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ABSTRACT
We examine a general framework for visualizing data sets of high (greater than 2) dimensionality and

demonstrate the framework by taking the morphology of galaxies at moderate redshifts as an example.
The distributions of various populations of such galaxies are examined in a space spanned by four
purely morphological parameters. Galaxy images are taken from the Hubble Space Telescope Wide Field
Planetary Camera 2 in the I band (using the F814W Ðlter). Since we have little prior knowledge on how
galaxies are distributed in morphology space, we use an unsupervised learning method (a variant of
KohonenÏs self-organizing maps, or SOMs). This method allows the data to organize themselves onto a
two-dimensional space while conserving most of the topology of the original space. It thus enables us to
visualize the distribution of galaxies and study it more easily. The process is fully automated, does not
rely on any kind of ““ eyeball ÏÏ classiÐcation and is readily applicable to large numbers of images. We
apply it to a sample of 2934 galaxies and Ðnd that the morphology correlates well with the apparent
magnitude distribution and, to a lesser extent, with color and bulge dominance. The resulting map traces
a morphological sequence similar to the Hubble sequence, albeit two-dimensional. We use the SOM as a
diagnostic tool and rediscover a population of bulge-dominated galaxies with morphologies character-
istic of peculiar galaxies. This result is achieved without recourse to classiÐcation by eye. We also
examine the e†ect of noise on the resulting SOM, and conclude that our results are reliable down to an
I magnitude of 24. We propose using this method as a framework into which more physical data can be
incorporated as they become available. We hope that this method will lead to a deeper understanding of
galaxy evolution.
Subject headings : galaxies : evolution È galaxies : fundamental parameters È galaxies : structure

1. INTRODUCTION

Morphological classiÐcation of galaxies was originally
envisaged as a tool for studying the evolution of galaxies
(e.g., Much as in other Ðelds of science, as theHubble 1936).
amount of data grew the classiÐcations were revised and
became more and more reÐned Vaucou-(Sandage 1961 ; de
leurs van den Bergh At some point the1959 ; 1960, 1976).
question arose as to how well these reÐnements correlate
with physical quantities and processes within galaxies. In an
excellent review, & Haynes showed thatRoberts (1994)
morphological types in the local universe do correlate with
color, H I mass, and other quantities in the mean, but that
there is a large scatter about the mean. This implies that
morphological classiÐcation has become overly reÐned, at
least as far as its relation to physical properties is con-
cerned.

A major limitation of most classiÐcation schemes for gal-
axies is that the schemes were devised solely using samples
of nearby galaxies because of the lack of imaging capabil-
ities at higher redshifts. This situation has changed with the
advent of the Hubble Space Telescope (HST ) and very large
ground-based telescopes. The morphology of large numbers
of galaxies at moderate redshifts (z\ 1) is now available,
and preliminary results et al. et(GrifÐths 1994 ; Glazebrook
al. Windhorst, & Griffiths et1995 ; Driver, 1995 ; Abraham
al. indicate that many galaxies at moderate redshifts1996)
do not Ðt comfortably on the Hubble sequence. It is an
obvious challenge to try to incorporate galaxies at di†erent
redshifts into one coherent scheme.

1 Current address : Department of Physics, Wean Hall, Carnegie
Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213.

A great deal of work has been done recently on morpho-
logical classiÐcation of faint galaxy images. Most of it,
however, relies on ““ eyeball ÏÏ classiÐcations : e.g., Hu,Cowie,
& Songaila presented deep I-band Wide Field Plan-(1995)
etary Camera 2 (WFPC2) images of a K-selected sample.
They gave a qualitative eyeball account of the change they
saw in the morphology of galaxies around K \ 19.5 mag.

et al. divided galaxies in a deep WFPC2 ÐeldDriver (1995)
into three eyeball classes and analyzed the number counts
as a function of type. den Bergh et al. produced avan (1996)
morphological catalog of galaxies in the Hubble Deep Field
(HDF) that was again based on eyeball classiÐcations. In
addition, they supplied two quantitative parameters for
those galaxies (light concentration and asymmetry) that
allow for a more objective analysis. et al.Odewahn (1996)
used both eyeball classiÐcations and trained artiÐcial neural
networks to obtain classiÐcations for galaxies in deep HST
Ðelds. Their network utilized parameters derived from
surface brightness proÐles in U, B, V , and I Ðlters. The
move from pure eyeball classiÐcation to automated classi-
Ðcation using objective parameters has been inevitable
because of the large quantities of images that have become
available over the past few years. The parameters used by

den Bergh et al. proved to be a useful Ðrst step invan (1996)
this direction, although they gave a very crude separation of
eyeball types. Using light-proÐle parameters, etOdewahn
al. discussed the possible makeup of the population(1996)
of blue galaxies. Both these papers tied their quantitative
parameters to classiÐcations on the existing Hubble
sequence, which is apparently insufficient for the full range
of morphologies detected with HST .

