PHYSICS 5A
 Fall 2005
 POSSIBLY USEFUL EQUATIONS

Conversions:
1 mile $=5280$ feet
1 inch $=2.54 \mathrm{~cm}$

Quadratic Formula:
If $a x^{2}+b x+c=0$,
$x=-b /(2 a) \pm(1 / 2 a)\left(b^{2}-4 a c\right)^{1 / 2}$

Vectors:
$\mathrm{A}=|\mathbf{A}|=\left(\mathrm{A}_{\mathrm{x}}{ }^{2}+\mathrm{A}_{\mathrm{y}}{ }^{2}+\mathrm{A}_{\mathrm{z}}{ }^{2}\right)^{1 / 2}$
$\mathbf{A} \cdot \mathbf{B}=\mathrm{AB} \cos (\theta)=\mathrm{A}_{\mathrm{x}} \mathrm{B}_{\mathrm{x}}+\mathrm{A}_{\mathrm{y}} \mathrm{B}_{\mathrm{y}}+\mathrm{A}_{\mathrm{z}} \mathrm{B}_{\mathrm{z}}$
$\mathbf{A} \times \mathbf{B}=\left|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ \mathrm{A}_{x} & \mathrm{~A}_{y} & A_{z} \\ \mathrm{~B}_{x} & \mathrm{~B}_{y} & \mathrm{~B}_{z}\end{array}\right|$
$|\mathbf{A} \times \mathbf{B}|=\mathrm{ABsin}(\theta)$, direction by right hand rule

Motion in 1-d with constant acceleration:
$\mathrm{x}=\mathrm{x}_{0}+\mathrm{v}_{0} \mathrm{t}+(1 / 2) \mathrm{at}^{2}$
Gravitational force near surface of the earth:
$\mathrm{v}=\mathrm{v}_{0}+\mathrm{at}$
$\mathrm{v}^{2}=\mathrm{v}_{0}{ }^{2}+2 \mathrm{a}\left(\mathrm{x}-\mathrm{x}_{0}\right)$
Uniform circular motion:
$|\mathbf{a}|=\mathrm{v} 2 / \mathrm{r}=4 \pi^{2} \mathrm{r} / \mathrm{T}^{2}$
Spring force: direction is toward center of circle
$\mathbf{F}=-k \Delta s$
Newton's First and Second Laws:
Newton's Third Law:
$\Sigma F=m a$

Kinetic Energy:
$\mathrm{K}_{\mathrm{t}}=(1 / 2) \mathrm{mv}^{2}$ (translational)
$\mathrm{K}_{\mathrm{r}}=(1 / 2) \mathrm{I} \omega^{2}$ (rotational)
$\mathbf{F}_{\mathrm{A} \text { on } \mathrm{B}}=-\mathrm{F}_{\mathrm{B} \text { on } \mathrm{A}}$
Potential Energy:
Gravity near surface of earth: $\mathrm{U}_{\mathrm{g}}=\mathrm{mgh}$
Spring: $\mathrm{U}_{\mathrm{s}}=(1 / 2) \mathrm{k}(\Delta \mathrm{x})^{2}$

Work \& Energy:
$\mathrm{W}=\mathbf{F} \cdot \mathbf{d s}=\mathrm{F}$ ds $\cos \theta$
$\mathrm{T}=\mathrm{K}+\mathrm{U}$ (constant if forces are conservative)
$\mathrm{W}_{\text {(non-conservative forces) }}=\Delta \mathrm{T}$
Power $=$ Work/Time $(\mathrm{P}=\mathrm{W} / \Delta \mathrm{t})$
Definition of center of mass:
$\mathbf{r}_{\mathrm{cm}}=\left(\sum \mathrm{m}_{\mathrm{i}} \mathbf{r}_{\mathrm{i}}\right) /\left(\sum \mathrm{m}_{\mathrm{i}}\right)$
Motion of center of mass:
$\Sigma \mathbf{F}_{\text {ext }}=\mathrm{Ma}_{\mathrm{CM}}$

Momentum:

Impulse = Fdt
$\mathbf{p}=\mathrm{mv}$
$\Sigma \mathbf{p}=$ const if $\Sigma \mathbf{F}_{\text {ext }}=0$
$\Sigma \mathbf{F}_{\text {ext }}=\mathrm{d}(\Sigma \mathbf{p}) / \mathrm{dt}$
Rotational Motion:
$\begin{array}{ll}\omega=d \theta / d t & v_{t}=r \omega \\ \alpha=d \omega / d t & a_{t}=r \alpha \\ I=\Sigma m_{i} r_{i}{ }^{2} & a_{r}=\omega^{2} r\end{array}$
Parallel axis theorem: $\mathrm{I}=\mathrm{I}_{\mathrm{CM}}+\mathrm{Mr}^{2}{ }_{\mathrm{CM}}$

Torque:

$$
\begin{aligned}
& \tau=\mathbf{r x} \mathbf{F} \quad|\tau|=\mathrm{rFsin} \theta \\
& \Sigma \tau=\mathrm{d} \mathbf{L} / \mathrm{dt}
\end{aligned}
$$

Rolling without slipping:
$\mathrm{v}_{\mathrm{CM}}=\mathrm{r} \omega$

Equilibrium:
$\Sigma \mathbf{F}=0$
$\Sigma \tau=0$
Universal Gravitation:
$\mathrm{F}=-\mathrm{GMm} / \mathrm{r}^{2}$
$\mathrm{U}_{\mathrm{G}}=-\mathrm{GMm} / \mathrm{r}$
($\mathrm{G}=6.67 \times 10^{-11} \mathrm{~N}-\mathrm{m}^{2} / \mathrm{kg}^{2}$)

Angular momentum:

$$
\mathbf{L}=\mathbf{r} \times \mathbf{p}
$$

$\mathrm{L}=\mathrm{I} \omega$ (rotation about fixed axis)
Static Friction:
$\mathrm{F}_{\text {fmax }}=\mu_{\mathrm{s}} \mathrm{N}$
Kinetic Friction:
$\mathrm{F}_{\mathrm{f}}=\mu_{\mathrm{k}} \mathrm{N}$

Collisions:
Elastic: $\Sigma \mathrm{K}=$ constant.
Elastic or Completely Inelastic:
Total momentum is conserved.

