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Abstract

We use machine learning to identify in color images of high-redshift galaxies an astrophysical phenomenon
predicted by cosmological simulations. This phenomenon, called the blue nugget (BN) phase, is the compact star-
forming phase in the central regions of many growing galaxies that follows an earlier phase of gas compaction and
is followed by a central quenching phase. We train a convolutional neural network (CNN) with mock “observed”
images of simulated galaxies at three phases of evolution— pre-BN, BN, and post-BN—and demonstrate that the
CNN successfully retrieves the three phases in other simulated galaxies. We show that BNs are identified by the
CNN within a time window of ∼0.15 Hubble times. When the trained CNN is applied to observed galaxies from
the CANDELS survey at z=1–3, it successfully identifies galaxies at the three phases. We find that the observed
BNs are preferentially found in galaxies at a characteristic stellar mass range, 109.2–10.3 Me at all redshifts. This is
consistent with the characteristic galaxy mass for BNs as detected in the simulations and is meaningful because it is
revealed in the observations when the direct information concerning the total galaxy luminosity has been
eliminated from the training set. This technique can be applied to the classification of other astrophysical
phenomena for improved comparison of theory and observations in the era of large imaging surveys and
cosmological simulations.
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1. Introduction

Over the past years, we have acquired a detailed view of the
statistical properties of galaxies at different cosmic epochs,
thanks in particular to large-scale imaging and spectroscopic
surveys (e.g., SDSS; York et al. 2000; CANDELS; Koekemoer
et al. 2011). However, establishing causal connections between
galaxy populations remains an important challenge (e.g., Lilly
& Carollo 2016). This is obviously because of the timescales
involved, which do not allow observations to follow the
evolution of individual galaxies, and because of the degenerate
link between commonly used observables and astrophysical
processes.

This is particularly true for the processes leading to
morphological transformations of galaxies, which remain
largely unconstrained despite the large quantities of available
data. A fundamental question, how bulges form and grow in
galaxies at different cosmic times, is still largely debated. One
of the reasons is that morphological observables extracted from
images are rather simplistic and have essentially remained
unchanged for many years. The characterization of galaxies is
essentially limited to the prominence of the bulge and disk
components based on the measurement of the central density
(e.g., Barro et al. 2017), a parametric decomposition (e.g.,
Sérsic 1968; Peng et al. 2002), or a ratio between enclosed light

at different radii (e.g., Abraham et al. 1996). The interpretation
of these observables to constrain an assembly history is a very
degenerate problem; i.e., there are many different processes
that can lead to the same observables.
Our community is about to generate unprecedentedly large

imaging data sets (e.g., Euclid, LSST, WFIRST). Hydro-
cosmological numerical simulations are also growing rapidly. It
is thus timely to investigate alternative ways to extract a
maximum amount of information from polychromatic images
that might help break degeneracies with physics and improve
the comparison between observations and simulated data sets.
This is precisely the goal of this work. Ideally, one would like
to have morphological measurements that directly correlate
with some astrophysical process as predicted by theory and
detected in simulations. That way, it would be possible to
isolate objects from large surveys with a high probability of
experiencing a physical process and enable a more complete
follow-up. This is easily understandable for galaxy–galaxy
mergers, since it is a relatively well-defined process associated
with expected morphological features, at least at a first
approximation. As a result, many efforts have been made to
characterize merging galaxies from images (e.g., Conselice
et al. 2000; Lotz et al. 2008) and calibrate their observability
timescale to constrain the merger history (Lotz et al. 2008;
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Snyder et al. 2017). In that respect, it is important to calibrate
with simulations that closely match the properties of the
observed samples. For example, as shown in Cibinel et al.
(2015), the morphological signatures of mergers at z>1 differ
from those of mergers at z∼0, and parametric classifications
that robustly identify low-z mergers fail at z>1.

Generalizing to other processes is less obvious, since one
needs to find the appropriate tracers from the multiwavelength
pixel distribution. In recent years, there has been significant
progress in the image-processing community with the emer-
gence of the so-called unsupervised feature-learning techni-
ques, or deep learning (DL). These algorithms allow the user to
automatically extract observables (or features) from the pixel
space without any a priori dimension reduction. As in many
other disciplines, DL is rapidly being adopted in astronomy as
well. It has been successfully used for several standard
classification (e.g., Dieleman et al. 2015; Huertas-Company
et al. 2015; Domínguez-Sánchez et al. 2018) and regression
(e.g., Tuccillo et al. 2018) problems. We aim at investigating
here an alternative way of using these advanced machine-
learning techniques to extract more physically relevant features
from images and help establish a more solid link between
theory and observations.

