
DEEP-Theory group meeting Monday 14 January 2019

Viraj Pandya - Aligned prolate galaxies project progress report 
    Galaxy 2-point angular correlation functions: mock & CANDELS agree 

Christoph Lee - Deep Learning detection of clumps in CANDELS images

Brain and Cosmic Web Art Project - Joel, working with brain connection 
expert Olaf Sporns (University of Indiana) and artists Esther Mallouh and 
Forrest Stearns.  Meeting Saturday February 16 in ISB 310 10 am to 3 pm 
including them (Olaf electronically) and also Elliot Eckholm, Doug Hellinger,  
and other interested participants.

Note that Christoph will be defending his PhD dissertation in ISB 102 
on Friday morning January 25



Viraj Pandya - Aligned prolate galaxies project progress report 
    Galaxy 2-point angular correlation functions: mock & CANDELS agree

I finished doing the exercise of computing correlation functions in a square vs a rectangular field with the same 
area (0.05 sq deg), as Sandy suggested. There is definitely a difference -- since the rectangular FOV allows for 
larger pair separations (along the longer axis), you end up with a longer tail in the rectangular correlation function. 
The square correlation function shows a steeper drop-off on the scale of the size (diagonal) of the square.



For correlation functions in pencil beam surveys like CANDELS, geometry is important. So I extracted 5 
CANDELS-sized fields from the larger mock lightcone, and computed the correlation function in each subfield 
independently. The combined correlation functions in the 4 redshift slices and 1 stellar mass bin (below) agree 
for the 5 combined mock subfields and CANDELS fields. The disagreement at z=1.8-2.2 (mock is lower than 
CANDELS) is probably due to cosmic variance (the redshift distribution below shows that the mock has less # 
galaxies per sq degree than the five CANDELS fields at z=1.8-2.2), though this is one last remaining thing I 
need to check explicitly with a few of the other mock LCs.... 



Christoph Lee - Deep Learning detection of clumps in CANDELS images

The plot at right shows a breakdown of how 
well the two clump detection methods 
(Yicheng Guo’s and my Deep Learning code) 
agree as a function of clump luminosity. The 
agreement is very strong above a relative 
clump flux Lblob/Lgalaxy of ~10%.

To generate these results, I'm using 
approximately 10,000 images (~330 
different galaxies) from GOODSS v-band, z 
= 1-2.  The plot at right shows that the 
model achieves approximately equivalent 
clump detection probability as a function of 
clump relative flux for this set of images, 
except at the faint end where the detection 
probability is slightly higher.

I've now recomputed the clump detection probability comparison between the DL model and Yicheng's method, 
using my new 128x128 cutouts with Yicheng's fake clumps added.  Images that are not completely covered by 
the camera are excluded (i.e. those which have any zero regions).  

In our Jan 17 telecon (Marc, Yicheng, Christoph,

and Joel) we agreed that Christoph should now

run his code on the CANDELS galaxy images

and compare with Yicheng’s papers



Brain and Cosmic Web Art Project - organized by Esther Mallouh

Brain	and	Cosmic	Webs	
Similarities	between	Neurons	and	Galaxies	interpreted	through	Art	—	see	the	2017	article	in	Nautilus	magazine	by	Vazza	&	Feletti	on	the	next	page	

The	Metaphor:		There	is	more	likely	some	unknown	law	that	governs	the	way	networks	grow	and	change,	from	the	smallest	brain	cells	to	the	
growth	of	mega-galaxies.		Are	we	closer	to	understanding	the	communalities	between	networks	large	and	small?	

Brain	and	Cosmic	Webs	exhibit	will	interpret	this	metaphor	that	speaks	to	us	of	inner	galaxies	and	allow	us	to	intuit	a	wisdom	and	a	connection	
between	all	the	kingdoms	in	existence	in	the	universe,	at	once	the	most	immense	with	the	very	smallest.			

The	exhibit	features	digital	and	interactive	media	artists	interpreting	ramiKications	of	the	collaborations	between	Astrophysicists	and	
Neuroscientists	who	are	drawing	new	parallels	between	galactic	and	neuronal	networks.	

Process:		7	astrophysicists,	7	Neuroscientists,	and	7	artists	will	participate	in	this	project.		Esther	Mallouh	(EM)	will	pair	the	astrophysicists	with	the	
Neuroscientists	and	artists	to	form	7	collaborations.			My	collaborators	are	neuroscientist	Olaf	Sporns	(U	Indiana)		and	artist	Forrest	Stearns	
(Google).		(Scientists	from	both	Kields	may	suggest	scientiKic	collaborators	to	EM	–	should	they	choose	to)	

The	scientists	will	deKine	the	subject	matter	of	their	projects	(one	similarity	between	the	2	Kields)	and	inform	EM	of	their	subject	of	choice.		Once	
deKined,	EM	will	assign	an	artist	to	each	of	the	7	groups	of	scientists.		The	7	artists	will	transform	the	subject	matter	of	their	assigned	projects	into	
art	installations.		The	artists	will	act	as	their	own	project	managers	–	working	with	their	collaborators	as	mutually	agreed	upon	and	as	needed.			

Time	Frame:		To	be	advised	(most	likely	October	2019)			Location:		To	be	advised.		
Curator/Producer:		Esther	Mallouh	(EM)	is	an	Art	Liaison	and	a	curator	of	exhibitions	at	the	intersection	of	art,	science,	and	technology.		Her	most	
recent	curatorial	project	Mind	Matters:		Mapping	the	Human	Mind	through	Neuroscience	had	at	its	heart	the	pursuit	of	new	connections,	
explorations,	and	artistic	presentations	at	the	nexus	of	the	arts	and	the	neuroscience.		
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hristof Koch, a leading researcher on consciousness and the human brain, has famously called the brain “the most

complex object in the known universe.” It’s not hard to see why this might be true. With a hundred billion neurons and

a hundred trillion connections, the brain is a dizzyingly complex object.

But there are plenty of other complicated objects in the universe. For example, galaxies can group into enormous structures (called

clusters, superclusters, and filaments) that stretch for hundreds of millions of light-years. The boundary between these structures

and neighboring stretches of empty space called cosmic voids can be extremely complex.  Gravity accelerates matter at these

boundaries to speeds of thousands of kilometers per second, creating shock waves and turbulence in intergalactic gases. We have

predicted that the void-filament boundary is one of the most complex volumes of the universe, as measured by the number of bits

of information it takes to describe it.

This got us to thinking: Is it more complex than the brain?

So we—an astrophysicist and a neuroscientist—joined forces to quantitatively compare the complexity of galaxy networks and

neuronal networks. The first results from our comparison are truly surprising: Not only are the complexities of the brain and cosmic

web actually similar, but so are their structures. The universe may be self-similar across scales that differ in size by a factor of a

billion billion billion.

C
1

2/10/2019 How Your Brain Is Like the Cosmic Web

http://nautil.us/issue/50/emergence/the-strange-similarity-of-neuron-and-galaxy-networks 1/11

MOST POPULAR

 

The Strange Similarity of Neuron and
Galaxy Networks

BY FRANCO VAZZA & ALBERTO FELETTI
PHOTO COLLAGE BY FRANCESCO IZZO

JULY 20, 2017

 ADD A COMMENT  FACEBOOK  TWITTER  EMAIL  SHARING

Does Theranos Mark the Peak
of the Silicon Valley Bubble?

The Smaller the Theater, the
Faster the Music

What Time Feels Like When
You’re Improvising A New View o

NUMBERS   MATH

hristof Koch, a leading researcher on consciousness and the human brain, has famously called the brain “the most

complex object in the known universe.” It’s not hard to see why this might be true. With a hundred billion neurons and

a hundred trillion connections, the brain is a dizzyingly complex object.