Since the Hubble sequence appears too reÐned on the one
hand, and not general enough on the other, we suggest a
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more general approach. In recognition of the fact that mor-
phology is a continuous quantity, we abandon any attempt
to tag each galaxy with a speciÐc type. Instead, we use a
space spanned by four morphological parameters, pre-
viously introduced elsewhere Ratnatunga, & Grif-(Naim,
Ðths and examine the distribution of various1997),
populations of galaxies in it. We start with a large, com-
plete, magnitude-limited sample of HST WFPC2 images
described in We have little prior knowledge of the dis-° 2.
tributions of galaxies in this space. For this reason, we use a
variant of an unsupervised learning technique called ““ self-
organizing maps ÏÏ (SOMs). It allows data taken from a
space of high dimensionality to organize themselves into a
two-dimensional ““ histogram,ÏÏ while retaining most of the
original topology. The resulting map can then be plotted
and analyzed. SOMs, explained in detail in therefore° 3,
combine nonlinear clustering with a dimension-reduction
technique. SOMs have been little used in astronomy to date
(the one example we are aware of is & HakalaMa� ho� nen

and, as we show below, prove a valuable tool for1995)
unsupervised data analysis. However, one important point
has to be stressed from the outset : we are using a nonpara-
metric method here, in the sense that the results are not
described in terms of functional dependencies between the
parameters we use. Consequently, SOMs are primarily a
diagnostic tool that should be used only as a Ðrst step
toward forming a model that explains the observations. The
methodÏs most important feature is the ability to identify
special populations that merit closer examination. We Ðrst
demonstrate the application of SOMs to a synthetic data
set and then apply them to the sample of HST galaxies(° 4)

A discussion follows in(° 5). ° 6.

2. SAMPLE SELECTION AND MORPHOLOGICAL

PARAMETERS

2.1. Sample Selection
It is easiest to select a suitably large sample from data

that were collected uniformly. The 27 contiguous Ðelds of
the Groth-Westphal strip et al. make an excel-(Groth 1994)
lent such collection. I-band (F814W) images were preferred
over V -band (F606W) images (which are also available for
the same Ðelds) for two reasons : Ðrst, exposures in I were
about 50% longer and typically resulted in images with
higher signal-to-noise ratios ; second, at the expected red-
shifts of these galaxies the I Ðlter corresponds roughly to the
rest-frame B band, in which most existing morphological
schemes were deÐned, while the V Ðlter corresponds to a
much bluer rest-frame band in which images appear much
more broken up.

Our indications from previous work et al.(Naim 1997)
are that down to an isophotal magnitude of I\ 24.0 mag a
distinction between morphologically ““ normal ÏÏ and
““ peculiar ÏÏ galaxies is still possible, although it su†ers
increasingly from e†ects of noise toward the faint end. We
decided to attempt the same limit here and to then examine
a subset of the sample with higher signal-to-noise ratio to
see what e†ect the noise had on our results. There were 3391
images brighter than I\ 24 mag in the Groth-Westphal
strip. The Medium Deep Survey (MDS) pipeline, using a
maximum likelihood method (K. U. Ratnatunga, R. E. Grif-
Ðths, & E. J. Ostrander 1997, in preparation), Ðts simple
photometric models (r1@4 law, exponential disk, and com-
binations of the two) to galaxy images. It was found that the

Ðtted half-light radius parameter is very useful in separating
stars and compact objects from galaxies, and the limiting
value was empirically set at (1 image pixel). It is clear0A.1
that some distant galaxies, as well as closer compact objects,
have half-light radii smaller than this limit. Therefore, not
all of the 421 images that were removed from the sample
because of failing this test are indeed stars. However, images
whose half-light radius is smaller than are typically no0A.1
more than 3È4 pixels across, thus containing almost no
morphological information. Consequently, we use this
cuto† not only as a safeguard against contamination by
stars but also as a practical lower limit for the derivation of
our parameters. As well as the 421 images mentioned above,
fewer than 20 other images were rejected by the program
that calculates the morphological parameters because of
low quality (e.g., too high a fraction of missing pixels).
During classiÐcations by eye (see below), several more
images (less than 20) were rejected because of other prob-
lems (e.g., a nearby star overlapped the galaxy). The Ðnal
sample contains 2934 entries.

Isophotal magnitudes are tightly correlated with the inte-
grated signal-to-noise index, l, which is calculated by
summing the individual signal-to-noise ratios that are
greater than 1 over image pixels (see et al.Ratnatunga 1997
for details). Note that since we are using the integrated
signal-to-noise index, the values we are dealing with are
typically of order 100. At the limiting magnitude of I\ 24.0
mag all but six galaxies in the sample have l[ 100, which
is, incidentally, the limit below which no disk-plus-bulge
photometric model Ðt was attempted by the maximum
likelihood software (although pure bulge and pure disk
models were attempted down to much lower values).

