown of how
well the two clump detection methods
(Yicheng Guo’s and my Deep Learning code)
agree as a function of clump luminosity. The
agreement is very strong above a relative
clump flux Lolob/Lgalaxy of ~10%.

Fraction of Total

In our Jan 17 telecon (Marc, Yicheng, Christoph,
and Joel) we agreed that Christoph should now ©27
run his code on the CANDELS galaxy images
and compare with Yicheng’s papers 0.0

0.05 0.10 0.15 0.20
min(Lblob/Lgalaxy)



Brain and Cosmic Web Art Project - organized by Esther Mallouh

Astrophysicists Neuroscientists
Amanda Cook b http://www.astrochem.org/bios/cook.php Amanda.M.Cook@nasa.gov 650-604-2831 role: communications
Kimberly Smith Ennico https://www.sofia.usra.edu/science/science-team/kimberly-ennico-smith kimberly.ennico@nasa.gov role: communications
Jeffrey Kruk ™ https://science.gsfc.nasa.gov/sed/bio/jeffrey.w.kruk jeffrey.w.kruk@nasa.gov 240-521-9218 Tamira Elul https://teluldevneurobiology.weebly.com/ tamira.elul@tu.edu 925-457-2368

http://tu.edu/faculty_staff/elul_tamira.prof.html

| David Weinberg by http://www.astronomy.ohio-state.edu/~dhw/ dhw@astronomy.ohio-state.edu 614-292-6543 Dan Feldman http://mcb.berkeley.edu/labs/feldman/index.html dfeldman@berkeley.edu 510-643-1723
previous art project http://www.astronomy.ohio-state.edu/~dhw/McElheny/

Bridget Falck o Department of Physics and Astronomy, Johns Hopkins University bridget.falck@jhu.edu Sarah Banducci https://sarahbanducci.com sbanducci@gmail.com  814-460-6414

https://sarahbanducci.com/content/scientific-publications

| Joel Primack ¥ http://scipp.ucsc.edu/personnel/profiles/primack.html joel@ucsc.edu 831-345-8960 Olaf Sporns http://www.indiana.edu/~cortex/ osporns@indiana.edu  812-855-2772
previous art project https://www.rachelsmith.online/bolshoi-cosmological-simulation https://psych.indiana.edu/directory/faculty/sporns-olaf.html

Benedikt Diemer b http://www.benediktdiemer.com benedikt.diemer@cfa.harvard.edu Natalie Zahr https://www.sri.com/about/people/natalie-zahr nzahr@stanford.edu 650-455-9957
previous art project http://www.fabricoftheuniverse.org http://med.stanford.edu/brainaddictionlab/meet.html

https://www.sri.com/sites/default/files/bios/cv/zahr_cv_2015.pdf

Mark Neyrinck http://skysrv.pha.jhu.edu/~neyrinck/ Mark.Neyrinck@gmail.com 808 -232-7263 to be partnered
previous art project http://www.pbs.org/wgbh/nova/physics/origami-revolution.html

Brain and Cosmic Webs
Similarities between Neurons and Galaxies interpreted through Art — see the 2017 article in Nautilus magazine by Vazza & Feletti on the next page

The Metaphor: There is more likely some unknown law that governs the way networks grow and change, from the smallest brain cells to the
growth of mega-galaxies. Are we closer to understanding the communalities between networks large and small?

Brain and Cosmic Webs exhibit will interpret this metaphor that speaks to us of inner galaxies and allow us to intuit a wisdom and a connection
between all the kingdoms in existence in the universe, at once the most immense with the very smallest.

The exhibit features digital and interactive media artists interpreting ramifications of the collaborations between Astrophysicists and
Neuroscientists who are drawing new parallels between galactic and neuronal networks.

