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ABSTRACT

Supervised artificial neural networks are used to predict useful properties of galaxies in the
Sloan Digital Sky Survey, in this instance morphological classifications, spectral types and
redshifts. By giving the trained networks unseen data, it is found that correlations between
predicted and actual properties are around 0.9 with rms errors of order ten per cent. Thus,
given a representative training set, these properties may be reliably estimated for galaxies in
the survey for which there are no spectra and without human intervention.

Key words: methods: data analysis – methods: statistical – galaxies: fundamental parameters
– galaxies: photometry – galaxies: statistics.

1 I N T RO D U C T I O N

The comparison of the observed distribution of galaxies and their
properties with that predicted by theory is an important task
in cosmology. In recent years datasets have become available
which enable the comparison to include large samples and de-
tailed galaxy parameters. The Sloan Digital Sky Survey (SDSS,
York et al. 2000) provides a dataset of unprecedented size and qual-
ity and thus enables significant improvement in the detail of the
comparison.

One can measure an almost limitless number of parameters to
describe a galaxy. It is desirable to have as much information as
possible in the fewest parameters, either continuous or discrete. A
one parameter galaxy ‘type’ is particularly convenient. Examples
are the well-known Hubble system, or spectral types based on lines
or principal component analysis.

Principal component analysis (PCA), Fisher Matrix and other
techniques provide a linear method of reducing the dimensional-
ity of the parameter space in this way. However galaxy parameters
are in general correlated in non-linear ways, thus a non-linear ap-
proach may be more appropriate. Various methods exist, including
non-linear PCA (e.g. http://www.cis.hut.fi/projects/ica/), Informa-
tion Bottleneck (Slonim et al. 2001), and artificial neural networks
(ANNs). The latter approach is adopted here.

!E-mail: N.M.Ball@sussex.ac.uk

The derived parameters should be physically meaningful, i.e. they
should be directly predicted by theories of galaxy and large scale
structure formation, or be related in a quantitative way. For PCA nu-
merous studies have found that the principal components of galaxy
spectra correlate with various physical processes such as star for-
mation (via absorption and emission line strengths of, for example,
the Hα line), and to galaxy colour and morphology. PCA has been
applied to the SDSS and yields a one parameter spectral type known
as the eClass (Connolly & Szalay 1999). A similar parameteriza-
tion, the η class, has been made for the 2dF galaxy redshift survey
(Madgwick et al. 2002).

Here ANNs in the Matlab Neural Network Toolbox environment
(http://www.mathworks.com/) are used to map galaxy parameters
from Data Release One (DR1) of the SDSS on to a single contin-
uous ‘type’. Here we consider three different types: morphological
classification, spectral type and redshift, with standard photometric
parameters as input.

Previous studies involving galaxy classification using ANNs in-
clude Storrie-Lombardi et al. (1992), Serra-Ricart et al. (1993),
Adams & Woolley (1994), Lahav et al. (1995), Naim et al. (1995),
Folkes, Lahav & Maddox (1996), Lahav et al. (1996), Odewahn
et al. (1996), Naim, Ratnatunga & Griffiths (1997a, b), Molinari
& Smareglia (1998), de Theije & Katgert (1999), Windhorst et al.
(1999), Bazell (2000), Bazell & Aha (2001), Ball (2001), Goderya
& Lolling (2002), Odewahn et al. (2002), Cohen et al. (2003) and
Madgwick (2003). However none of these used a dataset of the size
and quality of DR1, or the Levenberg-Marquardt training algorithm
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(Section 3), widely used in neural network research. Many stud-
ies have also been carried out to separate stars from galaxies. An
example is Andreon et al. (2000).

The layout of the rest of this paper is as follows: in Section 2
the SDSS is summarized and the datasets used are described. In
Section 3 we describe the ANNs; Section 4 presents the results,
followed by discussion in Section 5 and conclusions in Section 6.

2 DATA

The SDSS is a project to map π steradians of the northern Galactic
cap in five bands (u, g, r, i and z) from 3500–8900 Å. This will
provide photometry for of order 5 × 107 galaxies (Fukugita et al.
1996; Gunn et al. 1998; Lupton et al. 2001; Hogg et al. 2001; Smith
et al. 2002; Pier et al. 2003). A multifibre spectrograph will provide
redshifts and spectra for approximately 106 of these. A technical
summary of the survey is given in York et al. (2000).

The data released to the community so far consists of the June
2001 Early Data Release (EDR, Stoughton et al. 2002) and the
April 2003 Data Release 1 (DR1, Abazajian et al. 2003). The latter
contains images of 7.6 million galaxies to r < 21 and spectra of
107 000 galaxies to r < 17.77. This paper uses galaxies with spectra
from DR1.

The SDSS galaxies with spectra consist of a ‘main’, flux-limited
sample (r < 17.77), with a median redshift of 0.104 (Strauss et al.
2002) and a luminous red galaxy sample, approximately volume-
limited to z ≈ 0.4 (Eisenstein et al. 2001). Only the main sample
galaxies are used here.