2.2. Morphological Parameters
A full description of the four parameters we use is given in

et al. We therefore give only a brief descriptionNaim (1997).
of the parameters here. In designing these parameters we
attempted to give as full a description as possible of the
features that stand out in galaxy images, while remaining
neutral with respect to quantities such as the underlying
photometric model or the color of the image. Our param-
eters are the following :

1. Blobbiness.ÈThe degree to which bright pixels stand
out, accentuating bright localized structure. This parameter
may be correlated with regions of intense star formation.
BrieÑy, this parameter is calculated for each bright image
pixel as the ratio of brighter pixels to the total number of
pixels in a semi-circular environment around the central
bright pixel.

2. Isophotal center displacement.ÈThe displacement of
geometric centers of various isophotes from each other, as a
measure of overall asymmetry. This parameter, by detecting
tidal tails, may be related to merging history.

3. Isophotal Ðlling factor.ÈThe fraction of pixels belong-
ing to a certain isophote out of the number of pixels in the
ellipse enclosing that isophote. This is a measure of overall
structure : in featureless images this fraction is expected to
be higher than in images exhibiting a great deal of structure,
because in the latter bright pixels will be found at higher
radii, making the enveloping ellipse much bigger. This
expectation is veriÐed for an eyeballed subset of our sample

et al. see also below), in which late spiral and(Naim 1997,
peculiar galaxies average a value of less than 0.2 for this
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parameter, early spirals average close to 0.3, and elliptical/
lenticular galaxies average over 0.35.

4. Skeleton ratio of detected structures, indicating how
elongated the structures are. BrieÑy, for detected structures
in the galaxy image, this parameter is the ratio of pixels
making up the ““ backbone ÏÏ of the structures to the total
number of pixels in the structures.

The Ðrst three parameters are evaluated from the raw
I-band image, while the fourth is derived from the residual
image, which is the image left over after subtraction of the
best-Ðt photometric model given by the maximum likeli-
hood software.

3. SELF-ORGANIZING MAPS

The motivation behind SOMs derives from our inability
to plot data in more than three dimensions. Kohonen (1989)
suggested a nonlinear mapping from a given M-
dimensional space (M [ 2) onto a two-dimensional map in
a way that maintains as much as possible of the topology of
the higher dimensional space. SOMs are therefore one
implementation of unsupervised learning, a generic name
referring to methods for describing data without any prior
knowledge of how they cluster. Self-organization takes
place in an iterative manner with little user intervention.
The role played by the user is reduced to deÐning the
organizing criterion (i.e., the criterion determining which
vector is mapped to which node in the SOM). The resulting
map can be regarded as a two-dimensional histogram,
although its axes do not carry the usual parametric
meaning. The numbers on the x- and y-axes represent posi-
tions in the map, not values of the M parameters making up
the space of the data.

Let a given data set contain N vectors of dimension M,
each describing a single object (e.g., a galaxy). In the case of
our galaxy sample, N \ 2934 and M \ 4. The ““ data space ÏÏ
is therefore M-dimensional. DeÐne the map as a two-
dimensional array of discrete nodes. Throughout this paper
we use square maps of size 16 ] 16 nodes. The nodes
occupy positions in what we refer to as the (two-dimension-
al) ““ map space.ÏÏ The link between the two spaces is realized
by assigning each node of the map an M-dimensional
““ characteristic ÏÏ vector from the data space. Note that this
assignment is done in an automated way, with no input
from the user, i.e., it is truly an unsupervised operation. The
key measure in the process of self-organization is distance.
Distances are calculated independently for each space. For
greater clarity we will refer to the distances in the following
as data distance and map distance, respectively. The userÏs
role is conÐned to choosing a certain distance measure (e.g.,
the L 2 norm, also known as the Euclidean distance), which
serves as the organizing criterion. Each object in the data
set is mapped to the node whose characteristic vector is
closest to it in the sense of that distance measure (the
““ winning ÏÏ node). In each iteration of the training process
the entire data set is mapped to the SOM, and then the
characteristic vectors of the nodes are updated according to
the objects mapped onto them. Topology is preserved by
allowing nodes in the vicinity of the winning node to be
updated as well. Over many iterations this will cause nodes
that lie close to each other to develop similar characteristic
vectors, and therefore, eventually, whole regions in the
SOM will correspond to speciÐc populations in the data set.
While nearby nodes will represent Ðner details within each

population, nodes far away from each other will represent
signiÐcantly di†erent populations. The iterations are
stopped once some convergence criterion (see below) is met.