But there are plenty of other complicated objects in the universe. For example, galaxies can group into enormous structures (called

clusters, superclusters, and filaments) that stretch for hundreds of millions of light-years. The boundary between these structures

and neighboring stretches of empty space called cosmic voids can be extremely complex.  Gravity accelerates matter at these

boundaries to speeds of thousands of kilometers per second, creating shock waves and turbulence in intergalactic gases. We have

predicted that the void-filament boundary is one of the most complex volumes of the universe, as measured by the number of bits

of information it takes to describe it.

This got us to thinking: Is it more complex than the brain?

So we—an astrophysicist and a neuroscientist—joined forces to quantitatively compare the complexity of galaxy networks and

neuronal networks. The first results from our comparison are truly surprising: Not only are the complexities of the brain and cosmic

web actually similar, but so are their structures. The universe may be self-similar across scales that differ in size by a factor of a

billion billion billion.

C
1

http://nautil.us/issue/50/emergence/the-strange-similarity-of-neuron-and-galaxy-networks



Papers and popular articles about neural nets from Olaf Sporns

Papers and popular articles about the cosmic web

Carl Zimmer, 100 Trillion Connections, Scientific American, January 2011
Excerpts are on the following pages, with links to these articles

Tom Siegfried, Big Neuroscience, Science News, February 2014

Andrea Avena-Koenigsberger, Bratislav Misic and Olaf Sporns, Communication dynamics in complex   
brain networks, Nature Reviews Neuroscience, January 2018 

Online textbook Network Science by Albert-Laszlo Barabasi

Sandrine Codis’s lecture about the cosmic web 
http://sandrinecodis.wixsite.com/sandrinewebsite

http://networksciencebook.com/

Danielle Bassett and Olaf Sporns, Network Neuroscience, Nature Neuroscience, March 2017

Bond, Kofman, Pogosyan, How Filaments of Galaxies Are Woven Into the Cosmic Web, Nature, 1996
Coutinho et al., The Network Behind the Cosmic Web, arXiv:1604.03236v2

Codis, Pogosyan, Pichon, On the Connectivity of the Cosmic Web, MNRAS, 479, 973, 2018
Interactive Website: http://cosmicweb.kimalbrecht.com/

Primack, cosmic web seminar 2/16/2019 including Origin (Quantum fluctuations in cosmic inflation),

   Evolution (pancakes, filaments, nodes, motion toward dense regions, Dark Energy freezes structure),

   Structure (space tamed by gravity: galaxies, virialized halos, larger bound regions; wild space )

Primack, The Universe in a Supercomputer, IEEE Spectrum, October 2012
Primack & Bell, Universe in a Box, Sky & Telescope, July 2012
Dominguez-Puebla et al. 2016, Cosmic Halo Demographics, MNRAS, 462, 893, 2016

Artist: Forrest Stearns (Google; TEDx talk https://www.youtube.com/watch?v=P1_cNeUX-yE;
website https://www.draweverywhere.com/). 

https://www.youtube.com/watch?v=P1_cNeUX-yE
https://www.draweverywhere.com/


January 2011, ScientificAmerican Download	this	and	following	papers		—	this	one	is	at
https://www.dropbox.com/s/bh88icluf4vow3g/scientificamerican0111-58.pdf?dl=0
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The structural connectome  
T1 magnetic resonance scans identify the various anatomical 
regions of the brain and subdivide them into small parcels of 
gray matter tissue roughly equal in size (typically totaling more 
than 1,000 pieces). Another form of MRI, called diffusion tensor 
imaging, traces the paths of white matter fi bers that connect the 
brain’s various structural areas. The locations of the white matter 
fi bers allow the construction of a connectome map that reveals 
how the parcels of gray matter are physically connected.

Resting state networkActive areas

1,000+ resolutionRegions

T1 MRI

ConnectomeFiber tracking

Diffusion tensor imaging  

The functional connectome  
Functional magnetic resonance imaging, or fMRI, records brain 
activity in different regions by measuring blood fl ow. Detecting 
parcels of brain tissue that are simultaneously active allows 
scientists to identify “resting state networks,” functional modules 
of brain tissue involved in the performance of various tasks. By 
representing parcels of gray matter as nodes in a network, and 
white matter fi bers as the links, scientists can apply graph theory 
(the mathematics of networks) to analyze how the structural 
and functional connectomes interact, thereby gaining insights 
into how the brain works as a whole.

identifi ed by which brain regions are simultane-
ously active when performing a specifi c task.

This “functional connectome” is closely related 
to physical links, of course. But the human brain’s 
complexity makes it infeasible to track that rela-
tionship on the scale of individual neurons. So 
scientists have sought some simpler substitutes to 
get insights into how neurons interact.

A favorite for this purpose is Caenorhabditis 
elegans, which possesses one of the simplest 
brains in the biosphere. A male C. elegans pos-
sesses 383 neurons (the hermaphrodite has 
even fewer), allowing scientists to catalog all the 
worm’s neurons and trace their more than 2,000 
connections using electron microscopy. 

Worms and people share common ancestors, 
suggesting that the worm can provide information 
about how the human brain evolved. Although 
separated by eons of evolution, worms do use 
some of the same cellular messenger chemicals 
and display other properties recognizable in 
humans, Emmons pointed out in November at the 
annual meeting of the Society for Neuroscience. 
Both worm and human brain can be described, for 
example, by the mathematical theory of networks, 
offi cially known as graph theory. In graph theory, 
networks are represented by dots connected with 
lines; the lines are called links (or edges) and the 
dots are called nodes (or vertices). In C. elegans, 
the nodes are neurons, linked by the synapses 
through which the neurons communicate. Net-
work math allows calculation of various proper-
ties, such as how many links a neuron makes on 
average to other neurons, and the minimum num-
ber of connections needed to transmit a signal 
from one neuron to any other one in the network.

Network analyses of C. elegans have revealed 
how sets of highly interconnected neurons can 
function as a module to govern a behavior such as 
mating. Using network math to discern the brain’s 
modular organization might work in people as 
well as in worms, suggesting that connectome 
research may be useful even without mapping all 
the synapses, Emmons noted.

“Do we have to identify every single synapse 
to understand brain connectivity, or can we fi nd 
computational subunits of neurons that do simi-
lar functions and treat them as a group?” he said 
at the neuroscience meeting. It may be possible, 
he believes, to show how networks are built from 
groups of neurons without the need to determine 
all the wiring within each group. “This is certainly 
a challenging and exciting goal as brain connec-
tomics goes forward,” Emmons said.

24  SCIENCE NEWS | February 22, 2014

BIG NEUROSCIENCE | CATALOGING THE CONNECTIONS

Regions
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85
billion 
Number of neurons
in a human brain

383
Number of neurons 
in a male C. elegans
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M
apping the human brain is a noble 
goal, but a rather ill-defined one. 
It’s like making a map of the United 
States. You could just show politi-

cal boundaries and the locations of cities. Or you 
might depict geographical features like mountains 
and rivers. Or transportation routes, like inter-
state highways and railroad tracks. You might 
even go Google Maps all the way and show the 
location of every individual house.

The brain possesses a similar diversity of scale: 
two hemispheres of convoluted gray matter, each 
with four regional lobes, traversed by superhigh-
ways of white matter fi bers communicating with 
billions of individual cells. So some brain maps 
focus on outlining anatomical areas, others track 
the white matter wiring, still others divide the 
gray matter into tiny parcels and record their 
activity during different mental tasks. But even-
tually, scientists want to map everything. Their 
ultimate goal is a catalog of all the connections 
between all the brain’s cells and regions, a master 
map known as the connectome.

It’s a formidable task, comparable to identifying 
every building in the country and then tracing the 
routes of all the people and cars that travel among 
them. Yet mapping all those connections prom-
ises a huge potential payoff, many researchers 
say, and it will be essential to pursuing the even 
grander goals articulated by President Obama for 
understanding how the brain thinks and learns 
(SN: 5/4/13, p. 22).