2.1 Galaxy samples

We used the main galaxy sample from DR1, with sample cuts of
reddening corrected r-band magnitude r < 17.77, confidence in
spectroscopic redshift zConf > 0.85 and spectroscopic object class
specClass = GALAXY or emission line galaxy GAL EM. This
gave 104 619 galaxies. For each of the training, test and simulation
samples (see Section 3) galaxies with severely outlying parameters
(>10σ from the mean value for the parameter, generally indica-
tive of a measurement error) were iteratively removed for each pa-
rameter in turn. 2240 were removed in this way, leaving 102 379.
See Section 2.2 for a description of parameters used. Galaxies with
outlying target types were similarly removed. The order in which
the parameters are presented may affect the number of galaxies re-
moved, but the difference is negligible given the small number of
objects affected (almost the same outliers are removed whatever the
order of parameter presentation). The parameters were individually
normalized to zero mean and unit variance for input into the neural
network (see below). For eClass and redshift the training samples
were evened out by binning the galaxies by target type and removing
random galaxies from the most populated bins until the maximum
number of galaxies in a bin was twice the mean number. Bins with
less than this were unaffected. This culling ensures that the training
of the network is not dominated by only a small region of parameter
space where there are large numbers of galaxies, which worsens
the performance on the rest of the space, and left a total of 98 402
galaxies. The culling does remove the Bayesian prior of the relative
number of each type of galaxy, but the training samples are large
enough that the performance on the test sample is improved rather
than hindered. A more sophisticated method of creating an even
sample is to use K-means clustering or a self-organizing map (e.g.
Tagliaferri et al. 2002).

2.2 Galaxy parameters

The parameters used as input to the neural networks, all available
in DR1, are shown in Table 1.

The magnitudes are corrected for Galactic reddening using the
corrections derived from Schlegel, Finkbeiner & Davis (1998).

The galaxy images are fitted with the de Vaucouleurs profile (de
Vaucouleurs 1948)

I (r ) = I0 exp
{

−7.67
[

(r/re)1/4 − 1
]}

, (1)

and the exponential profile (Freeman 1970)

I (r ) = I0 exp(−1.68 r/re), (2)

where I0 and I(r) are the intensities at radii 0 and r, and re is the half-
light radius for the galaxy. The profiles are truncated to go smoothly
to zero at 8re and 4re respectively.

The profile likelihoods are standard χ 2 fits. The model magnitude
is that from the better of the two fits.

The Petrosian magnitude is a modified form of that introduced by
Petrosian (1976). It measures a constant fraction of the total light.
The Petrosian flux FP is given by

FP ≡

∫ NPrP

0

2πr ′dr ′ I (r ′) (3)

where rP is the Petrosian radius, which is the value at which the
Petrosian ratio of surface brightnesses

RP(r ) ≡

∫ 1.25r

0.8r
2πr ′dr ′ I (r ′)/[π(1.252 − 0.82)r 2]

∫ r

0
2πr ′dr ′ I (r ′)/(πr 2)

(4)

has a certain value, chosen in the SDSS to be 0.2. The number N P

of Petrosian radii within which the flux is measured is equal to 2 in
the SDSS. The variable of integration r′ is the radius.

The magnitude m, as with the model magnitude, is then given in
asinh units, which are virtually identical to the usual astronomical
magnitudes (Pogson 1856) at high signal to noise but work at low
signal to noise and negative flux:

m = −
2.5

ln 10

[

asinh

(

f / f0

2b

)

+ ln b

]

, (5)

where f is the detected flux, f 0 is the flux at the zero point of the
magnitude scale and b is a softening parameter. Further details are
given in Lupton, Gunn & Szalay (1999) and Stoughton et al. (2002).

Table 1. Galaxy parameters used in this paper. Available in the SDSS
public Data Release One (DR1), each is either a direct output of, or a simple
combination of, outputs of the SDSS photometric pipeline.

Parameter Number Description

1 Petrosian radius in r band
2 50 per cent light radius in r (R50)
3 90 per cent light radius in r (R90)
4 de Vaucouleurs profile radius in r

5 exponential profile radius in r

6 de Vaucouleurs profile axial ratio in r

7 exponential profile axial ratio in r

8 log likelihood of de Vaucouleurs profile
9 log likelihood of exponential profile
10 galaxy surface brightness in r

11 concentration index (R50/R90) in r

12–15 model u − g, g − r, r − i, i − z colours
16–19 Petrosian u − g, g − r, r − i, i − z colours
20–24 model u g r i z magnitudes
25–29 Petrosian u g r i z magnitudes
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The concentration index is R50/R90 where R50 and R90 are the radii
within which 50 and 90 per cent of the Petrosian flux is received.

The surface brightness used here is given by

µ = mr + 5 log
(

πr 2
P

)

, (6)

mr being the magnitude and rP being the Petrosian radius in the r

band.
Parameters other than magnitudes and colours are measured

in the r band, since this band is used to define the aperture
through which Petrosian flux is measured for all five bands. Fur-
ther details of all the parameters are given on the DR1 webpage
(http://www.sdss.org/dr1/).