Normally one initializes the map nodes to have random
characteristic vectors at Ðrst. However, this procedure
could assign very di†erent vectors to adjacent nodes, while
similar vectors could be found far from each other. This
could result in two di†erent populations of galaxies over-
lapping in the resulting SOM or in a single population
being artiÐcially split between two or more regions in the
map. It has been suggested that the Ðrst problem could be
overcome by running the SOM several times, each time
starting with a di†erent set of random characteristic vectors,
and choosing only the ““ best ÏÏ run, e.g., in the sense of mini-
mizing the s2 di†erence between all objects and the charac-
teristic vectors of the nodes to which they were mapped.
However, since this learning process is unsupervised, there
may be many very di†erent minima of such a measure, each
corresponding to a di†erent topology, with little to choose
between them. In addition, this solution does not answer
the second problem we raise. Furthermore, randomizing the
initial characteristic vectors makes the entire process unre-
peatable.

In order to avoid these difficulties, we Ðrst run a simple
clustering algorithm (SCA) on the data and use the emerg-
ing crude clusters to decide how to initialize the map
vectors. Our version of the SOM algorithm consists of two
stages : In the startup phase we employ the SCA to get a
rough idea of how the objects cluster. The SCA initially
deÐnes each object in the data set as an independent
““ group ÏÏ in data space. The L 2 norm (Euclidean distance) is
adopted as the data-distance measure, and a search radius
is deÐned that increases linearly with the number of iter-
ations. In each iteration, groups whose centers of mass lie
within a search radius of each other are merged, and so the
number of groups decreases monotonically with time. The
stopping criterion for the SCA is met once the three largest
groups contain, between them, more than half these vectors.
The critical number was set to three because three vectors
deÐne a plane and can therefore be mapped in a topologi-
cally faithful manner onto our two-dimensional map. Note,
however, that the three largest groups need not represent
the most diverse combinations of the morphological param-
eters. For this reason we examine all groups containing
more than 1% of the data when the SCA is stopped
(typically of order 10 groups). Out of all the vectors rep-
resenting the ““ centers of mass ÏÏ of these groups, we select
those that contain a maximum or a minimum value of at
least one of the parameters. Since we are using four param-
eters, the number of such selected vectors is in the(N

v
)

range two to eight, but is expected to be closer to eight in
most cases. The results of running the SCA (and any other
crude clustering algorithm) over a given data set are
expected to be quite independent of the exact details of the
algorithm. Di†erent distance measures may result in some-
what di†erent results, but since we are using the SCA only
as the Ðrst stage in our analysis, such di†erences are not
important for the Ðnal outcome.

In the second stage we iterate through all possibilities of
selecting three so-called ““ anchors,ÏÏ or ““ key vectors,ÏÏ out of
these vectors to initialize and train the SOM. The selec-N

vted vectors are assigned to three nodes in the map in a way
that conserves their relative data distances. All other nodes
within the triangle enclosed by these anchors are then assign-
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ed characteristic vectors that are weighted averages of these
three key vectors, the weight being the inverse of the map
distance from each anchor node :
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where, for k Ω M1, 2, 3N, is one of the three key character-C
kistic vectors and is the map distance between node (i, j)d

k
(i,j)

and the node in which the anchor vector resides. Only the
region inside the triangle is used. This procedure allows the
map nodes to span much of the variance in the data from
the outset and guarantees the repeatability of the results.
We select only three anchors because, again, three points
deÐne a plane and can therefore be mapped in a topologi-
cally faithful manner onto the two-dimensional map.
Choosing all possible combinations of three vectors for the
role of anchors allows us to search for the combination that
best represents the data in an unsupervised way. Repeata-
bility is guaranteed because the entire process is determin-
istic and does not require input from the user.

Next comes self-organization. We again adopt the L 2

norm as our data-distance measure. For each data vector V
(describing one galaxy), the winning node is node (i, j) for
which the data distance between its characteristic vector
C (i,j) and the data vector V is minimal. This distance is
given by
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where the argument l denotes that the lth component of the
vector is being taken. Once the entire data set has been
mapped to the SOM, the characteristic vectors of each node
is updated. There are two possible sources of alteration at a
given node, namely, the objects that were mapped directly
onto that node and the objects mapped to nearby nodes,
which a†ect that node by virtue of the attempt to conserve
topology. Let SV (i,j)T be the average of all the vectors
mapped onto node (i, j). Then the Ðrst contribution is of the
form
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1
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and the contributions of the second kind will come from
nodes around node (i, j) and will each have the form(i
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The ““ environment kernel ÏÏ chosen here is a Gaussian whose
width, p, is a decreasing function of the number of itera-
tions n

i
:

p(n
i
) \ 1/n

i
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The reason for the dependence of p on the number of iter-
ations is that as the structure of the map becomes more
organized it is desirable to limit the e†ect of the environ-
ment. If the other nodes were always allowed to contribute
at the same level, the process of self-organization might
never converge and Ðner details in the map could be washed
away. For practical purposes of reducing the number of
calculations, the environment of node (i, j) from which the
nodes are taken is limited to a square of side 7 (i.e.,(i