“The BRAIN Initiative of President Obama 
emphasizes determining connectivity,” says 
neuro scientist Scott Emmons of Albert Einstein 
College of Medicine in New York. “And clearly we 
won’t be able to understand the nervous system 
unless we know this connectivity.”

Stanford University neuroscientist William 
Newsome, cochair of the National Institutes of 
Health panel establishing priorities for the presi-
dent’s project, agrees.

“This is what we interpreted the overarching 
goal of the BRAIN Initiative to be,” says Newsome, 
“to map the circuits of the brain, measure the fl uc-
tuating patterns of electrical and chemical activity 
fl owing within those circuits and to understand 
how their interplay creates our unique cognitive 
and behavioral capabilities.”

Tough as that challenge seems, substantial 

progress has already been made. Scientists have 
completely described the connections in the prim-
itive brain of the tiny roundworm Caenorhabditis 
elegans, for instance. Human studies have begun 
to map the white matter fi bers that physically link 
various brain regions. Brain scans are revealing 
which regions operate in synchrony, a further clue 
to how they are connected.

And using the mathematical theory describ-
ing networks, scientists have begun to perceive 
how brain cells cooperate to generate thought and 
behavior. In fact, network math suggests that deep 
insights into the brain’s connec-
tions are possible even without 
mapping all the links for every 
single cell. 

Ultimately such insights should 
assist in diagnosing and treating 
a number of brain diseases, such 
as schizophrenia, that result from 
faulty connections. “It’s been sug-
gested,” says Emmons, “that some 
severe disorders such as schizo-
phrenia and autism are in fact 
connectopathies.” 

A simple brain
In principle, the human connec-
tome consists of literally every 
single link between every single 
nerve cell, or neuron, in the brain. 
But such a complete map is tech-
nologically out of reach at the 
moment. With a neuron popula-
tion of roughly 85 billion, each maintaining thou-
sands of connections, the connectome comprises 
an unfathomably vast network, with hundreds 
of trillions of links. So in humans, connectome 
research focuses on links between anatomical 
brain regions or just small parcels of brain tissue. 
The Human Connectome Project, launched by 
the National Institutes of Health in 2010, maps 
portions of gray matter on the cubic millimeter 
scale, roughly the size of a grain of salt. It’s like 
mapping roads connecting cities and towns but 
ignoring side streets and individual houses.

An additional wrinkle of complexity distin-
guishes between physical links via white matter 
(cellular projections sheathed in myelin that wire 
regions together) and functional connections, LE
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Viewing the brain as a network may help scientists 
tackle its complexity By Tom Siegfried

CATALOGING THE 

CONNECTIONS

Using brain scanning 
technologies, scientists 
can create maps (oppo-
site page) showing the 
brain’s wiring, consisting 
of white matter fi bers 
that link different par-
cels of the brain’s gray 
matter. The most highly 
connected parcels, or 
hubs, are indicated by 
blue and white dots.
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Network analysis 
Within various brain regions, some parcels of gray matter 
(nodes, in network language) possess a substantially higher 
than average number of connections to other nodes. These 
highly linked nodes, or “hubs,” are common in resting state 

networks (color shaded, below) associated with specifi c brain 
functions. Recent studies have shown that the hubs within a 

resting state network are also highly connected to hubs in other resting state 
networks (red lines). These “rich club” hubs (blue circles) probably play a major 
role, therefore, in merging the activity of various brain networks into the 
unifi ed whole underlying consciousness.  

BIG NEUROSCIENCE | CATALOGING THE CONNECTIONS

brain, studies of network structure and function 
have also led to insights into brain disorders. Van 
den Heuvel points out that the central role of the 
rich club makes it a prime suspect in cases when 
the brain goes awry.

“If it’s such a central system, one would suspect 
that abnormal wiring of the system might lead to 
brain dysfunction, and we indeed have some evi-
dence that it is happening in schizophrenia and 
Alzheimer’s,” he says.

Some of that evidence comes from Bassett and 
collaborators. They have found numerous dif-
ferences when comparing the brain networks of 
healthy individuals with those of schizophrenia 
patients. At the neuroscience meeting, Bassett 
outlined several findings from various groups 
over recent years. One major difference is in the 
strength of connections, measured by how likely 
linked nodes are to be simultaneously active, in 
schizophrenia versus healthy brains. 

“Across practically every single area of the 
brain we see a decrease in strength in the schizo-
phrenia networks as compared to those of con-
trols. That suggests that there can be a very 
global decrease in communication constructs in 
schizophrenia,” she said.

On the other hand, while connections are gen-
erally weaker, they are also more variable. In a 
healthy brain, highly connected hubs tend to 

have strong connections, less connected nodes 
have weaker connections. But in schizophrenia, 
a given hub will have some strong connections but 
also some weak ones, suggesting a lack of proper 
brain organization.

“Potentially we could interpret this as healthy 
controls are able to separate the functions that 
different brain regions have to perform well, while 
schizophrenics are not able to segregate those 
functions in the same way because their networks 
are disorganized,” Bassett said.

Furthermore, it is in the brain’s weaker con-
nections where schizophrenia patients differ 
most from healthy people. Patterns of weak con-
nections distinguish schizophrenic brains from 
healthy ones with 75 percent accuracy, Bassett 
and colleagues reported in 2012 in NeuroImage. 
And the weak connections differ in terms of their 
anatomical locations, often touching areas of the 
brain known to be involved in schizophrenia’s 
symptoms. Measures of schizophrenia symptoms 
involving attention, memory and negative affect 
were all strongly related to networks of weak 
connections.

Similar network-based studies have begun to 
identify important features of ADHD and autism, 
other brain disorders believed to be related to 
faulty connections. In ADHD, connections are 
sparser than normal and medications appear to 
work by repairing the brain’s network structure, 
Damien Fair, of Oregon Health & Science Uni-
versity in Portland, reported at the neuroscience 
meeting. In autism, on the other hand, nodes 
appear to be more connected than usual.

Understanding the connectome in all its com-
plexity may not lead to immediate cures for brain 
diseases. But it’s becoming clear that progress 
in fighting brain disorders, and understanding 
the normal brain, will not be possible without 
embracing graph theory — the mathematics of 
networks — for analyzing the brain’s connections.

“In general the brain is indeed a network and we 
should approach it as such,” says van den Heuvel. 
“And graph theory may be one of those techniques 
or tools to extract properties that might provide 
more information on how brain function can 
emerge from the underlying anatomy.” s

Explore more
s Human Connectome Project website: www.

neuroscienceblueprint.nih.gov/connectome

Tom Siegfried is the former editor in chief of 
Science News.
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Damien Fair, of Oregon Health & Science Uni-
versity in Portland, reported at the neuroscience 
meeting. In autism, on the other hand, nodes 
appear to be more connected than usual.

Understanding the connectome in all its com-
plexity may not lead to immediate cures for brain 
diseases. But it’s becoming clear that progress 
in fighting brain disorders, and understanding 
the normal brain, will not be possible without 
embracing graph theory — the mathematics of 
networks — for analyzing the brain’s connections.

“In general the brain is indeed a network and we 
should approach it as such,” says van den Heuvel. 
“And graph theory may be one of those techniques 
or tools to extract properties that might provide 
more information on how brain function can 
emerge from the underlying anatomy.” s

Explore more
s Human Connectome Project website: www.

neuroscienceblueprint.nih.gov/connectome

Tom Siegfried is the former editor in chief of 
Science News.
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Communication dynamics in complex brain networks 
Andrea Avena-Koenigsberger1, Bratislav Misic2 and Olaf Sporns1,3 

Abstract | Neuronal signalling and communication underpin virtually all aspects of brain activity and function. Network science approaches to 
modelling and analysing the dynamics of communication on networks have proved useful for simulating functional brain connectivity and 
predicting emergent network states. This Review surveys important aspects of communication dynamics in brain networks. We begin by 
sketching a conceptual framework that views communication dynamics as a necessary link between the empirical domains of structural and 
functional connectivity. We then consider how different local and global topological attributes of structural networks support potential patterns 
of network communication, and how the interactions between network topology and dynamic models can provide additional insights and 
constraints. We end by proposing that communication dynamics may act as potential generative models of effective connectivity and can offer 
insight into the mechanisms by which brain networks transform and process information. 