2.3 Target types

The networks were separately trained on the following three targets.

2.3.1 Eyeball morphological type

1875 SDSS galaxies have been classified into morphological types
by Nakamura et al (2003). The system used was a modified version
of the T-type system (de Vaucouleurs 1959), with the types being
assigned in steps of 0.5 from 0 (early type) to 6 (late type). Unas-
signed types (−1) and galaxies flagged as being likely to have bad
photometry were removed.

The Nakamura et al. catalogue is based on a pre-DR1 version of
SDSS data and so their catalogue was matched to DR1 by equatorial
coordinates with a tolerance of 0.36 arcsec, so that the number of
duplicate matches is negligible. This gave 1399 matches.

2.3.2 eClass

The eClass is a continuous one parameter type assigned from the
projection of the first three principal components (PCs) of the en-
semble of SDSS galaxy spectra. The locus of points forms an ap-
proximately one dimensional curve in the volume of PC1, PC2 and
PC3. This is a generalization of the mixing angle φ in PC1 and PC2

φ = tan−1

(

a2

a1

)

, (7)

where a1 and a2 are the eigencoefficients of PC1 and PC2.
The range is from approximately −1 (corresponding to late type

galaxies) to 0.5 (early type).
The eClass is also robust to missing data in the spectra used for

its derivation, and is almost independent of redshift. Further details
can be found in Connolly et al. (1995), Connolly & Szalay (1999),
and Yip et al. (in preparation).

2.3.3 Redshift

The redshift is calculated automatically by the SDSS spectroscopic
software pipelines (Stoughton et al. 2002), Frieman et al. (in prepa-
ration), and has a success rate of almost 100 per cent.

3 A RT I F I C I A L N E U R A L N E T WO R K S

ANNs, as collections of interconnected neurons each able to carry
out simple processing were originally conceived as being models of
the brain. This is still true, however the networks used here are vastly
smaller and simpler and are best described in terms of non-linear
extensions of conventional statistical methods.

The supervised ANN takes parameters as input and maps them
on to one or more outputs. A set of vectors of parameters, each

vector representing a galaxy and corresponding to a desired output,
or target, is presented. The network is trained and is then able to
assign an output to an unseen parameter vector.

This is achieved by using a training algorithm to minimize a cost
function which represents the difference between the actual and
desired output. The cost function c is commonly of the form

c =
1
N

N
∑

k=1

(ok − tk)2, (8)

where ok and tk are the output and target respectively for the kth of
N objects.

In general the neurons could be connected in any topology, but a
commonly used form is to have an a : b1 : b2 : . . . : bn :c arrangement,
where a is the number of input parameters, b1...n are the number of
neurons in each of n one dimensional ‘hidden’ layers and c is the
number of neurons in the final layer, equal to the number of outputs.
Here we have one output, c = 1. Multiple outputs can give Bayesian
a posteriori probabilities that the output is of that class given the
values of the input parameters. (This is classification, whereas a
single output, c = 1, is strictly regression.) Each neuron is connected
to every neuron in adjacent layers but not to any others.

Following Lahav et al. (1996), each neuron j in layer s receives
the N outputs x

(s−1)
i from the previous layer s − 1 and gives a linear

weighted sum over the outputs,

I
(s)
j =

N
∑

i=0

w
(s)
i j x

(s−1)
i . (9)

There is usually an additive constant, w0j, where x0 = 1, in this
linear sum. This ‘bias’ allows the outputs to be shifted in analogy
with a DC level.

The neuron then performs a non-linear operation (the trans-
fer function) on the result to give its output x

(s)
j , typically a sig-

moid or, as used here, the tanh function, which has an output
range of −1 to 1:

x
(s)
j =

2

1 + exp
(

−2I
(s)
j

) − 1. (10)

The parameters are normalized to zero mean and unit variance.
This is not strictly necessary as the net can in principle perform
an arbitrary non-linear mapping, but it enables the weights to be
initialized in the range −1 to 1 and not be made unduly large or small
relative to each other by the training. This is particularly helpful for
larger networks.

The weights are prevented from growing too large by using weight
decay, a regularisation method which adds a term d to the cost
function which penalizes large weights:

d = const ×
1
2

∑

j

w2
j . (11)

Regularisation is also helped by the normalization.
The weights are adjusted by the training algorithm. In galaxy

classification this has typically been the well-known backpropaga-
tion algorithm (Werbos 1974; Parker 1985; Rumelhart, Hinton &
Williams 1986) or the quasi-Newton algorithm (e.g. Bishop 1995).
The Matlab software allows the specification of which one to use
from a number of choices including these. Here another algorithm
popular in neural net research is used: the Levenberg-Marquardt
method (Levenberg 1944; Marquardt 1963, also detailed in Bishop
1995). This has the advantage that it is very quick to converge to a
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minimum of the cost function, and it is able to cope with steep gra-
dients in the parameter-cost function space by approximating gradi-
ent descent, and with shallow gradients by approximating Newton’s
method. It is thought to be the fastest algorithm for networks of up
to a few hundred weights and its implementation in Matlab further
improves its performance.