Process: 7 astrophysicists, 7 Neuroscientists, and 7 artists will participate in this project. Esther Mallouh (EM) will pair the astrophysicists with the
Neuroscientists and artists to form 7 collaborations. My collaborators are neuroscientist Olaf Sporns (U Indiana) and artist Forrest Stearns
(Google). (Scientists from both fields may suggest scientific collaborators to EM - should they choose to)

The scientists will define the subject matter of their projects (one similarity between the 2 fields) and inform EM of their subject of choice. Once
defined, EM will assign an artist to each of the 7 groups of scientists. The 7 artists will transform the subject matter of their assigned projects into
art installations. The artists will act as their own project managers — working with their collaborators as mutually agreed upon and as needed.

Time Frame: To be advised (most likely October 2019) Location: To be advised.

Curator/Producer: Esther Mallouh (EM) is an Art Liaison and a curator of exhibitions at the intersection of art, science, and technology. Her most
recent curatorial project Mind Matters: Mapping the Human Mind through Neuroscience had at its heart the pursuit of new connections,
explorations, and artistic presentations at the nexus of the arts and the neuroscience.



NAUTILUS

http://nautil.us/issue/50/emergence/the-strange-similarity-of-neuron-and-galaxy-networks

NUMBERS MATH

The Strange Similarity of Neuron and
Galaxy Networks

Your life’s memories could, in principle, be stored in the universe’s structure.

BY FRANCO VAZZA & ALBERTO FELETTI
PHOTO COLLAGE BY FRANCESCO I1ZzZz0
JULY 20, 2017

B ADD A COMMENT f FACEBOOK ¥ TWITTER B EmaIL # SHARING

hristof Koch, a leading researcher on consciousness and the human brain, has famously called the brain “the most

‘ complex object in the known universe.” It’s not hard to see why this might be true. With a hundred billion neurons and

a hundred trillion connections, the brain is a dizzyingly complex object.

But there are plenty of other complicated objects in the universe. For example, galaxies can group into enormous structures (called
clusters, superclusters, and filaments) that stretch for hundreds of millions of light-years. The boundary between these structures
and neighboring stretches of empty space called cosmic voids can be extremely complex.1 Gravity accelerates matter at these
boundaries to speeds of thousands of kilometers per second, creating shock waves and turbulence in intergalactic gases. We have
predicted that the void-filament boundary is one of the most complex volumes of the universe, as measured by the number of bits

of information it takes to describe it.
This got us to thinking: Is it more complex than the brain?

So we—an astrophysicist and a neuroscientist—joined forces to quantitatively compare the complexity of galaxy networks and
neuronal networks. The first results from our comparison are truly surprising: Not only are the complexities of the brain and cosmic
web actually similar, but so are their structures. The universe may be self-similar across scales that differ in size by a factor of a

billion billion billion.

http://mautil.us/issue/50/emergence/the-strange-similarity-of-neuron-and-galaxy-networks



Papers and popular articles about neural nets from Olaf Sporns
Excerpts are on the following pages, with links to these articles

Carl Zimmer, 100 Trillion Connections, Scientific American, January 2011
Tom Siegfried, Big Neuroscience, Science News, February 2014

Danielle Bassett and Olaf Sporns, Network Neuroscience, Nature Neuroscience, March 2017

Andrea Avena-Koenigsberger, Bratislav Misic and Olaf Sporns, Communication dynamics in complex
brain networks, Nature Reviews Neuroscience, January 2018

Artist: Forrest Stearns (Google; TEDx talk https://www.youtube.com/watch?v=P1_cNeUX-yE;
website https://www.draweverywhere.com/).