1Department of Psychological and Brain Sciences, 
Indiana University, Bloomington, Indiana 47405, 
USA. 2Montreal Neurological Institute, McGill 
University, Montreal, Quebec H3A 2B4, Canada. 
3IU Network Science Institute, Indiana University, 
Bloomington, Indiana 47405, USA. 
Correspondence to osporns@indiana.edu 
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Box 4. From classic connectionism to network computation 

Classic models of information processing are based on theories that 
conceptualize neural computation as the transformation of activity 
patterns (representations), from inputs into outputs within distributed 
networks181–183. Under this framework, each neural component 
performs specific computations, and the results of these computations 
are relayed between components through neuronal connections. In 
simple physiological terms, neurons perform computations on their 
synaptic inputs and relay these outputs of these computations to other 
neurons through axonal connections. Neuronal signalling, then, 
represents the exchange of information, encoded in the form of spike 
trains. This exchange of information unfolds across sensory and motor 
systems within processing hierarchies that generate increasingly 
complex neuronal representations. One of the central objectives of the 
classic models is to identify the computational steps that underpin 
cognitive behaviours. How do the concepts in the classic models differ 
from a perspective based on concepts of network science and 
dynamics?  …

https://www.dropbox.com/s/tqm9r5c9pw1go8u/communication_dynamics_NRN.pdf?dl=0



https://www.dropbox.com/s/92fj6yj4h4uc3np/NetworkNeuroscience.4502.pdf?dl=0

Conclusion In this review, we have attempted to sketch the outlines of a 
new interdisciplinary field, which we call network neuroscience. The field 
gathers momentum as networks have become ubiquitous phenom- ena 
encountered in empirical investigation as well as computational analysis and 
modeling of neurobiological systems at all scales. The ever-growing volume 
of big data in neuroscience demands not only advanced analytics and sound 
statistical inference, but it also calls for theoretical ideas that can unify our 
understanding of brain structure and function. Theory is indispensable, as it 
allows us to transform big data into ‘small data’ and, ultimately, knowledge
—delivering compact descriptions of regularities, principles and laws that 
apply to the architecture and functioning of neural systems. We believe that 
network neuroscience can make an important contribution toward unifying 
an otherwise fractured discipline by providing a common conceptual 
framework and a common toolset to meet the challenges of modern 
neuroscience. Network neuroscience naturally connects with other important 
theoretical approaches such as dynamical systems, neural coding and 
statistical physics. 

https://www.dropbox.com/s/92fj6yj4h4uc3np/NetworkNeuroscience.4502.pdf?dl=0
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The	skeleton	picture
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Filaments are the field lines 
joining the maxima through saddle points.

peak

peakpeak

saddle
saddle

saddle

voidvoid

void

‣	 cosmic	 web	 extractors	 (water-shedding,	 discrete	
topology,	…)	

‣	 local	theory	allowing	for	theore*cal	predic*ons	for	
extrema	counts,	length	of	filaments,	surface	of	voids,	
curvature	…	which	are	very	compe**ve	cosmological	
probes!	

‣	 Cosmic	 connec*vity	 κ:	 typically,	 how	 many	
filaments	connect	to	a	node?	

BBKS, Pogosyan+09, Gay+12, …*

Sousbie+08, Sousbie+11, …*

* among many others!

SC+18
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The	connected	cosmic	web

Dick Bond

Dmitri Pogosyan

Lev Kofman

Bond,	Kofman,	Pogosyan	1996:	first	understanding	of	the	origin	of	the	cosmic	web.	

The	seeds	of	walls,	filaments	and	nodes	lie	in	the	asymmetries	of	the	primordial	
Gaussian	random	field	then	amplified	by	gravita*onal	instability.	

Rare	peaks	in	the	ICs	will	become	the	nodes	of	the	cosmic	web	i.e	rich	clusters.	
Their	ini*al	shear	will	set	the	preferred	direc*ons	along	which	correla*on	bridges	will	
connect	them	to	other	nodes.	

simulation mean field around 20 main peak patches

1σ contour

Lagrangian space

Importance	of	peak	&	constrained	random	field	theories	  11
 11

https://www.dropbox.com/s/34n5lnoto05kgss/BondKofmanPogosyan-CosmicWeb-Nature1996.pdf?dl=0
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The concept of the cosmic web, viewing the Universe as a set of discrete galaxies held together by

gravity, is deeply engrained in cosmology. Yet, little is known about the most e↵ective construction

and the characteristics of the underlying network. Here we explore seven network construction

algorithms that use various galaxy properties, from their location, to their size and relative velocity,

to assign a network to galaxy distributions provided by both simulations and observations. We

find that a model relying only on spatial proximity o↵ers the best correlations between the physical

characteristics of the connected galaxies. We show that the properties of the networks generated

from simulations and observations are identical, unveiling a deep universality of the cosmic web.

The cosmic web, the desire to view the large-scale
structure of the Universe as a network, is deeply embed-
ded both in cosmology and in public consciousness [1–5].
Yet, it remains little more than a metaphor, typically
used to capture the dark matter’s ability to agglomer-
ate the galaxies in a web-like-fashion. Numerous halo
finder algorithms [6, 7], made possible by the increas-
ingly precise simulations of the evolution of the Universe
[1, 8], exploit the network-like binding of the galaxies
[9]. Yet, very little is known about the graph theoreti-
cal characteristics of the resulting cosmic web. Our goal
here is to test and explore various meaningful definitions
of the cosmic web, and use the tools of network science
to characterize the generated networks. In particularly,
we explore which network definition o↵ers the best de-
scription of the observed correlations between the phys-
ical characteristics of connected galaxies. The resulting
network-based framework, tested in both simulations and
observational data, o↵ers a new tool to investigate the
topological properties of the large scale structure distri-
bution of the Universe.

We start with data provided by a subhalo catalog con-
structed from the Illustris [1, 10, 11] cosmological sim-
ulation that traces the growth of large scale structure,
galaxy formation and evolution from 2Gy after the Big
Bang to the present epoch, incorporating both baryons
and dark matter. In line with common practice, we
assume that subhalos in the simulation correspond to
galaxies in the observational data [12], representing the
nodes of the cosmic web. By considering all subhalos
with stellar mass bigger than M⇤ > 109 Msun, we obtain
between 2,000 and 30,000 subhalos for di↵erent redshifts

(supplementary material A).
There are multiple ways of building networks from the

available subhalo/galaxy catalogs, allowing us to define
seven distinct models for the construction of the cosmic
web (M1-M7). The simplest, M1, links two nodes with
an undirected link if the distance between them is smaller
than a predefined length, l (Fig.1(a) and (d)). M2(3) rep-
resent the directed versions of M1, drawing a directed link
j ! i (i ! j) from i to the closest hki nodes (Fig.1(b)
and (e)). Consequently, while in M1 a node i can have
arbitrary degree (number of neighbors connected to i), in
M2(3) the in(out) degrees are fixed (number of neighbors
connected to i through a directed link j ! i(i ! j)). In
M4(5) a directed link j ! i (i ! j) is drawn from i to
j if the distance between the two nodes is smaller than

a ·R1/2
i , where a is a free parameter and R1/2

i is the half-
mass radius [13]. Models 6(7) are extensions of M4(5),
but computed in phase space, where a directed link j ! i
(i ! j) is drawn from i to j if the sum of the square of
the normalized distance and relative speed between two
nodes is smaller than a2. Taken together, M1-3 require
only data about the halo/galaxy positions, M4(5) require
information about galaxy positions and size and M6(7)
require galaxy velocities and linking galaxies that may be
gravitationally bound (supplementary material B o↵ers
the formal definition of each model).