Following the neural network toolbox documentation, the algo-
rithm works by using the fact that when the cost function has the
form of a sum of squares the computationally expensive Hessian
matrix H can be approximated as:

H = J
T
J, (12)

and the gradient is:

g = J
T

e, (13)

where J is the (much easier to compute) Jacobian containing the
first derivatives of the network errors with respect to the weights
and biases and e is a vector containing the network errors, where
the network error is the network type minus the target type.

The algorithm then performs the update:

wk+1 = wk − [JT
J + µI]−1

J
T

e, (14)

where I is the identity matrix and µ is the ‘momentum’. A large µ

approximates gradient descent and µ = 0 is Newton’s method. µ is
given a large initial value so that gradient descent enables the area
of the minimum to be found quickly. It is then decreased after each
step where the cost function reduces, thus moving towards Newton’s
method which is faster and more accurate near the minimum.

Matlab allows a number of adjustable parameters for the training.
The default values were used. The parameters include:

epochs: maximum number of training iterations (100)
min grad: minimum gradient of the cost function (1.00 × 10−10)
mu: initial value of µ (1.00 × 10−3)
mu dec: amount to multiply µ by when the cost function is re-

duced by a step (0.1)
mu inc: similarly for when the cost function increases (10)
mu max: maximum µ value (1.00 × 1010)

The criteria used for stopping training were epochs, min grad, and
mu max, whichever was reached first. An explanation for mu max
being used is that, whilst appearing indicative of a diverging solu-
tion, it is in fact showing that the algorithm is unable to make a
further step to reduce the cost function. The algorithm only steps if
a resulting reduction is found, so it tries progressively larger steps to
search for this, until mu max is reached. One could also use as a stop-
ping criterion a validation sample, in which the training is stopped
if the cost function when the network at that stage of its training
is run begins to increase. However, with Levenberg-Marquardt the
minimum may be reached in very few iterations (e.g. ten or less),
and with the large training samples used here the validation sample
gives virtually the same value of the cost function as the training
sample. There is little danger of overfitting because of the size of the
training sample and the intrinsic spread in the galaxy properties. An
exception may be a large network with the eyeball training sample
(see Section 4.1).

In general the space of parameters and cost function may have
arbitrarily many local minima. It is thus necessary to start with
several random initializations of the weights (or ‘runs’) to avoid a
poor local minimum giving spurious results. The results can then
be viewed with the poorest networks down-weighted or ignored,
or by using the median type. Here the median type is used because
although very few runs will be significantly poorer than average, the

ones that are may be poorer by enough such that the mean, distorted
more by these outliers, is a worse measure than the median. The
median type quoted in this paper is always taken from ten runs. The
typical scatter between runs is found to be significantly less than
the mean RMS spread of the network types about the targets.

The trained network is then applied to the test sample, and it is
for this sample that the tabulated results are recorded. The training
and test samples must be independent but the training sample must
be representative of the test sample. Here the galaxies are given in
a random order, the first half was used for training, and the second
half for testing. For the eClass and redshift one eighth of the DR1
galaxies were used for training and 10 000 for testing. The samples
had their outliers removed, and those with eClass and redshift targets
were evened, using the methods described in Section 2, resulting in
training and test samples of approximately 10 000 galaxies (8501
and 9801 for eClass; 10 132 and 9801 for redshift). These samples
are easily large enough to train and test the networks without using
undue amounts of memory. The resulting eyeball samples of 674
(training) and 683 (testing) were not evened as this would make the
samples too small using the method here. For eClass and redshift the
network was simulated on the rest of the DR1 sample with outliers
removed (79 769 galaxies for both targets).

Further details on neural nets can be found in Bishop (1995) and
in the context of galaxy classification in Lahav et al. (1996).

4 R E S U LT S

The networks were iterated over many parameter sets, architec-
tures and random initializations of weights. The results are shown
for the parameter sets for the network architectures 1 (single neu-
ron) and 8:1 (8 neurons in a hidden layer) in Table 2. Some of the
best sets (highest correlation between network output and target
type/lowest root mean square difference between network output
and target type; the one almost always corresponds with the other)
were run on more architectures. These are shown in Tables 3 and 4.
The architectures shown give reasonable execution times, since the
Levenberg-Marquardt algorithm has memory requirements which
scale as N2 where N is the number of weights. The largest number
of weights used is in the hundreds.