Online textbook Network Science by Albert-Laszlo Barabasi
http://networksciencebook.com/

Sandrine Codis’s lecture about the cosmic web
http://sandrinecodis.wixsite.com/sandrinewebsite

Papers and popular articles about the cosmic web
Bond, Kofman, Pogosyan, How Filaments of Galaxies Are Woven Into the Cosmic Web, Nature, 1996
Coutinho et al., The Network Behind the Cosmic Web, arXiv:1604.03236v2
Interactive Website: http://cosmicweb.kimalbrecht.com/
Codis, Pogosyan, Pichon, On the Connectivity of the Cosmic Web, MNRAS, 479, 973, 2018

Primack, The Universe in a Supercomputer, IEEE Spectrum, October 2012
Primack & Bell, Universe in a Box, Sky & Telescope, July 2012

Dominguez-Puebla et al. 2016, Cosmic Halo Demographics, MNRAS, 462, 893, 2016

Primack, cosmic web seminar 2/16/2019 including Origin (Quantum fluctuations in cosmic inflation),
Evolution (pancakes, filaments, nodes, motion toward dense regions, Dark Energy freezes structure),
Structure (space tamed by gravity: galaxies, virialized halos, larger bound regions; wild space )


https://www.youtube.com/watch?v=P1_cNeUX-yE
https://www.draweverywhere.com/

NEUROSCIENCE January 2011, ScientificAmerican

Download this and following papers — this one is at

1 O O | i | | i https://www.dropbox.com/s/bh88icluf4vow3g/scientificamerican0111-58.pdf?dI=0

Connections

The noise of billions of brain cells trying to communicate with one
another may hold a crucial clue to understanding consciousness

By Carl Zimmer

SINGLE NEURON SITS IN A PETRI DISH, CRACKLING
in lonely contentment. From time to time, it
spontaneously unleashes a wave of electric
current that travels down its length. If you
deliver pulses of electricity to one end of the
cell, the neuron may respond with extra
spikes of voltage. Bathe the neuron in various

neurotransmitters, and you can alter the strength and timing

of its electrical waves. On its own, in its dish, the neuron can’t

do much. But join together 302 neurons, and they become a

nervous system that can keep the worm Caenorhabditis elegans

alive—sensing the animal’s surroundings, making decisions

and issuing commands to the worm’s body. Join together 100

billion neurons—with 100 trillion connections—and you have

yourself a human brain, capable of much, much more.

How our minds emerge from our flock of neurons remains
deeply mysterious. It’s the kind of question that neuroscience,
for all its triumphs, has been ill equipped to answer. Some neu-
roscientists dedicate their careers to the workings of individual
neurons. Others choose a higher scale: they might, for example,
look at how the hippocampus, a cluster of millions of neurons,
encodes memories. Others might look at the brain at an even
higher scale, observing all the regions that become active when
we perform a particular task, such as reading or feeling fear. But
few have tried to contemplate the brain on its many scales at
once. Their reticence stems, in part, from the sheer scope of the
challenge. The interactions between just a few neurons can be a
confusing thicket of feedbacks. Add 100 billion more neurons to
the problem, and the endeavor turns into a cosmic headache.

Yet some neuroscientists think it is time to tackle the chal-

IN BRIEF

A single neuron cannot do much, but
string a few hundred together and
a primitive nervous system emerges,
one sophisticated enough to keep a
worm going.

More neurons equate to a more com-
plex organism. A central preoccupa-
tion of neuroscience is deducing the
way billions of neurons produce the
human mind.

Neuroscientists have begun to un-
ravel the brain’s complexity by adopt-
ing research on other elaborate sys-
tems, ranging from computer chips to
the stock market.

Understanding the workings of the
brain’s intricate networks may provide
clues to the underlying origins of dev-
astating disorders, including schizo-
phrenia and dementia.



T1 magnetic resonance scans identify the various anatomical
regions of the brain and subdivide them into small parcels of
gray matter tissue roughly equal in size (typically totaling more
than 1,000 pieces). Another form of MRI, called diffusion tensor
imaging, traces the paths of white matter fibers that connect the
brain’s various structural areas. The locations of the white matter
fibers allow the construction of a connectome map that reveals
how the parcels of gray matter are physically connected.