1
, j

1
)

vertical/horizontal map-distance of no more than 3) cen-

tered on node (i, j). There is no need to go any farther,
because even when p is maximal at 1 (during the Ðrst
iteration), the coefficient drops to about 0.01 at a mapd

mdistance of 3, and therefore nodes further away from (i, j)
are unlikely to contribute to (i, j) signiÐcantly. The updated
value of the characteristic vector of node (i, j) is therefore
given by

C
new
(i,j) \ (1 [ g)C

old
(i,j)

]g *C
1
(i,j)] ;

(i1,j1)E(i,j)
*C

2
(i,j) @ (i1,j1)

1 ] ;
(i1,j1)E(i,j)

exp [[(d
m
(i1,j1))2/2p2]

, (6)

where the denominator in the second term is the normal-
ization factor for all the weighted contributions and g is a
parameter that describes the ““ learning rate ÏÏ of the SOM.
We set g to 0.02. It is not advisable to make g large because
then the changes in the characteristic vectors can become
erratic.

At the end of each iteration, we monitor the rms di†er-
ence between the current and previous characteristic vector
of each node. We stop training the map when the largest of
these di†erences has dropped below 0.1% of its maximum
possible value. Typically this criterion leads to convergence
within several thousand iterations.

Self-organization is repeated for all selections of three
anchors. For each such selection all the vectors in the data
set are mapped onto the trained SOM, and the s2 di†erence
between the data vectors and the characteristic vectors of
the nodes to which they were mapped is monitored to Ðnd
the best triplet. The SOM resulting from the best triplet is
then chosen as the best overall SOM.

4. AN EXAMPLE : NONLINEAR MAPPING IN FOUR

DIMENSIONS

We test the ability of the SOM to handle nonlinear
mapping in several dimensions by Ðrst deÐning a curve in a
space of the same dimensionality as our galaxy data set. In
order to demonstrate the ability of the SOM to retain topo-
logical information, the curve is speciÐed in parametric
form, which conveys a clear notion of the order of points
along the curve. The curve is given by

F(h) \ (sin h, cos h, sin h cos h, sin2 h) , (7)

where h is the free parameter. We choose Ðve points along
the curve, corresponding to h-values of n/12, n/6, n/4, n/3,
and 5n/12. Around each of these points we randomly scatter
400 other points. There is little overlap between these Ðve
clouds of points, and the relations between any two com-
ponents of F are nonlinear. The SOM software is trained on
a data set containing all 2000 points ; the results are shown
in The top left panel shows the mapping of the fullFigure 1.
data set ; there appear to be three to Ðve distinct concentra-
tions. The other Ðve panels each depict one group of points
(denoted by the corresponding value of h). It is plain to see
that the SOM maintains the order of the groups along the
curve, although some mixing between adjacent groups takes
place. The SOM is therefore capable of mapping nonlinear
data sets while conserving much of the topology. Note also
that although the initial organization of the SOM has the
form of a triangle, in this case it forms an obtuse triangle,
closely resembling the true shape of the distribution of
points in the original spaceÈthat of a one-dimensional
curve in a four-dimensional space. One possible drawback
of this representation is that groups tend to be more con-



FIG. 1.ÈMapping of the synthetic data set onto its SOM. Numbers along the axes represent position in the map, not values of any of the four dimensions
of the data.
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centrated close to the vertices of the triangular region,
implying a steeper gradient in the parameters associated
with vectors near the vertices. The mapping is therefore not
completely topologically faithful. The numbers along the
axes represent positions on the map, not values of h or any
other parameters.

5. GALAXY DISTRIBUTIONS IN MORPHOLOGY SPACE

As a preliminary step, principal components analysis
(PCA) of the data set was performed in order to represent as
much of the variance in the data as possible by replacing the
original axes by linear combinations of the original axes.
However, the Ðrst principal component (PC) only spans
48% of the variance, and the Ðrst two PCs span only 71% of
it. PCA is therefore inadequate for mapping these data in
two dimensions, and a nonlinear method is indeed required.

5.1. Mapping Galaxy Populations
We next proceeded to analyze the sample of 2934 galaxies

with the SOM software. The best resulting map (in terms of
the s2 between the data and the nodes to which they were
mapped) is shown in Shading progresses fromFigure 2.
light for low population levels to dark for highly populated
regions. Although only the vertices of the triangular map
were initialized with vectors corresponding to actual clus-
ters of data points, the Ðnal map is well populated in all
nodes. This shows that the SOM training process reÐnes the
crude results of the clustering algorithm and brings out Ðner
structure. However, mapping the full data set like this is not
very informative without examining the characteristic

vectors associated with each node. In we show fourFigure 3
panels, each depicting the distribution of values of a single
morphological parameter in the SOM. There are apparent
trends in the parameter distributions : blobbiness is lowest
around the left vertex and grows as one moves right, espe-
cially toward the upper right. Center displacement is
highest in the top right vertex and decreases toward both of
the other vertices. The Ðlling factor generally grows toward
the left vertex and somewhat toward the bottom right
vertex but then decreases again. The skeleton ratio has the
clearest trend, growing strongly as one moves away from
the bottom right vertex.