4.1 Effect of network architecture

Tables 3 and 4 show that a network with a single hidden layer with
a few neurons is adequate for the task of predicting these galaxy pa-
rameters using Sloan data. Thus many network runs could be used
to get a good distribution of the assigned type for any particular
galaxy. Beyond about ten hidden neurons there is little improve-
ment and in fact the standard deviation of assigned types to indi-
vidual galaxies from the multiple initializations, usually much less
than the RMS between actual and target types, starts to increase. A
network, e.g. hidden units of 8:1, is clearly better than a linear map-
ping, represented by a single neuron, and although in some cases
the improvement in correlation/rms is not large the plot of network
type versus target type (as in Figs 1–3) is a much smoother function
of target type. The networks are almost certainly limited in their
performance by intrinsic scatter in the training sample. This can be
seen if the network is tested on the sample it has just been trained
on – its performance is very similar. This also confirms the earlier
statement that overfitting is unlikely with the 8:1 nets and sizes of
training samples used. The increased spread in assigned types with
larger networks may be indicative of overfitting, particularly with
the eyeball type as the number of weights becomes comparable to
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Table 2. Correlations and RMSs of median network outputs with target types for the galaxy parameter sets used in this paper. The first figure is the correlation
for a single neuron, the second is for an 8:1 network. Ten runs with random initializations of the weights are used. The RMS is the root mean square difference
between the median network output and the target type. The values are for the neural network test sample, as opposed to the simulation samples shown in Figs
2 and 3 (see Section 3, but note that ‘test’ and ‘simulation’ in this context does not mean that the results are preliminary). The numbers change by amounts of
order 0.01 if a different random training sample is used.

Correlation RMS

Parameter Set Eyeball type eClass Redshift Eyeball type eClass Redshift
Approximate range of targets 0 to 6 −0.5 to 1 0 to 0.4 0 to 6 −0.5 to 1 0 to 0.4

Petrosian radius in r band 0.492 0.515 0.096 0.097 0.266 0.315 1.291 1.271 0.195 0.195 0.050 0.050
50 percent light radius in r 0.567 0.603 0.162 0.172 0.312 0.361 1.221 1.183 0.193 0.192 0.050 0.049
90 percent light radius in r 0.296 0.302 0.044 0.054 0.212 0.266 1.416 1.414 0.196 0.196 0.051 0.050
de Vaucouleurs profile radius in r 0.802 0.819 0.366 0.407 0.423 0.429 0.886 0.852 0.180 0.176 0.047 0.047
Exponential profile radius in r 0.759 0.817 0.338 0.395 0.416 0.427 0.968 0.857 0.183 0.177 0.047 0.047
de Vaucouleurs profile axial ratio in r 0.493 0.490 0.084 0.086 0.292 0.298 1.290 1.292 0.195 0.195 0.050 0.050
Exponential profile axial ratio in r 0.547 0.547 0.081 0.088 0.300 0.305 1.241 1.241 0.195 0.195 0.050 0.050
log likelihood of de Vaucouleurs profile 0.051 0.699 0.212 0.435 0.381 0.518 1.481 1.070 0.191 0.172 0.048 0.045
log likelihood of exponential profile 0.131 0.523 0.230 0.432 0.222 0.295 1.471 1.264 0.190 0.174 0.051 0.050
galaxy surface brightness 0.573 0.628 0.282 0.296 0.114 0.289 1.215 1.154 0.187 0.186 0.052 0.050
concentration index in r 0.751 0.782 0.525 0.534 0.251 0.281 0.981 0.927 0.162 0.161 0.051 0.050
model u − g colour 0.620 0.691 0.783 0.892 0.376 0.421 1.164 1.075 0.116 0.084 0.048 0.047
model g − r colour 0.492 0.565 0.804 0.900 0.711 0.768 1.309 1.224 0.113 0.081 0.037 0.033
model r − i colour 0.425 0.558 0.706 0.739 0.602 0.636 1.344 1.231 0.135 0.128 0.042 0.040
model i − z colour 0.441 0.552 0.779 0.822 0.369 0.402 1.333 1.236 0.118 0.106 0.049 0.048
Petrosian u − g colour 0.576 0.637 0.533 0.703 0.220 0.244 1.222 1.144 0.164 0.135 0.051 0.051
Petrosian g − r colour 0.704 0.740 0.768 0.862 0.690 0.742 1.055 0.998 0.121 0.094 0.038 0.035
Petrosian r − i colour 0.523 0.591 0.659 0.708 0.547 0.592 1.268 1.199 0.143 0.133 0.044 0.042
Petrosian i − z colour 0.567 0.658 0.545 0.625 0.282 0.314 1.221 1.117 0.161 0.148 0.050 0.050
model u magnitude 0.489 0.498 0.471 0.515 0.688 0.704 1.294 1.285 0.169 0.164 0.038 0.037
model g magnitude 0.243 0.257 0.155 0.301 0.644 0.708 1.438 1.432 0.193 0.185 0.040 0.037
model r magnitude 0.094 0.155 0.139 0.147 0.435 0.437 1.476 1.464 0.194 0.194 0.047 0.047
model i magnitude 0.033 0.196 0.232 0.316 0.358 0.402 1.482 1.453 0.191 0.185 0.049 0.048
model z magnitude 0.042 0.271 0.332 0.476 0.298 0.401 1.481 1.427 0.184 0.171 0.050 0.048
Petrosian u magnitude 0.529 0.551 0.436 0.495 0.628 0.637 1.259 1.237 0.173 0.166 0.041 0.040
Petrosian g magnitude 0.310 0.357 0.189 0.335 0.662 0.728 1.410 1.385 0.191 0.183 0.039 0.036
Petrosian r magnitude 0.111 0.120 0.102 0.102 0.467 0.474 1.473 1.472 0.195 0.195 0.046 0.046
Petrosian i magnitude 0.040 0.169 0.196 0.266 0.391 0.425 1.481 1.461 0.192 0.189 0.048 0.047
Petrosian z magnitude 0.080 0.325 0.307 0.441 0.325 0.421 1.478 1.402 0.186 0.175 0.049 0.047
Petrosian colours u − g, g − r, r − i, and i − z 0.734 0.799 0.803 0.883 0.725 0.824 1.007 0.893 0.112 0.087 0.036 0.030
Petrosian colours g − r and r − i 0.703 0.759 0.780 0.863 0.692 0.761 1.055 0.966 0.118 0.094 0.038 0.034
model colours u − g, g − r, r − i, and i − z 0.629 0.753 0.874 0.936 0.790 0.881 1.153 0.978 0.091 0.065 0.032 0.025
model colours g − r and r − i 0.494 0.620 0.810 0.904 0.712 0.789 1.289 1.163 0.111 0.080 0.037 0.032
all parameters, except Petrosian and model magnitudes 0.911 0.928 0.893 0.943 0.869 0.922 0.614 0.554 0.084 0.062 0.026 0.020
all parameters 0.911 0.926 0.893 0.943 0.870 0.924 0.615 0.562 0.084 0.062 0.026 0.020