The distinct network representations of the cosmic
web, o↵ered by the models introduced above, raises the
question: Which of these representations are the most
meaningful? In general, networks are only meaningful if
the links have functional roles, linking either interacting
nodes or nodes with similar characteristics. For example,
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The concept of the cosmic web, viewing the Universe as a set of discrete galaxies held together by

gravity, is deeply engrained in cosmology. Yet, little is known about the most e↵ective construction

and the characteristics of the underlying network. Here we explore seven network construction

algorithms that use various galaxy properties, from their location, to their size and relative velocity,

to assign a network to galaxy distributions provided by both simulations and observations. We

find that a model relying only on spatial proximity o↵ers the best correlations between the physical

characteristics of the connected galaxies. We show that the properties of the networks generated

from simulations and observations are identical, unveiling a deep universality of the cosmic web.

The cosmic web, the desire to view the large-scale
structure of the Universe as a network, is deeply embed-
ded both in cosmology and in public consciousness [1–5].
Yet, it remains little more than a metaphor, typically
used to capture the dark matter’s ability to agglomer-
ate the galaxies in a web-like-fashion. Numerous halo
finder algorithms [6, 7], made possible by the increas-
ingly precise simulations of the evolution of the Universe
[1, 8], exploit the network-like binding of the galaxies
[9]. Yet, very little is known about the graph theoreti-
cal characteristics of the resulting cosmic web. Our goal
here is to test and explore various meaningful definitions
of the cosmic web, and use the tools of network science
to characterize the generated networks. In particularly,
we explore which network definition o↵ers the best de-
scription of the observed correlations between the phys-
ical characteristics of connected galaxies. The resulting
network-based framework, tested in both simulations and
observational data, o↵ers a new tool to investigate the
topological properties of the large scale structure distri-
bution of the Universe.

We start with data provided by a subhalo catalog con-
structed from the Illustris [1, 10, 11] cosmological sim-
ulation that traces the growth of large scale structure,
galaxy formation and evolution from 2Gy after the Big
Bang to the present epoch, incorporating both baryons
and dark matter. In line with common practice, we
assume that subhalos in the simulation correspond to
galaxies in the observational data [12], representing the
nodes of the cosmic web. By considering all subhalos
with stellar mass bigger than M⇤ > 109 Msun, we obtain
between 2,000 and 30,000 subhalos for di↵erent redshifts

(supplementary material A).
There are multiple ways of building networks from the

available subhalo/galaxy catalogs, allowing us to define
seven distinct models for the construction of the cosmic
web (M1-M7). The simplest, M1, links two nodes with
an undirected link if the distance between them is smaller
than a predefined length, l (Fig.1(a) and (d)). M2(3) rep-
resent the directed versions of M1, drawing a directed link
j ! i (i ! j) from i to the closest hki nodes (Fig.1(b)
and (e)). Consequently, while in M1 a node i can have
arbitrary degree (number of neighbors connected to i), in
M2(3) the in(out) degrees are fixed (number of neighbors
connected to i through a directed link j ! i(i ! j)). In
M4(5) a directed link j ! i (i ! j) is drawn from i to
j if the distance between the two nodes is smaller than

a ·R1/2
i , where a is a free parameter and R1/2

i is the half-
mass radius [13]. Models 6(7) are extensions of M4(5),
but computed in phase space, where a directed link j ! i
(i ! j) is drawn from i to j if the sum of the square of
the normalized distance and relative speed between two
nodes is smaller than a2. Taken together, M1-3 require
only data about the halo/galaxy positions, M4(5) require
information about galaxy positions and size and M6(7)
require galaxy velocities and linking galaxies that may be
gravitationally bound (supplementary material B o↵ers
the formal definition of each model).

The distinct network representations of the cosmic
web, o↵ered by the models introduced above, raises the
question: Which of these representations are the most
meaningful? In general, networks are only meaningful if
the links have functional roles, linking either interacting
nodes or nodes with similar characteristics. For example,

ar
X

iv
:1

60
4.

03
23

6v
2 

 [a
str

o-
ph

.C
O

]  
13

 A
pr

 2
01

6

2

A
B

C

D

A B

C

D

A B

C

D

(a)   M1 (b)

(c)   M3 (d)

(e)   M4 (f)

FIG. 1: Building networks from galaxy data. The circles represent the linking lengths for models M1, M3 and
M4. (a) In M1 all galaxies within distance l are connected by an undirected link. (c) In M3 a galaxy is connected to
the closest galaxy with a directed link; therefore the linking length depends on the position of the closest galaxy. (e)

In M4, the linking length scales with the galaxy size, l = a R1/2
i . (b),(d) and (f) Visualization of the cosmic web for

redhsiht 0 produced by the respective models, for hki = 40. For simplicity the direction of the links is not present in
the visualization. For interactive visualization see
http://kimalbrecht.com/ccnr/04-networkuniverse/17-network-interface. Models M2,5,6,7 are generated
from the three models shown above. In M2 the directions of the M3 links are inverted; in M5 the direction of the
M4 links are inverted. M6(7) are similar to M4(5) but computed in the phase space.

the links of a social network tend to connect individuals
with similar social-economic characteristics (homophily)
and in cellular networks connected proteins tend to have
related biological roles. The fact that the color of a
satellite galaxy is correlated with the mass of the host
galaxy [14–19] indicates that such correlations between
nearby galaxies are meaningful. We therefore explore
the degree to which the above network representations
of the cosmic web add links between galaxies/subhalos
of similar physical characteristics. For this we analyze
71 parameters that characterize each subhalo, ranging
from their peculiar velocity to star formation rate (sup-
plementary material C for the entire list), allowing us to

identify the network representation that o↵ers the best
correlation between them. Since we are working from
a cosmological simulation, some of the correlations may
be meaningful only in the sense that they characterize
the underlying properties (or assumptions) of the model.
Nevertheless, our analyses provides an unbiased way of
probing the spatial network without any a priori biases.

For a given model M and subhalo property ci, we com-
pute the average value of ci over all nodes connected to
i,

c̃i ⌘
P

j aijcj

ki
, (1)

FIG. 1: Building networks from galaxy data. The circles 
represent the linking lengths for models M1, M3 and M4. (a) 
In M1 all galaxies within distance l are connected by an 
undirected link. (c) In M3 a galaxy is connected to the 
closest galaxy with a directed link; therefore the linking 
length depends on the position of the closest galaxy. (e) In 
M4, the linking length scales with the galaxy size, l = a R1/2. 
(b),(d) and (f) Visualization of the cosmic web for i redhshift 
0 produced by the respective models, for ⟨k⟩ = 40. For 
simplicity the direction of the links is not present in the 
visualization. For interactive visualization see http://
kimalbrecht.com/ccnr/04-networkuniverse/17-network-
interface. Models M2,5,6,7 are generated from the three 
models shown above. In M2 the directions of the M3 links 
are inverted; in M5 the direction of the M4 links are 
inverted. M6(7) are similar to M4(5) but computed in the 
phase space. 

Interactive Website: http://cosmicweb.kimalbrecht.com/

http://adsabs.harvard.edu/abs/2016arXiv160403236C



Codis, Pogosyan, Pichon, On the Connectivity of the Cosmic Web, MNRAS, 479, 973, 2018

ABSTRACT Cosmic connectivity and multiplicity, i.e. the number of filaments globally or locally connected to a given 
cluster is a natural probe of the growth of structure and in particular of the nature of dark energy. It is also a critical 
ingredient driving the assembly history of galaxies as it controls mass and angular momentum accretion. …
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Figure 22. Mean connectivity (left-hand panel) and multiplicity (right-hand panel) of the skeleton as a function of the expansion factor for !CDM and CDM
simulations as labelled. As expected, the CDM simulation is essentially featureless, whereas the !CDM connectivity changes slope when the dark energy
expansion kicks in.