With the help of one can now identify the mor-Figure 3
phologies associated with the map of The area ofFigure 2.
the left vertex is populated by smooth, symmetric galaxies
with a high Ðlling factor. This description corresponds to
the appearance of elliptical galaxies. As one moves right
toward the center of the map, two trends become apparent :
toward the top right vertex galaxies are much more blobby
and increase in asymmetry (higher center displacement).
The Ðlling factor drops but the skeleton ratio is high, so this
region should correspond to images with a great deal of
elongated structure, such as spiral galaxies or galaxies with
tidal tails. Toward the bottom right the skeleton ratio drops
sharply, while the values of the Ðlling factor and the center
displacement do not have clear trends. These results imply
galaxies of generally ““ knotty ÏÏ appearance, some of which
are very asymmetric with a lot of apparent structure, while
others are less asymmetric and exhibit less structure. These
morphologies largely correspond to peculiar galaxies.

FIG. 2.ÈMapping of the full sample of 2934 galaxies onto its trained SOM. Darker color indicates a more populated node. Numbers along the axes
denote position in the map, not values of morphological parameters.
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FIG. 3.ÈDistributions of parameter values in the trained SOM. Top left, blobbiness ; bottom left, isophotal Ðlling factor ; top right, isophotal center
displacement ; bottom right, skeleton ratio. The darker the shade, the higher the value of the parameter.

In order to verify the above interpretations and to study
how di†erent properties of galaxies correspond to morphol-
ogy, we deÐned subsets of our sample according to several
criteria and mapped these subsets onto the trained SOM. In

each panel shows the mapping of one subset, nor-Figure 4
malized to the total size of that subset. This means that the
intensities are relative within each panel and should not be
directly compared between panels. The panels in the

bottom row depict populations selected by eyeball classi-
Ðcation. Such classiÐcations were made by one of us (A. N. ;
see et al. for roughly one-third of the entire dataNaim 1997)
set as a preparation to using supervised learning for these
galaxies. Elliptical and S0 galaxies are depicted in the left
panel, spirals in the middle panel, and peculiars in the right
panel. The locations of these subsets on the map match
what we expect from analysis of the characteristic vectors



FIG. 4.ÈMapping of subsets of the sample onto the trained SOM. Top row, subsets selected by apparent I magnitude ; second row, those selected by color ;
third row, by bulge dominance ; bottom row, by eyeball classiÐcation. Refer to for the changes in each of the four parameters as a function of position inFig. 3
the map.
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above : elliptical galaxies are mostly concentrated around
the left vertex, spirals are well spread out but appear more
concentrated toward the center of the map, and peculiars
are mostly found in the right-hand side of the map. This
morphological sequence generalizes the one-dimensional
Hubble sequence into a two-dimensional map. Roughly
speaking, the horizontal axis depicts mostly the change in
overall smoothness and symmetry of images, while the ver-
tical axis describes the nature and frequency of structure in
the images.

The top three panels of depict the distributionsFigure 4
of galaxies in three subsets selected by apparent isophotal
magnitude. The left panel depicts galaxies brighter than
I\ 21 mag, the middle panel depicts galaxies in the range
22 mag \ I\ 23 mag, and the right panel contains galaxies
fainter than I\ 23.5 mag. The gaps in the ranges of appar-
ent magnitude shown in these panels are intended to reduce
the overlap and accentuate trends, since the distributions
form a continuum. The same applies to the panels describ-
ing color and bulge dominance below. However, these mag-
nitude ranges were chosen a priori. The magnitude limits
represent a compromise between representing the full range
of magnitudes and ensuring that no single bin is under-
populated. There are 278 galaxies brighter than I\ 21 mag,
722 in the range 22 mag \ I\ 23 mag, and 946 fainter than
I\ 23.5 mag. The shift in concentration of galaxies with
apparent magnitude is evident. Since the redshift distribu-
tion of galaxies is a function of apparent magnitude, these
three panels may describe, in a statistical way, the evolution
of galaxy morphologies with redshift. Verifying this would
require many spectroscopic redshifts, though, and work is
in progress along these lines (A. Naim et al. 1997, in
preparation). The trend we see here is clear : at the bright
end the smooth, symmetric galaxies are much more promi-
nent than at the faint end.