the number of training examples. The results presented in the figures
use the 8:1 architecture, for which this is not a problem. The number
of hidden units was chosen using trial and error rather than a quan-
titative method, such as the Schwarz’s Bayesian criterion (Schwarz
1978, also detailed at ftp://ftp.sas.com/pub/neural/dojo/dojo.html),
because there is no one procedure for choosing the number which
applies to many datasets which is clearly superior to trial and
error.

4.2 Effect of parameter set

In general it seems that certain parameters are good for predicting
the targets, but that if all the parameters are added in, the correlation
improves over the subsets. The correlation is not improved by du-
plicating the few best parameters, so it would appear that genuine
information is present in the less good parameters and it is adding
these and not just increasing the size of the network which helps. We
therefore use all parameters in generating the Figures. The model

magnitudes used are those from the SDSS DR1 which have been
found to be offset by up to 0.2 mag (Abazajian et al. 2003), but
this does not matter here, since the training and test samples are
affected in the same way. As expected, including the magnitudes as
well as the colours adds little to the correlation as no significant new
information is added.

4.3 Results for the different target types

4.3.1 Eyeball morphological type

Previous studies (Naim et al. 1995; Lahav et al. 1995) have shown
that neural networks are able to reproduce human-assigned morpho-
logical classifications with the same degree of accuracy as another
human expert, about 1.8 types in the −5 to 11 T type range. Here
the target types are assigned in bins of 0.5 in the range 0 to 6. The
types were assigned using the mean of two experts, which for most
of their galaxies agreed within 1.5 types. Fig. 1 shows the median
network type versus target type for ten runs. The network gives
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Table 3. Correlations for some of the best parameter sets for various ANN architectures using test samples. As in Table 2, ± 0.01 is a
representative error on the numbers shown.

Architecture
Target Parameter set 1 2:1 4:1 8:1 16:1 32:1 4:4:1 8:8:1 16:16:1 8:8:8:1

eyeball deV and exp radius in r 0.802 0.820 0.819 0.818 0.817 0.817 0.819 0.819 0.814 0.816
type concentration index in r 0.751 0.781 0.781 0.781 0.784 0.785 0.783 0.785 0.785 0.785

Petrosian g − r 0.704 0.737 0.738 0.739 0.738 0.737 0.738 0.739 0.737 0.738
Petrosian colours 0.734 0.785 0.790 0.798 0.793 0.762 0.800 0.791 0.744 0.789
all except magnitudes 0.911 0.920 0.923 0.924 0.920 0.914 0.926 0.925 0.906 0.924
all 0.911 0.917 0.923 0.920 0.920 0.908 0.922 0.920 0.907 0.914

eClass model colours 0.874 0.931 0.934 0.936 0.936 0.936 0.935 0.936 0.936 0.937
Petrosian colours 0.803 0.876 0.879 0.883 0.884 0.884 0.883 0.885 0.884 0.884
all except magnitudes 0.893 0.935 0.942 0.943 0.944 0.944 0.943 0.944 0.945 0.945
all 0.893 0.938 0.942 0.942 0.944 0.944 0.943 0.944 0.945 0.944

redshift model g − r 0.711 0.759 0.765 0.769 0.769 0.769 0.769 0.769 0.769 0.769
model colours 0.790 0.860 0.875 0.880 0.885 0.886 0.879 0.886 0.887 0.886
all except magnitudes 0.869 0.886 0.915 0.923 0.928 0.930 0.918 0.928 0.930 0.929
all 0.870 0.897 0.915 0.924 0.928 0.930 0.918 0.928 0.929 0.928

Table 4. As Table 3, but showing RMSs.