Figure 23. PDF of cosmic connectivity at various redshifts as labelled
is the !CDM simulations smoothed on a constant comoving length R ≈
0.8Mpch−1.

of connectors was precisely characterized using DISPERSE: the dis-
tribution is skewed, picking around 3 in 2D (respectively 4 in 3D)
with a strong tail that can extend up to quite large values 10 in
2D (respectively 20 in 3D). The PDF of the number of connectors
was shown to depend on the power spectrum and more importantly
on the height of the peak. Rare peaks (with high-density contrast)
tend to be connected to numerous neighbours, the rarest ones hav-
ing more than 7 (15 in 3D) connections on average. Interestingly,
the overall number of connected neighbours does not correspond
to the local number of filaments sticking out of a peak. Locally,
the geometry of a peak is ellipsoidal with two filaments following
the axis of minimal curvature. Further away those filaments split
and bifurcation points appear. Typically, some of those bifurcations
occur so close to the central peak that they are not detectable in
a map with finite resolution. The corresponding multiplicity of a
peak is given by its connectivity minus the measured number of
bifurcations. For GRFs, the mean multiplicity was shown to be 3 in
2D and 4 in 3D. Here, the dependence with the power spectrum and
the typical scatter is reduced. However, the dependence with peak
height remains strong.

We have also developed a theoretical framework which explains
the connectivity properties measured with the persistent skeleton.
This theory relies on the statistical properties of saddle points in the
vicinity of peaks and allowed us to understand precisely the mean

connectivity but also its dependence on peak height. A precise count
of the number of filaments crossing a sphere centred on a peak was
used to investigate how bifurcation points appear from the peak
to the boundary of its peak patch. These calculations allowed us
to study the peak’s multiplicity and quantify how many filaments
dominate (typically we find three dominant filaments for high peaks
in 3D, and two for smaller ones).

Finally, the subsequent evolution of connectivity across cosmic
time was also investigated. We developed predictions based on per-
turbation theory to probe the first stages of structure formation and
relied on numerical simulations to confirm the predictions and ex-
tend them to a more non-linear regime. As expected, the evolution
of cosmic connectivity depends primarily on the growth factor (and
on generalized cumulants, see Gay et al. 2012) and therefore on
cosmology. Also as expected, the non-linear evolution reduces the
number of connections as filaments merge. Compared to alternative
probes of dark energy, the connectivity (or the multiplicity) may
prove to be a robust estimator given that it is a topological property
that can be measured locally.

As an astrophysical application, we focused on galaxy lensing
convergence maps and dark halo catalogues. As expected, the con-
nectivity of kappa maps also decreases towards low redshifts, al-
though the evolution is milder than for the three-dimensional fields
as the lensing kernel tends to smooth the signal along the line of
sight (see also Gouin et al. 2017; Codis et al. 2017, for an investi-
gation of the conditional connectivity around clusters using strong
lensing). In the near future, it should be possible to compute the
3D connectivity of HI density maps reconstructed from QSO ab-
sorption fluxes from the point spread function, WEAVE surveys, or
intensity maps from CHIME, MeerKAT, ASKAP, MWA or HERA,
and at some later stage, the E-ELT and SKA, respectively . We also
computed the connectivity of dark haloes and found that it scales
logarithmic with mass with a scaling going like 10/3.

Cosmic connectivity is not only of interest in the context of cos-
mology: on smaller scales, it is also paramount to understand galac-
tic assembly. Indeed DM filaments have a baryonic continuation
within dark haloes, which connect closely the cosmic environment
to the galaxies within dark haloes. Beyond the number of connected
filaments to a given galaxy, the mass load, geometry, and torques ad-
vected along filaments is also of interest. In this context, one should
investigate in more details the small-scale connectivity of galaxies
and dark haloes, feeding them with cold gas with stratified angular

MNRAS 479, 973–993 (2018)
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simulations as labelled. As expected, the CDM simulation is essentially featureless, whereas the !CDM connectivity changes slope when the dark energy
expansion kicks in.

Figure 23. PDF of cosmic connectivity at various redshifts as labelled
is the !CDM simulations smoothed on a constant comoving length R ≈
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of connectors was precisely characterized using DISPERSE: the dis-
tribution is skewed, picking around 3 in 2D (respectively 4 in 3D)
with a strong tail that can extend up to quite large values 10 in
2D (respectively 20 in 3D). The PDF of the number of connectors
was shown to depend on the power spectrum and more importantly
on the height of the peak. Rare peaks (with high-density contrast)
tend to be connected to numerous neighbours, the rarest ones hav-
ing more than 7 (15 in 3D) connections on average. Interestingly,
the overall number of connected neighbours does not correspond
to the local number of filaments sticking out of a peak. Locally,
the geometry of a peak is ellipsoidal with two filaments following
the axis of minimal curvature. Further away those filaments split
and bifurcation points appear. Typically, some of those bifurcations
occur so close to the central peak that they are not detectable in
a map with finite resolution. The corresponding multiplicity of a
peak is given by its connectivity minus the measured number of
bifurcations. For GRFs, the mean multiplicity was shown to be 3 in
2D and 4 in 3D. Here, the dependence with the power spectrum and
the typical scatter is reduced. However, the dependence with peak
height remains strong.

We have also developed a theoretical framework which explains
the connectivity properties measured with the persistent skeleton.
This theory relies on the statistical properties of saddle points in the
vicinity of peaks and allowed us to understand precisely the mean

connectivity but also its dependence on peak height. A precise count
of the number of filaments crossing a sphere centred on a peak was
used to investigate how bifurcation points appear from the peak
to the boundary of its peak patch. These calculations allowed us
to study the peak’s multiplicity and quantify how many filaments
dominate (typically we find three dominant filaments for high peaks
in 3D, and two for smaller ones).

Finally, the subsequent evolution of connectivity across cosmic
time was also investigated. We developed predictions based on per-
turbation theory to probe the first stages of structure formation and
relied on numerical simulations to confirm the predictions and ex-
tend them to a more non-linear regime. As expected, the evolution
of cosmic connectivity depends primarily on the growth factor (and
on generalized cumulants, see Gay et al. 2012) and therefore on
cosmology. Also as expected, the non-linear evolution reduces the
number of connections as filaments merge. Compared to alternative
probes of dark energy, the connectivity (or the multiplicity) may
prove to be a robust estimator given that it is a topological property
that can be measured locally.

As an astrophysical application, we focused on galaxy lensing
convergence maps and dark halo catalogues. As expected, the con-
nectivity of kappa maps also decreases towards low redshifts, al-
though the evolution is milder than for the three-dimensional fields
as the lensing kernel tends to smooth the signal along the line of
sight (see also Gouin et al. 2017; Codis et al. 2017, for an investi-
gation of the conditional connectivity around clusters using strong
lensing). In the near future, it should be possible to compute the
3D connectivity of HI density maps reconstructed from QSO ab-
sorption fluxes from the point spread function, WEAVE surveys, or
intensity maps from CHIME, MeerKAT, ASKAP, MWA or HERA,
and at some later stage, the E-ELT and SKA, respectively . We also
computed the connectivity of dark haloes and found that it scales
logarithmic with mass with a scaling going like 10/3.

Cosmic connectivity is not only of interest in the context of cos-
mology: on smaller scales, it is also paramount to understand galac-
tic assembly. Indeed DM filaments have a baryonic continuation
within dark haloes, which connect closely the cosmic environment
to the galaxies within dark haloes. Beyond the number of connected
filaments to a given galaxy, the mass load, geometry, and torques ad-
vected along filaments is also of interest. In this context, one should
investigate in more details the small-scale connectivity of galaxies
and dark haloes, feeding them with cold gas with stratified angular
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Figure 22. Mean connectivity (left-hand panel) and multiplicity (right-hand panel) of the skeleton as a function of the expansion factor for !CDM and CDM
simulations as labelled. As expected, the CDM simulation is essentially featureless, whereas the !CDM connectivity changes slope when the dark energy
expansion kicks in.