T1MRI

Regions 1,000+ resolution

Diffusion tensor imaging

Fiber tracking

Functional magnetic resonance imaging, or fMRI, records brain
activity in different regions by measuring blood flow. Detecting
parcels of brain tissue that are simultaneously active allows
scientists to identify “resting state networks,” functional modules
of brain tissue involved in the performance of various tasks. By
representing parcels of gray matter as nodes in a network, and
white matter fibers as the links, scientists can apply graph theory
(the mathematics of networks) to analyze how the structural
and functional connectomes interact, thereby gaining insights
into how the brain works as a whole.

Active areas Resting state network

24 SCIENCE NEWS | February 22,2014

https://www.dropbox.com/s/z1q99jgrq6m80f6/ScienceNews_Article_Feb2014.pdf?dI=0

EUROSCIENCE | CATALOGING THE CONNECTIONS

Within various brain regions, some parcels of gray matter
(nodes, in network language) possess a substantially higher
than average number of connections to other nodes. These
highly linked nodes, or “hubs,” are common in resting state
networks (color shaded, below) associated with specific brain
functions. Recent studies have shown that the hubs within a

resting state network are also highly connected to hubs in other resting state
Number of neurons networks (red lines). These “rich club” hubs (blue circles) probably play a major
in amale C. elegans . . .. . . .

role, therefore, in merging the activity of various brain networks into the

unified whole underlying consciousness.

Number of neurons

in a human brain O Node

@ Richclub

— Richclub
connection

— Connection

M.P. VAN DEN HEUVEL
AND O. SPORNS/J. OF
NEUROSCIENCE 2013

Explore more
B Human Connectome Project website: www.
neuroscienceblueprint.nih.gov/connectome

Tom Siegfried is the former editor in chief of
Science News.
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https://www.dropbox.com/s/tqm9r5c9pw1go8u/communication_dynamics_NRN.pdf?di=0

Communication dynamics in complex brain networks

IDepartment of Psychological and Brain Sciences,
Indiana University, Bloomington, Indiana 474035,
USA. 2Montreal Neurological Institute, McGill

University, Montreal, Quebec H3A 2B4, Canada.
3IU Network Science Institute, Indiana University,
Bloomington, Indiana 47405, USA.

Andrea Avena-Koenigsberger!, Bratislav Misic2 and Olaf Sporns!i.3 Correspondence to osporns@indiana.edu

Abstract | Neuronal signalling and communication underpin virtually all aspects of brain activity and function. Network science approaches to
modelling and analysing the dynamics of communication on networks have proved useful for simulating functional brain connectivity and
predicting emergent network states. This Review surveys important aspects of communication dynamics in brain networks. We begin by
sketching a conceptual framework that views communication dynamics as a necessary link between the empirical domains of structural and
functional connectivity. We then consider how different local and global topological attributes of structural networks support potential patterns
of network communication, and how the interactions between network topology and dynamic models can provide additional insights and
constraints. We end by proposing that communication dynamics may act as potential generative models of effective connectivity and can offer
insight into the mechanisms by which brain networks transform and process information.
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Figure 1| A conceptual framework for linking structural connectivity and functional connectivity. The left panel
shows a network of structural connections (grey lines) that link distinct neural elements (brain regions; black dots). Neural
activity gives rise to signalling events that propagate, at each given point in time, along distinct subsets of structural
connections (middle panel; signalling routes and implicated neural elements in orange). The resulting statistical
dependencies (in blue; right panel) among regional time series can be captured as functional connectivity.

Box 4. From classic connectionism to network computation

Classic models of information processing are based on theories that
conceptualize neural computation as the transformation of activity
patterns (representations), from inputs into outputs within distributed
networks!81-183_ Under this framework, each neural component
performs specific computations, and the results of these computations
are relayed between components through neuronal connections. In
simple physiological terms, neurons perform computations on their
synaptic inputs and relay these outputs of these computations to other
neurons through axonal connections. Neuronal signalling, then,
represents the exchange of information, encoded in the form of spike
trains. This exchange of information unfolds across sensory and motor
systems within processing hierarchies that generate increasingly
complex neuronal representations. One of the central objectives of the
classic models is to identify the computational steps that underpin
cognitive behaviours. How do the concepts in the classic models differ
from a perspective based on concepts of network science and
dynamics?