Architecture
Target Parameter Set 1 2:1 4:1 8:1 16:1 32:1 4:4:1 8:8:1 16:16:1 8:8:8:1

eyeball deV and exp radius in r 0.886 0.849 0.851 0.854 0.856 0.857 0.853 0.853 0.865 0.860
type concentration index in r 0.981 0.929 0.928 0.928 0.923 0.921 0.925 0.921 0.921 0.921

Petrosian g − r 1.055 1.002 1.001 0.999 1.001 1.003 1.001 1.000 1.004 1.000
Petrosian colours 1.007 0.920 0.910 0.894 0.904 0.965 0.891 0.908 1.008 0.913
all except magnitudes 0.614 0.582 0.573 0.567 0.581 0.603 0.562 0.565 0.629 0.569
all 0.615 0.593 0.570 0.581 0.584 0.623 0.576 0.583 0.626 0.604

eClass model colours 0.091 0.068 0.066 0.065 0.065 0.065 0.066 0.065 0.065 0.065
Petrosian colours 0.112 0.090 0.089 0.087 0.087 0.087 0.088 0.087 0.087 0.087
all except magnitudes 0.084 0.066 0.062 0.062 0.061 0.061 0.062 0.061 0.061 0.061
all 0.084 0.065 0.062 0.062 0.061 0.061 0.062 0.061 0.061 0.061

redshift model g − r 0.037 0.034 0.034 0.033 0.033 0.033 0.033 0.033 0.033 0.033
model colours 0.032 0.027 0.025 0.025 0.024 0.024 0.025 0.024 0.024 0.024
all except magnitudes 0.026 0.024 0.021 0.020 0.019 0.019 0.021 0.019 0.019 0.019
all 0.026 0.023 0.021 0.020 0.019 0.019 0.021 0.019 0.019 0.019

correlations up to 0.93 with an RMS of 0.55, about 9 per cent of the
range, or the same as the width of the bins for the types. Smoothing
the training sample over the bins by adding random noise of half
the bin width was also tried but this did not improve the correlation,
as the bins are quite small relative to the range in targets. Kelly &
Mackay (2004) assign morphological types using shapelet decom-
position, followed by a mixture of Gaussians model. They find that
their types compared to the T types have a standard deviation of
about one type, although their method is not designed to reproduce
the Hubble types, but to look for objective patterns in the data.

4.3.2 eClass spectral type

The ANNs are able to predict the eClass spectral type when trained
on galaxies with spectra in the SDSS with a correlation of up to 0.95
and RMS of 0.06 (4 per cent) for the test sample in the range −1
to 0.5. The results for the simulation on the rest of DR1 are shown
in Fig. 2. The shape is not perfect; a plot of net type − target type
versus target type is not precisely symmetrical about zero, but the
sigmoid shape seen when the training sample is not evenly sampled
(Section 2) is not as pronounced. The sigmoid shape has been seen

previously, e.g. Naim et al. (1995), where the network ‘avoided the
ends of the scale’.

4.3.3 Redshift

The generality of the method means that any parameter can be
trained on and predicted, hence a photometric redshift can be ob-
tained (Fig. 3). The correlation is up to 0.93 and the RMS is down to
0.02. The RMS is comparable to other photometric redshifts in the
literature found using neural networks, e.g. Tagliaferri et al. (2002),
Firth, Lahav & Somerville (2003), Collister & Lahav (2004) and to
those derived from SDSS data (Csabai et al. 2003).

5 D I S C U S S I O N

The main result is that the networks can predict morphological clas-
sifications, spectral types and redshifts of galaxies using just photo-
metric parameters. This paper uses moderately sophisticated neural
net techniques on a data set of unprecedented size and quality. There
are many further techniques which could be used, and possibilities to
try out. In particular there are many sophisticated ANN techniques
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Figure 1. Median network type from ten runs versus eyeball morphological
type for the eyeball test sample (683 galaxies), using all parameters and the
8:1 network architecture. The central diagonal line indicates the ideal result,
i.e. assigned types equal to the known type; the diagonal lines above and
below are the overall RMS deviation of the network types from the targets.
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Figure 2. Median network type versus SDSS eClass spectral type for the
simulation sample of 79,769 DR1 galaxies, using all parameters and the 8:1
network architecture. The diagonal lines show types equal and ± the RMS as
in Fig. 1. Note that the RMS (0.060) and correlation (0.945) are not identical
to those in Table 2, as this table shows results from the smaller test samples.
However the difference is small.

which have been little used in astronomy but which may now be
justified by the size of the datasets available. However, with the cur-
rent data it is unlikely that they would make large improvements
as the results are almost certainly limited by the intrinsic spread in
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Figure 3. As Fig. 2, but with redshift as the target type (again 79 769
galaxies). For this simulation sample, the RMS is 0.020 and the correlation
is 0.925.

the training samples, and one can never improve upon the training
sample.