Figure 23. PDF of cosmic connectivity at various redshifts as labelled
is the !CDM simulations smoothed on a constant comoving length R ≈
0.8Mpch−1.

of connectors was precisely characterized using DISPERSE: the dis-
tribution is skewed, picking around 3 in 2D (respectively 4 in 3D)
with a strong tail that can extend up to quite large values 10 in
2D (respectively 20 in 3D). The PDF of the number of connectors
was shown to depend on the power spectrum and more importantly
on the height of the peak. Rare peaks (with high-density contrast)
tend to be connected to numerous neighbours, the rarest ones hav-
ing more than 7 (15 in 3D) connections on average. Interestingly,
the overall number of connected neighbours does not correspond
to the local number of filaments sticking out of a peak. Locally,
the geometry of a peak is ellipsoidal with two filaments following
the axis of minimal curvature. Further away those filaments split
and bifurcation points appear. Typically, some of those bifurcations
occur so close to the central peak that they are not detectable in
a map with finite resolution. The corresponding multiplicity of a
peak is given by its connectivity minus the measured number of
bifurcations. For GRFs, the mean multiplicity was shown to be 3 in
2D and 4 in 3D. Here, the dependence with the power spectrum and
the typical scatter is reduced. However, the dependence with peak
height remains strong.

We have also developed a theoretical framework which explains
the connectivity properties measured with the persistent skeleton.
This theory relies on the statistical properties of saddle points in the
vicinity of peaks and allowed us to understand precisely the mean

connectivity but also its dependence on peak height. A precise count
of the number of filaments crossing a sphere centred on a peak was
used to investigate how bifurcation points appear from the peak
to the boundary of its peak patch. These calculations allowed us
to study the peak’s multiplicity and quantify how many filaments
dominate (typically we find three dominant filaments for high peaks
in 3D, and two for smaller ones).

Finally, the subsequent evolution of connectivity across cosmic
time was also investigated. We developed predictions based on per-
turbation theory to probe the first stages of structure formation and
relied on numerical simulations to confirm the predictions and ex-
tend them to a more non-linear regime. As expected, the evolution
of cosmic connectivity depends primarily on the growth factor (and
on generalized cumulants, see Gay et al. 2012) and therefore on
cosmology. Also as expected, the non-linear evolution reduces the
number of connections as filaments merge. Compared to alternative
probes of dark energy, the connectivity (or the multiplicity) may
prove to be a robust estimator given that it is a topological property
that can be measured locally.

As an astrophysical application, we focused on galaxy lensing
convergence maps and dark halo catalogues. As expected, the con-
nectivity of kappa maps also decreases towards low redshifts, al-
though the evolution is milder than for the three-dimensional fields
as the lensing kernel tends to smooth the signal along the line of
sight (see also Gouin et al. 2017; Codis et al. 2017, for an investi-
gation of the conditional connectivity around clusters using strong
lensing). In the near future, it should be possible to compute the
3D connectivity of HI density maps reconstructed from QSO ab-
sorption fluxes from the point spread function, WEAVE surveys, or
intensity maps from CHIME, MeerKAT, ASKAP, MWA or HERA,
and at some later stage, the E-ELT and SKA, respectively . We also
computed the connectivity of dark haloes and found that it scales
logarithmic with mass with a scaling going like 10/3.

Cosmic connectivity is not only of interest in the context of cos-
mology: on smaller scales, it is also paramount to understand galac-
tic assembly. Indeed DM filaments have a baryonic continuation
within dark haloes, which connect closely the cosmic environment
to the galaxies within dark haloes. Beyond the number of connected
filaments to a given galaxy, the mass load, geometry, and torques ad-
vected along filaments is also of interest. In this context, one should
investigate in more details the small-scale connectivity of galaxies
and dark haloes, feeding them with cold gas with stratified angular
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Figure 22. Mean connectivity (left-hand panel) and multiplicity (right-hand panel) of the skeleton as a function of the expansion factor for !CDM and CDM
simulations as labelled. As expected, the CDM simulation is essentially featureless, whereas the !CDM connectivity changes slope when the dark energy
expansion kicks in.

Figure 23. PDF of cosmic connectivity at various redshifts as labelled
is the !CDM simulations smoothed on a constant comoving length R ≈
0.8Mpch−1.

of connectors was precisely characterized using DISPERSE: the dis-
tribution is skewed, picking around 3 in 2D (respectively 4 in 3D)
with a strong tail that can extend up to quite large values 10 in
2D (respectively 20 in 3D). The PDF of the number of connectors
was shown to depend on the power spectrum and more importantly
on the height of the peak. Rare peaks (with high-density contrast)
tend to be connected to numerous neighbours, the rarest ones hav-
ing more than 7 (15 in 3D) connections on average. Interestingly,
the overall number of connected neighbours does not correspond
to the local number of filaments sticking out of a peak. Locally,
the geometry of a peak is ellipsoidal with two filaments following
the axis of minimal curvature. Further away those filaments split
and bifurcation points appear. Typically, some of those bifurcations
occur so close to the central peak that they are not detectable in
a map with finite resolution. The corresponding multiplicity of a
peak is given by its connectivity minus the measured number of
bifurcations. For GRFs, the mean multiplicity was shown to be 3 in
2D and 4 in 3D. Here, the dependence with the power spectrum and
the typical scatter is reduced. However, the dependence with peak
height remains strong.

We have also developed a theoretical framework which explains
the connectivity properties measured with the persistent skeleton.
This theory relies on the statistical properties of saddle points in the
vicinity of peaks and allowed us to understand precisely the mean

connectivity but also its dependence on peak height. A precise count
of the number of filaments crossing a sphere centred on a peak was
used to investigate how bifurcation points appear from the peak
to the boundary of its peak patch. These calculations allowed us
to study the peak’s multiplicity and quantify how many filaments
dominate (typically we find three dominant filaments for high peaks
in 3D, and two for smaller ones).

Finally, the subsequent evolution of connectivity across cosmic
time was also investigated. We developed predictions based on per-
turbation theory to probe the first stages of structure formation and
relied on numerical simulations to confirm the predictions and ex-
tend them to a more non-linear regime. As expected, the evolution
of cosmic connectivity depends primarily on the growth factor (and
on generalized cumulants, see Gay et al. 2012) and therefore on
cosmology. Also as expected, the non-linear evolution reduces the
number of connections as filaments merge. Compared to alternative
probes of dark energy, the connectivity (or the multiplicity) may
prove to be a robust estimator given that it is a topological property
that can be measured locally.

As an astrophysical application, we focused on galaxy lensing
convergence maps and dark halo catalogues. As expected, the con-
nectivity of kappa maps also decreases towards low redshifts, al-
though the evolution is milder than for the three-dimensional fields
as the lensing kernel tends to smooth the signal along the line of
sight (see also Gouin et al. 2017; Codis et al. 2017, for an investi-
gation of the conditional connectivity around clusters using strong
lensing). In the near future, it should be possible to compute the
3D connectivity of HI density maps reconstructed from QSO ab-
sorption fluxes from the point spread function, WEAVE surveys, or
intensity maps from CHIME, MeerKAT, ASKAP, MWA or HERA,
and at some later stage, the E-ELT and SKA, respectively . We also
computed the connectivity of dark haloes and found that it scales
logarithmic with mass with a scaling going like 10/3.