FOCUS ON HUMAN BRAIN MAPPING

Network neurosclence

REVIEW

https://www.dropbox.com/s/92fj6yj4h4uc3np/NetworkNeuroscience.4502.pdf?dl=0

Danielle S Bassett!>? & Olaf Sporns>*

Despite substantial recent progress, our understanding of the principles and mechanisms underlying complex brain function and
cognition remains incomplete. Network neuroscience proposes to tackle these enduring challenges. Approaching brain structure
and function from an explicitly integrative perspective, network neuroscience pursues new ways to map, record, analyze and
model the elements and interactions of neurobiological systems. Two parallel trends drive the approach: the availability of new
empirical tools to create comprehensive maps and record dynamic patterns among molecules, neurons, brain areas and social
systems; and the theoretical framework and computational tools of modern network science. The convergence of empirical

and computational advances opens new frontiers of scientific inquiry, including network dynamics, manipulation and control

of brain networks, and integration of network processes across spatiotemporal domains. We review emerging trends in network
neuroscience and attempt to chart a path toward a better understanding of the brain as a multiscale networked system.

Environment
Organism
Brain
System

Circuit

Spatial scale

Neuron
Synapse

Molecule

1 1 1 1 1 1 1

Millisecond Second Minute Hour Day Month Year
Timescale

Debbie Maizels/Springer Nature

Conclusion In this review, we have attempted to sketch the outlines of a
new interdisciplinary field, which we call network neuroscience. The field
gathers momentum as networks have become ubiquitous phenom- ena
encountered in empirical investigation as well as computational analysis and
modeling of neurobiological systems at all scales. The ever-growing volume
of big data in neuroscience demands not only advanced analytics and sound
statistical inference, but it also calls for theoretical ideas that can unify our
understanding of brain structure and function. Theory is indispensable, as it
allows us to transform big data into ‘small data’ and, ultimately, knowledge
—delivering compact descriptions of regularities, principles and laws that
apply to the architecture and functioning of neural systems. We believe that
network neuroscience can make an important contribution toward unifying
an otherwise fractured discipline by providing a common conceptual
framework and a common toolset to meet the challenges of modern
neuroscience. Network neuroscience naturally connects with other important
theoretical approaches such as dynamical systems, neural coding and
statistical physics.



I
Network Science

by Algert-Laszlo Barabasi
@

ersonal Introduot'em 6. Evolving Netw.orks
1. Introduction /. Degree Correlations
2. Graph Theory 8. Network Robustness
@ - Random Networks 9. Communities
. The Scale-Free Property = 10. Spreading Phenomena
5. The Barabasi-Albert Model ®  Preface

Start Reading




Sandrine Codis - Lecture Slides - IHP - 2018

http://sandrinecodis.wixsite.com/sandrinewebsite
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Bond, Kofman, Pogosyan 1996: first understanding of the origin of the cosmic web.
https://www.dropbox.com/s/34n5Inoto05kgss/BondKofmanPogosyan-CosmicWeb-Nature1996.pdf?dI=0

The seeds of walls, filaments and nodes lie in the asymmetries of the primordial
Gaussian random field then amplified by gravitational instability.

