PHYSICS 5A Fall 2005 POSSIBLY USEFUL EQUATIONS

 $\frac{\text{Conversions:}}{1 \text{ mile} = 5280 \text{ feet}}$ 1 inch = 2.54 cm

<u>Vectors:</u> $A = |A| = (A_x^2 + A_y^2 + A_z^2)^{1/2}$

 $\mathbf{A} \cdot \mathbf{B} = AB\cos(\theta) = A_x B_x + A_y B_y + A_z B_z$

	î	ĵ	ĥ
$\mathbf{A} \times \mathbf{B} =$	A _x	$\mathbf{A}_{_{y}}$	A_{z}
	B _x	$\mathbf{B}_{_{y}}$	$\mathbf{B}_{_{z}}$

Quadratic Formula: If $ax^2 + bx + c = 0$, $x = -b/(2a) \pm (1/2a)(b^2 - 4ac)^{1/2}$

 $|\mathbf{A} \times \mathbf{B}| = ABsin(\theta)$, direction by right hand rule

Motion in 1-d with constant acceleration: $x = x_0 + v_0 t + (1/2)at^2$ $v = v_0 + at$ $v^2 = v_0^2 + 2a(x - x_0)$

Spring force: $\mathbf{F} = -\mathbf{k}\Delta\mathbf{s}$

<u>Newton's First and Second Laws:</u> $\Sigma \mathbf{F} = \mathbf{m} \mathbf{a}$

<u>Kinetic Energy:</u> $K_t = (1/2)mv^2$ (translational) $K_r = (1/2)I\omega^2$ (rotational)

 $\frac{\text{Work \& Energy:}}{W = \mathbf{F} \cdot \mathbf{ds} = F \text{ ds } \cos \theta}$ $T = K + U \quad (\text{constant if forces are conservative})$ $W_{(\text{non-conservative forces})} = \Delta T$ $Power = Work/Time (P = W/\Delta t)$

Definition of center of mass: $\mathbf{r}_{cm} = (\Sigma m_i \mathbf{r}_i)/(\Sigma m_i)$

 $\frac{Motion of center of mass:}{\Sigma \mathbf{F}_{ext} = M \mathbf{a}_{CM}}$

<u>Gravitational force near surface of the earth:</u> $|wt| = mg (g = 9.80 m/s^2)$, direction is down

<u>Uniform circular motion:</u> $|\mathbf{a}| = v^2/r = 4\pi^2 r/T^2$ direction is toward center of circle

 $\frac{\text{Newton's Third Law:}}{\mathbf{F}_{A \text{ on } B} = -\mathbf{F}_{B \text{ on } A}}$

<u>Potential Energy:</u> Gravity near surface of earth: $U_g = mgh$ Spring: $U_s = (1/2)k(\Delta x)^2$

 $\frac{\text{Momentum:}}{\text{Impulse} = \mathbf{F} dt}$ $\mathbf{p} = m\mathbf{v}$ $\mathbf{\Sigma}\mathbf{p} = \text{const if } \mathbf{\Sigma}\mathbf{F}_{\text{ext}} = 0$ $\mathbf{\Sigma}\mathbf{F}_{\text{ext}} = d(\mathbf{\Sigma}\mathbf{p})/dt$

 $\begin{array}{ll} & \underline{Rotational\ Motion:}\\ \omega = d\theta/dt & v_t = r\omega\\ \alpha = d\omega/dt & a_t = r\alpha\\ I = \Sigma m_i r_i^2 & a_r = \omega^2 r\\ & Parallel\ axis\ theorem:\ I = I_{CM} + Mr_{CM}^2 \end{array}$

$$\frac{\text{Torque:}}{\tau = \mathbf{r} \times \mathbf{F}} |\tau| = rF\sin\theta$$

$$\Sigma \tau = d\mathbf{L}/dt$$

$$\frac{\text{Rolling without slipping:}}{v_{CM} = r\omega}$$

$$\frac{\text{Equilibrium:}}{\Sigma \mathbf{F} = 0}$$

$$\Sigma \tau = 0$$

$$\frac{\text{Universal Gravitation:}}{F = -GMm/r^2}$$

 $U_G = -GMm/r$ (G = 6.67 x 10⁻¹¹ N-m²/kg²) Angular momentum: $\mathbf{L} = \mathbf{r} \mathbf{x} \mathbf{p}$ $\mathbf{L} = I\omega$ (rotation about fixed axis)

 $\frac{Static \ Friction:}{F_{fmax}} = \mu_s N$

 $\frac{Kinetic \ Friction:}{F_f = \mu_k N}$

 $\frac{\text{Collisions:}}{\text{Elastic: } \Sigma K = \text{constant.}}$ $\frac{\text{Elastic or Completely Inelastic:}}{\text{Total momentum is conserved.}}$