Cosmic connectivity is not only of interest in the context of cos-
mology: on smaller scales, it is also paramount to understand galac-
tic assembly. Indeed DM filaments have a baryonic continuation
within dark haloes, which connect closely the cosmic environment
to the galaxies within dark haloes. Beyond the number of connected
filaments to a given galaxy, the mass load, geometry, and torques ad-
vected along filaments is also of interest. In this context, one should
investigate in more details the small-scale connectivity of galaxies
and dark haloes, feeding them with cold gas with stratified angular
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Figure 24. Left-hand panel: mean connectivity of dark haloes at redshift zero as a function of log mass as labelled for about one million nodes of the cosmic
web. The mean cosmic connectivity here is found to be well approximated by the simple linear relation κ(M) ≈ 10/3log (M/1011M⊙). Right-hand panel: the
corresponding PDF P(κ) = P(κ|M).

momentum which allows them to reform stellar discs (Pichon et al.
2011). As a topological quantity, it would be of interest to quantify
the (expected) robustness of the multiplicity and connectivity with
respect to redshift space distortions, shot noise, photometric errors,
etc. As shown in Section 3.3.1, non-linear gravitational coupling
decreases the connectivity of dark haloes. This could in principle be
quantified by predicting the rate of coalescence of wall-saddle and
filament-saddle critical points, which reflect filaments coalescence.

Beyond astrophysics, the present theory of connectivity could
prove to be of importance in the context of percolation theory. For
instance, the percolation threshold can be explained in terms of the
statistical properties of the connectivity of the relevant nodes (keep-
ing track of heights of peaks). At a more abstract level, this work
on GRF could be of interest to generically connect their properties
to graph theory, since the skeleton provides a mapping from the
density field to sets of connected vertices (see e.g. Coutinho et al.
2016). This is left for future work.
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Figure24. Mean connectivity of dark haloes at redshift zero as a function of mass, as 
labeled for about on million nodes of the cosmic web. The mean cosmic connectivity 
here is found to be well approximated by the simple linear relation κ(M) ≈ 10/3log 
(M/1011M⊙).
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W HEN IT COMES TO RECONSTRUCTING THE PAST, 
you might think that astrophysicists have it easy. After all, 
the sky is awash with evidence. For most of the universe�s 
history, space has been largely transparent, so much so 

that light emitted by distant galaxies can travel for billions of years before 
� nally reaching Earth. It might seem that all researchers have to do to 
� nd out what the universe looked like, say, 10 billion years ago is to build 
a telescope sensitive enough to pick up that ancient light. 

Actually, it�s more complicated than that. Most of the ordinary matter 
in the universe� the stuff that makes up all the atoms, stars, and galaxies 
astronomers can see� is invisible, either sprinkled throughout inter galactic 
space in tenuous forms that emit and absorb little light or else swaddled 
inside galaxies in murky clouds of dust and gas. When astronomers look 
out into the night sky with their most powerful telescopes, they can see no 
more than about 10 percent of the ordinary matter that�s out there.

To make matters worse, cosmologists have discovered that if you add 
up all the mass and energy in the universe, only a small fraction is com�
posed of ordinary matter. A good 95 percent of the cosmos is made up of two 
very different kinds of invisible and as�yet�unidenti�ed stuff that is �dark,� 
meaning that it emits and absorbs no light at all. One of these mysterious 
components, called dark matter, seems immune to all fundamental forces 
except gravity and perhaps the weak interaction, which is responsible for 

To understand the cosmos, 
we must evolve it all over again
By Joel R. Primack 

COSMIC WEB: The Bolshoi simulation 
models the evolution of dark matter, 
which is responsible for the large�
scale structure of the universe. Here, 
snapshots from the simulation 
show the dark matter distribution at 
500 million and 2.2 billion years [top] 
and 6 billion and 13.7 billion years 
[bottom] after the big bang. These 
images are 50� million� light� year� thick 
slices of a cube of simulated universe 
that today would measure roughly 
1 billion light� years on a side and 
encompass about 100 galaxy clusters. 
SOURCES: SIMULATION, ANATOLY KLYPIN AND JOEL R. PRIMACK; 
VISUALIZATION, STEFAN GOTTL� BER/LEIBNIZ INSTITUTE FOR 
ASTROPHYSICS POTSDAM 
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http://physics.ucsc.edu/~joel/Primack-
IEEE%20Spectrum%20Oct2012.pdf

MOSTLY DARK: If you add up all the 
matter and energy in the universe, you’d find 
little that is familiar. The stars and gas that 
astronomers see in their telescopes make up 
just 0.5 percent of the cosmos. Just 0.01 
percent of the universe is made of elements 
heavier than hydrogen or helium. Because of 
uncertainties, the numbers in this chart do not 
add up to 100 percent.
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ABSTRACT
We report and provide fitting functions for the abundance of dark matter haloes and sub-
haloes as a function of mass, circular velocity, and redshift from the new Bolshoi–Planck
and MultiDark–Planck !CDM cosmological simulations, based on the Planck parameters.
We also report halo mass accretion rates and concentrations. We show that the higher cosmo-
logical matter density of the Planck parameters compared with the WMAP parameters leads
to higher abundance of massive haloes at high redshifts. We find that the median halo spin
parameter λB = J (

√
2MvirRvirVvir)−1 is nearly independent of redshift, leading to predicted

evolution of galaxy sizes that is consistent with observations, while the significant decrease
with redshift in median λP = J |E|−1/2G−1M−5/2 predicts more decrease in galaxy sizes than
is observed. Using the Tully–Fisher and Faber–Jackson relations between galaxy velocity and
mass, we show that a simple model of how galaxy velocity is related to halo maximum circular
velocity leads to increasing overprediction of cosmic stellar mass density as redshift increases
beyond z ∼ 1, implying that such velocity–mass relations must change at z ! 1. By making
a realistic model of how observed galaxy velocities are related to halo circular velocity, we
show that recent optical and radio observations of the abundance of galaxies are in good agree-
ment with our !CDM simulations. Our halo demographics are based on updated versions of
the ROCKSTAR and CONSISTENT TREES codes, and this paper includes appendices explaining all
of their outputs. This paper is an introduction to a series of related papers presenting other
analyses of the Bolshoi–Planck and MultiDark–Planck simulations.

Key words: methods: numerical – galaxies: haloes – dark matter.

1 IN T RO D U C T I O N

In the !CDM standard modern theory of structure formation in the
universe, galaxies populate dark matter haloes and subhaloes. The
demographics of these haloes as a function of redshift are thus an
important input to the prediction of the properties and distribution
of galaxies. A number of large cosmological simulations have now
been run (see e.g. Kuhlen, Vogelsberger & Angulo 2012), although
many cover large volumes but with resolution too low to identify
all dark matter haloes that host most galaxies. The mass resolution

⋆E-mail: rodriguez.puebla@gmail.com (AR-P); behroozi@berkeley.edu
(PB)
†Hubble Fellow

required to do this is "108 h−1 M⊙, and the force resolution should
be "1 h−1 kpc. High-resolution cosmological dark matter simula-
tions that are particularly useful for studying galaxy hosts include
the Millennium simulations (Springel et al. 2005; Boylan-Kolchin
et al. 2009; Angulo et al. 2012), Bolshoi (Klypin, Trujillo-Gomez
& Primack 2011), MultiDark (Prada et al. 2012; Riebe et al. 2013),
Jubilee (Watson et al. 2013), DarkSky (Skillman et al. 2014), Q Con-
tinuum (Heitmann et al. 2015), ν2GC (Ishiyama et al. 2015), and
Bolshoi–Planck and MultiDark–Planck (Klypin et al. 2016) sim-
ulations. Fig. 1 shows the WMAP5/7/9 (Hinshaw et al. 2013) and
Planck 2013 (Planck Collaboration 2014) and Planck 2015 (Planck
Collaboration 2015a) cosmological parameters σ 8 and &M, and the
cosmological parameters adopted for these simulations. The Millen-
nium simulations used the first-year (WMAP1) parameters (Spergel
et al. 2003); the Bolshoi, Q Continuum, and Jubilee simulations
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