Rare peaks in the ICs will become the nodes of the cosmic web i.e rich clusters.
Their initial shear will set the preferred directions along which correlation bridges will
connect them to other nodes.

simulation

mean field around 20 main peak patches

Lagrangian space

10 contour

Importance of peak & constrained random field theories



arXiv:1604.03236v2 [astro-ph.CO] 13 Apr 2016

The Network Behind the Cosmic Web Interactive Website: http://cosmicweb.kimalbrecht.com/
B. C. Coutinho,! Sungryong Hong,> 3 Kim Albrecht,! Arjun Dey,> Albert-L aszl’o Barab asi,!*>¢ Paul Torrey,”® Mark Vogelsberger,” and Lars Hernquist®

http://adsabs.harvard.edu/abs/2016arXiv160403236C

The concept of the cosmic web, viewing the Universe as a set of discrete galaxies held together by
gravity, is deeply engrained in cosmology. Yet, little is known about the most effective construction
and the characteristics of the underlying network. Here we explore seven network construction
algorithms that use various galaxy properties, from their location, to their size and relative velocity,
to assign a network to galaxy distributions provided by both simulations and observations. We
find that a model relying only on spatial proximity offers the best correlations between the physical
characteristics of the connected galaxies. We show that the properties of the networks generated
from simulations and observations are identical, unveiling a deep universality of the cosmic web.

FIG. 1: Building networks from galaxy data. The circles
represent the linking lengths for models M1, M3 and M4. (a)
In M1 all galaxies within distance 1 are connected by an
undirected link. (¢) In M3 a galaxy is connected to the
closest galaxy with a directed link; therefore the linking
length depends on the position of the closest galaxy. (e) In

M4, the linking length scales with the galaxy size,1=a R
(b),(d) and (f) Visualization of the cosmic web for i redhshift
0 produced by the respective models, for <k) = 40. For
simplicity the direction of the links is not present in the
visualization. For interactive visualization see http://
kimalbrecht.com/ccnr/04-networkuniverse/17-network-
interface. Models M2,5,6,7 are generated from the three
models shown above. In M2 the directions of the M3 links
are inverted; in M5 the direction of the M4 links are
inverted. M6(7) are similar to M4(5) but computed in the
phase space.




Codis, Pogosyan, Pichon, On the Connectivity of the Cosmic Web, MNRAS, 479, 973, 2018
https://www.dropbox.com/s/lg96bb0zrebekux/CodisPogosyanPichon-CosmicWebConnectivity-MNRAS2018.pdf?dI=0

ABSTRACT Cosmic connectivity and multiplicity, i.e. the number of filaments globally or locally connected to a given
cluster is a natural probe of the growth of structure and in particular of the nature of dark energy. It is also a critical
ingredient driving the assembly history of galaxies as it controls mass and angular momentum accretion. ...
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Figure 22. Mean connectivity (left-hand panel) and multiplicity (right-hand panel) of the skeleton as a function of the expansion factor for ACDM and CDM
simulations as labelled. As expected, the CDM simulation is essentially featureless, whereas the ACDM connectivity changes slope when the dark energy
expansion kicksin. e —————————————————————— _
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Figure 23. PDF of cosmic connectivity' at various redshifts as labelled Figure24. Mean connecjm{lty of dark haloes at rf:dshlft Zero as a functlop of mass,- a§

is the ACDM simulations smoothed on a constant comoving length R ~ labeled for about on million nodes of the cosmic web. The mean cosmic connectivity

0.8Mpch . here is found to be well approximated by the simple linear relation ®(M) = 10/3log
(M/1011M ).



500 MI”IOn YearS 22 BI”lOn YearS COSMIC WEB: The Bolshoi simulation

. models the evolution of dark matter,
Afte r th e B I g Ban g which is responsible for the large

scale structure of the universe. Here,
snapshots from the simulation
show the dark matter distribution at
500 million and 2.2 billion years [top]
and 6 billion and 13.7 billion years
[bottom] after the big bang. These
images are 50 million light year thick
slices of a cube of simulated universe
that today would measure roughly
1 billion light years on a side and

encompass about 100 galaxy clusters.