The panels in the second row depict subsets selected
according to the only available color, V [I. The left panel
contains red galaxies with (isophotal) V [I[ 1.8. The
middle panel contains intermediate-color galaxies
(1.0\ V [I\ 1.4), and the right panel depicts blue galaxies
(V [I\ 0.6). Color appears to follow morphology, albeit
with signiÐcant scatter. There is a trend that blue galaxies
occupy the upper half of the right side of the map. The
panels in the third row describe subsets selected by bulge-
to-total ratio, deÐned as the light contribution of the bulge
component divided by the combined contributions of the
bulge and disk components. This ratio is calculated from
the maximum likelihood Ðts of bulge and/or disk models to
the galaxy image (Ratnatunga et al. 1997, in preparation,
contains many details about the subtleties of these Ðts). The
left panel describes bulge-dominated galaxies (B/T[ 0.8),
the middle panel describes intermediate cases (0.3\ B/
T\ 0.7) and the right panel depicts disk-dominated gal-
axies (B/T\ 0.2). Interestingly, the bulge-dominated
galaxies appear less concentrated in the right-hand side
than the intermediate cases. We verify this impression in

where we show the mean positions of Ðve subsets,Figure 5,
selected by B/T ratios, on the trained SOM. The scatter
around these means is considerable, but there is neverthe-
less a general trend of leftward movement with increasing
B/T ratio, which is reversed by the last subset. This is an
indication of a change in morphology among bulge-
dominated galaxies. Closer examination of con-Figure 4
Ðrms that galaxies with B/T[ 0.8 cluster in two regions,

FIG. 5.ÈMean positions of subsets selected by B/T ratio in the trained
SOM. The scale is the same as in The trend set by the subsets up toFig. 2.
B/T of 0.8 is reversed by the 0.8\ B/T π 1 subset, indicating the existence
of bulge-dominated galaxies with blobby, asymmetric morphologies. See

for the changes in each of the four parameters as a function ofFig. 3
position in the map.

one corresponding to smooth, symmetric morphologies,
and one corresponding to blobby and asymmetric mor-
phologies. This latter population has already been noted

et al. It may correspond to the ““ blue nucleated(Naim 1997).
galaxies ÏÏ found in the Canada-France Redshift Survey

et al. although verifying this point would(Schade 1995),
require further work.

5.2. T he E†ect of Noise
One possible source of the apparent correlation between

blobbiness and asymmetry of images on one hand, and
apparent magnitude on the other, is that, as one looks at
fainter and fainter images, noise sets in and changes the
appearance of the images. To investigate this possibility, we
show, in how galaxies of high integrated signal-to-Figure 6,
noise index are mapped on the same trained SOM used
previously. While the full sample contains galaxies that vir-
tually all have l[ 100, the subset shown in wasFigure 6
selected to have l[ 500. The fraction of bright galaxies in
this subset is naturally higher than in the full sample, so it is
difficult to completely decouple the e†ect of reducing the
noise from that of selecting brighter galaxies. Nevertheless,
while the concentration of blobby, asymmetric galaxies
appears less prominent in it still denotes a signiÐ-Figure 6,
cant population. Had that population appeared only
because of noise, it should have disappeared in this Ðgure
completely. We thus conclude that blobby, asymmetric gal-
axies indeed exist and that their numbers do increase as one
looks at fainter and fainter magnitudes.

We turn back to now, in order to see how noiseFigure 3
might have a†ected the evaluation of our parameters. The
panels describing the distributions of blobbiness, isophotal
Ðlling factor, and isophotal center displacement show the
trends one would expect, although Ðner details are also
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FIG. 6.ÈMapping of images with high signal-to-noise ratio (l[ 500) onto the trained SOM. See also Fig. 2.

evident, allowing one or more parameters to vary slightly
from one node to the next. The one problematic parameter
is the skeleton ratio : while the map shows the expected
small values in the region of the peculiar galaxies (because
of nearly round star-forming regions) and higher values in
the region occupied by the spirals (because of elongated
arms), the values are disturbingly high for ellipticals, for
which one would expect no features at all (and consequently
a value of zero for the skeleton ratio). We note that unlike
the other three parameters, which were evaluated from the
raw images of the galaxies, the skeleton ratio is measured
from the residual images, left after the best-Ðt photometric
model had been subtracted. The skeleton ratio is measured
for features that stand out relative to the residual image,
and when the residual contains no real features (e.g., in an
elliptical galaxy), noise may result in the ““ detection ÏÏ of
spurious structure. We suspect that this is the source of the
relatively high skeleton ratio that characterizes nodes in the
region occupied by ellipticals, but further work is needed in
order to verify that these features are not real. Luckily, this
e†ect appears to inÑuence most of the bulge-dominated,
featureless galaxies in the same way, thus not disturbing
their clustering properties. On the other hand, the skeleton
ratio is very useful in distinguishing spirals from peculiars,
and should not be discarded.