Possibilities include, at a basic level, varying the galaxy and neural
net parameters used here, for example the number of random initial-
izations or various Matlab parameters. More sophisticated neural net
techniques include a better even sampling of the training sample so
that targets are evenly spread over the range – here over-populated
bins are simply cut down to size but under-populated bins are not al-
tered. This may be especially useful for star formation rate and can
be done using K-means clustering or a self-organising map (e.g.
Tagliaferri et al. 2002). Improved regularisation, e.g. hierarchical
Bayesian learning as opposed to weight decay, could be imple-
mented. Multiple outputs for the network could be used to perform
classification as opposed to regression. This is complementary work
rather than an improvement and could be used for any of the types,
in particular the eyeball types, or it could be used to e.g. assign
probabilities to photometric redshift bins, as each output can give
the a posteriori probability that the type is that output given its input
parameters. This would also show objects for which the photomet-
ric redshift is less certain, as there may be no one bin with a high
probability, or it may be split with peaks occurring in two separated
bins. A different learning algorithm, e.g. quasi-Newton or conjugate
gradient, would be needed for a classifier as Levenberg-Marquardt
requires one output. Other learning algorithms could also be used
with a validation sample. The disadvantage of a classifier is that the
number of bins for the output is fixed for the network used. With the
regression used here one can bin the assigned types afterwards if de-
sired. Various methods exist for using committees of networks, apart
from that here of using multiple random starts and using the median
type assigned. Examples include constructive learning, bootstrap
training samples, forward selection, backward elimination, cross
validation and waterfall. There are other methods for global opti-
mization apart from multiple random starts, e.g. simulated anneal-
ing and genetic algorithms. Many of these possibilities (regular-
isation, committees, etc.) are discussed at the comp.ai.neural-nets
newsgroup FAQ at ftp://ftp.sas.com/pub/neural/index.html, whilst a
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waterfall of networks was used in galaxy classification by Adams &
Woolley (1994). A further possibility is the use of unsupervised net-
works, i.e. those in which a predefined similarity criterion is used
and the data is left to organize itself, with no training sample re-
quired. Unsupervised networks objectively find clusters of similar
points in a dataset and can be used as a basis for classification. A
well-known unsupervised network which has been used in classify-
ing galaxies is the Kohonen self-organizing map (Kohonen 2001),
used by Naim, Ratnatunga & Griffiths (1997b) for galaxy morphol-
ogy. Naim et al. (1995) used principal component analysis to reduce
a set of 24 galaxy parameters to 13 and found that the latter was as
good for predicting types. This was tried, and found to be quicker for
networks with more than 100 weights over ten runs but it was found
that the correlations were generally slightly worse, as some infor-
mation was lost (and it cannot be gained by PCA). The time taken
was mainly that for the PCA, then the N2 scaling for Levenberg-
Marquardt with N weights.

The usefulness of the methods here is that they are able to predict
either spectral parameters using just photometry or assign morpho-
logical types at a vastly greater rate than humans but to the same
accuracy. Much can be done with the types once they have been
assigned, and this will form the basis of future work, in the distri-
butions of these types and in their use to augment large scale struc-
ture studies using SDSS data with other physical measures such as
colours.

The SDSS Southern Survey (York et al. 2000) is repeatedly imag-
ing a smaller area of the southern Galactic cap to go fainter in
imaging and spectroscopy than the northern survey. Spectra from
the Southern Survey could be used as training samples for galax-
ies at higher redshifts and below the northern spectroscopic flux
limit.

One could thus look at galaxy evolution according to any assigned
parameter. One could also, for example, project galaxies of unknown
redshift about ones with known redshift, or push fainter down the
luminosity function if assumptions are made about clustering. A
particular statistic of interest is that of marked point processes (e.g.
Beisbart, Kerscher & Mecke 2002), in which the effects of intrinsic
variation and those of environment can be separated.

Also, if one could predict physical parameters directly this would
be extremely useful. One example is the star formation rate. The
sample of 8683 galaxies detailed in Gomez et al. (2003) was in-
vestigated. This is a volume limited sample from 0.05 ! z ! 0.095
with well measured redshifts and Hα star formation rate. At present
the star formation rate is poorly predicted by the ANN, being best
at zero but widely spread above this. Improved results may be ob-
tained for networks trained on just those galaxies which are star
forming.

Further targets which could be predicted include the bulge to
disc ratio or the 2dF η spectral type, and there are further galaxy
parameters which could be used such as Sérsic indices, or spectral
parameters for predicting morphological types.

It is not immediately obvious whether the resulting distributions
say more about the galaxies or the assigned types, but with the
numbers of galaxies available biases in the assigned types from
the network could be studied in detail. Any overall biases of this
sort are already less than the intrinsic spread in assigned type and
one could compare results using a sample where the target types
are available to see if different results are obtained. If not, then
as long as the sample used has photometry of which the train-
ing sample was representative, the network types can be used with
confidence.

6 C O N C L U S I O N S

The neural nets are able to predict the eyeball morphological type,
the spectral type eClass, and the redshift using parameters avail-
able for all galaxy images in the Sloan Digital Sky Survey Data
Release One. The correlations are 0.93, 0.95, and 0.93 respectively.
The mean RMS errors between the network output and the known
type for a set of unseen galaxies of which the training set formed a
representative part are 0.55, 0.06 and 0.02 (approximately 9, 4, and
5 per cent of the ranges of the targets).
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