SOURCES: SIMULATION, ANATOLY KLYPIN AND JOEL R. PRIMACK;
VISUALIZATION, STEFAN GOTTL BER/LEIBNIZ INSTITUTE FOR
ASTROPHYSICS POTSDAM

http://physics.ucsc.edu/~joel/Primack-
IEEE%20Spectrum%200ct2012.pdf

THE UNIVERSE IN A SUPERCOMPUTER

£ To understand the cosmos,
6 Billion Years we must evolve it all over again
By Joel R. Primack

HEN IT COMES TO RECONSTRUCTING THE PAST,

you might think that astrophysicists have it easy. After all,

the sky is awash with evidence. For most of the universe s

history, space has been largely transparent, so much so

that light emitted by distant galaxies can travel for billions of years before

nally reaching Earth. It might seem that all researchers have to do to

nd out what the universe looked like, say, 10 billion years ago is to build
a telescope sensitive enough to pick up that ancient light.

Actually, it s more complicated than that. Most of the ordinary matter

in the universe the stuff that makes up all the atoms, stars, and galaxies

J oe I P ri macC k astronomerscansee isinvisible, either sprinkled throughout intergalactic

: space in tenuous forms that emit and absorb little light or else swaddled

Neutrinos: <0.6% inside galaxies in murky clouds of dust and gas. When astronomers look

MOSTLY DARK: If you add up all the risBlennion SieBiecding out into the night sky with their most powerful telescopes, they can see no
matter and ener gy in the universe , you °d find matter: 40/?' il il leg(ggs()ip gg%% more than about 10 percent of the ordinary matter that s out there.

To make matters worse, cosmologists have discovered that if you add
up all the mass and energy in the universe, only a small fraction is com

astronomers see in their telescope s make up posed of ordinary matter. A good 95 percent of the cosmos is made up of two
very different kinds of invisible and as yet unidenti ed stuffthatis dark,

JHSt 0.5 per cent of the cosmos. Just 0.01 meaning that it emits and absorbs no light at all. One of these mysterious
percent of the universe is made of elements Dark matter: 22% components, called dark matter, seems immune to all fundamental forces

heavier than hy drogen or helium. Because of except gravity and perhaps the weak interaction, which is responsible for
uncertainties, the numbers in this chart do not Dark energy: 73%
add up to 100 percent.

little that is familiar. The stars and gas that

OCTOBER 2012 - IEEE SPECTRUM - NA 43
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ABSTRACT

We report and provide fitting functions for the abundance of dark matter haloes and sub-
haloes as a function of mass, circular velocity, and redshift from the new Bolshoi—Planck
and MultiDark—Planck ACDM cosmological simulations, based on the Planck parameters.
We also report halo mass accretion rates and concentrations. We show that the higher cosmo-
logical matter density of the Planck parameters compared with the WMAP parameters leads
to higher abundance of massive haloes at high redshifts. We find that the median halo spin
parameter Ag = J (V2Mi; Ryi Vi)~ i nearly independent of redshift, leading to predicted
evolution of galaxy sizes that is consistent with observations, while the significant decrease
with redshift in median Ap = J|E|~/>G~' M /2 predicts more decrease in galaxy sizes than
1s observed. Using the Tully—Fisher and Faber—Jackson relations between galaxy velocity and
mass, we show that a simple model of how galaxy velocity is related to halo maximum circular
velocity leads to increasing overprediction of cosmic stellar mass density as redshift increases
beyond z ~ 1, implying that such velocity—mass relations must change at z 2> 1. By making
a realistic model of how observed galaxy velocities are related to halo circular velocity, we
show that recent optical and radio observations of the abundance of galaxies are in good agree-
ment with our ACDM simulations. Our halo demographics are based on updated versions of
the Rockstar and ConsisTeNT TREES codes, and this paper includes appendices explaining all
of their outputs. This paper is an introduction to a series of related papers presenting other
analyses of the Bolshoi—Planck and MultiDark—Planck simulations.