6. DISCUSSION

It has always been important to examine individual gal-
axies in detail and study the processes dictating their
appearance. However, for the fuller picture of galaxy evolu-

tion one must employ statistical analysis. One must Ðnd
quantitative parameters that capture the diversity of galaxy
morphologies, while not becoming too specialized or
numerous. Here we continue to use the set of four param-
eters introduced in a previous paper et al.(Naim 1997).
However, unlike in that work, our aim here is to analyze the
data in an unsupervised way in order to learn new things.
One serious difficulty that arises with even a modest
number of parameters is that of visualizing data in more
than three dimensions. We therefore make use of our
variant of the Kohonen SOM, which allows one to cast a
distribution in several dimensions into a two-dimensional
map. Our algorithm is not necessarily the best for this
purpose, and other algorithms exist. Using SOMs allows us
to visualize the distributions of galaxies and point out inter-
esting populations for further study. In this respect the
SOM is a diagnostic tool, facilitating the Ðrst step that
needs to be taken with any kind of data : looking at it.

We examine the SOM on a synthetic data set and
conÐrm its ability to perform nonlinear mapping while
maintaining the correct topological order of the higher
dimension space. We then apply it to our HST galaxy
sample. In the resulting SOM, galaxies cluster in several
groups in morphology space. We conÐrm the picture that
emerged from previous work et al.(Glazebrook 1995 ;

et al. et al. according to whichDriver 1995 ; Abraham 1996),
the galaxy population becomes more and more dominated
by blobby, asymmetric morphologies as one examines
fainter and fainter galaxies. Further, we show that the
colors of galaxies at moderate redshifts become signiÐcantly
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bluer. This could be partly due to the shift in rest-frame
band as one goes to higher redshifts, but actual measured
redshifts are needed in order to evaluate how much this
e†ect contributes to the trend we see in the SOM. Bulge
dominance also appears related to morphology, the blobby
galaxies being more disk dominated. However, a popu-
lation of bulge-dominated galaxies with high blobbiness
and asymmetry that was observed by supervised classi-
Ðcation et al. is rediscovered here in an inde-(Naim 1997)
pendent way. Note that this result is achieved without any
recourse to eyeball classiÐcation, i.e., the existence of the
population can be inferred without suspecting it from the
outset. Bulge-dominated galaxies with blue colors were also
found by et al. and some of them exhibit pecu-Koo (1996),
liar morphologies (e.g., ““ knots ÏÏ). That study was limited to
a small number of galaxies, and therefore no statistical con-
clusions can be drawn regarding the bulge-dominated pecu-
liar galaxies. et al. reported the discoveryPascarelle (1996)
of compact (half-light radius blue objects that areD0A.1)
apparently subgalactic clumps. It is possible that these
clumps, once assembled closer together, give rise to the
bulge-dominated peculiars that we identify in our sample,
although this is by no means certain. Alternatively, bulge-
dominated peculiars may be older galaxies caught in the
process of merging with dwarf companions. We have no
way of telling with current data.

Noise becomes progressively more important as one con-
siders fainter images, but our analysis shows that it cannot
fully account for the trends we detect. The skeleton-ratio
parameter is most a†ected by noise in smooth, symmetric
images, but does not signiÐcantly bias the clustering proper-
ties of that population as a whole and is still very useful in
separating two other populations (corresponding to the
eyeball classes of spirals and peculiars). An improved
version of this parameter may give better results, though.

K-corrections are also of great importance at redshifts of
order unity, as discussed, e.g., by et al.Odewahn (1996).
However, we have not studied their e†ect on our param-
eters in this paper, because we only have two Ðlters for the
data presented here (I and V ). A study into the e†ect of the
Ðlters used on the measured morphological parameters is
currently under way, using MDS Ðelds that were taken in
three Ðlters (BV I). Any e†ect the K-corrections may have
on our parameters will, of course, inÑuence the resulting
SOM.

To summarize, since morphological classiÐcation has
become too reÐned, we adopt an approach that utilizes
morphology without any classiÐcation. The SOM succeeds
in mapping di†erent morphologies to di†erent regions of
the map, and we are encouraged by the apparent corre-
lation of morphology with other quantities, such as color
and bulge dominance. These correlations allow us to use
morphology as a selection criterion for further studies of
speciÐc populations (e.g., mergers). However, understanding
galactic evolution requires the addition of more physical
information, such as rotation curves and full spectral
analysis. In this paper we propose a framework into which
such information could be incorporated once it becomes
available. Our hope is that this modest Ðrst step will even-
tually lead to the emergence of an overall scheme incorpor-
ating most aspects of galaxy formation and evolution.

We would like to thank Ofer Lahav, Jens Hjorth, Bob
Abraham, and Richard Ellis for raising important points
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report. This research was supported by funding from the
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following.
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