In this exploratory proof-of-concept work, we explore
whether DL can be used to detect a phenomenon dubbed blue
nugget (BN), recently found in numerical simulations of high-
redshift galaxies. Indeed, these cosmological simulations
(Zolotov et al. 2015; Tacchella et al. 2016a, 2016b) reveal
that a large fraction of the simulated galaxies undergo events of
gaseous compaction, triggered, e.g., by mergers or counter-
rotating inflowing streams, which leads to a central BN at a
characteristic stellar mass of 109.2–10.3 Me. The BN phase, in
turn, triggers central gas depletion and central quenching of star
formation, sometimes surrounded by an extended, freshly
formed, gaseous, star-forming ring/disk. Most of the structural,
kinematic, and compositional galaxy properties undergo
significant transitions as the galaxy evolves through the BN
phase (Ceverino et al. 2015; A. Dekel et al. 2018, in
preparation). One way to investigate whether these gaseous
compactions are frequent in the observed galaxies would be to
directly detect features in the data (stellar distribution, in our
case) unequivocally associated with the BN phase. This is what
we attempt in this paper. One main advantage of high-
resolution numerical simulations over, for example, semi-
analytical models or low-resolution large-volume simulations is
that we can use them to generate realistic observed simulated
images for which the evolution history is known by construc-
tion (e.g., Snyder et al. 2015). One can therefore isolate a
sample of simulated galaxies in the BN phase, as well as in the
pre-BN or post-BN phases. In this work, we use state-of-the-art
zoom-in cosmological simulations with high spatial resolution
(Ceverino et al. 2014) to generate mock images as observed by
HST of galaxies in a BN phase. We then use this data set to
train deep neural nets and explore whether the network is able
to automatically find morphological proxies associated with the
different phases in the observed mock data. We then apply the
trained network to observed CANDELS data.

The paper proceeds as follows. Sections 2 and 3 describe the
simulations and data used in this work. The main methodology
is discussed in Section 4. We show the main results of
simulations and observations in Sections 5 and 6, respectively.

2. Simulations

2.1. Main Properties of the Simulations

We use a set of zoom-in hydro-cosmological simulations of
35 intermediate-mass galaxies, of which 31 are used in this
work. The typical stellar mass of the simulated galaxies at z∼2
is 1010 Me, as shown in Table 2. This is part of the VELA
simulation suite, which has been described and analyzed in
several previous works (Ceverino et al. 2014, 2015; Tacchella
et al. 2015; Zolotov et al. 2015; Tomassetti et al. 2016; Tacchella
et al. 2016b). We refer the reader to the aforementioned works
for a detailed description of the simulations. We summarize here
only the most relevant properties. The initial conditions for the
simulations are based on dark matter halos that were drawn from
dissipationless N-body simulations. The simulations were run
with the AdaptiveRefinement Tree (ART) code (Kravtsov et al.
1997; Kravtsov 2003; Ceverino & Klypin 2009), and the
maximum resolution is 17–35 pc at all times, which is achieved
at densities of ∼104–103 cm−3. The code includes several
physical processes relevant for galaxy formation: gas cooling by
atomic hydrogen and helium, metal and molecular hydrogen
cooling, photoionization heating by the UV background with
partial self-shielding, star formation, stellar mass loss, metal
enrichment of the interstellar medium (ISM), and stellar
feedback. In particular, the high spatial resolution allows tracing
the cosmological streams that feed galaxies at high redshift,
including mergers and smooth flows, and they resolve the
violent disk instabilities (VDIs) that govern high-z disk evolution
and bulge formation(Dekel et al. 2009). This is important for
this work focused on the growth of bulges and the reason why
this small set of simulations is preferred to larger but lower-
resolution runs like Illustris. We recall that the gravitational
softening for baryons in the Illustris series is of the order of
∼1 kpc, which means that any physical process that acts in
smaller scales is unresolved. This is the case of the BN phase
explored in this work.
However, as with all state-of-the-art numerical simulations,

the VELA simulations suffer from several limitations
specially related to subgrid physics. Like other simulations,
the treatment of star formation and feedback processes still
depends on uncertain recipes. The code assumes an star
formation rate (SFR) efficiency per freefall time without
following in detail the formation of molecules and the effect
of metallicity on the SFR (Krumholz & Dekel 2012).
Additionally, no active galactic nuclei (AGN) feedback is
yet included in the run used in this work. As a result, the full
quenching observed in the data is not reached in many
galaxies by the end of the simulations at z∼1. Since we are
more interested here in the BN phase that occurs when the
galaxy is still star-forming, we do not expect that AGNs will
have a big impact on our results. However a color mismatch
between simulated and observed galaxies might be expected.
Besides that, as shown in Ceverino et al. (2014) and Tacchella
et al. (2016b), the SFRs, gas fractions, and stellar-to-halo
mass ratios are all close to the constraints imposed by
observations, providing a better match to observations than
earlier simulations. The uncertainties and any possible
remaining mismatches by a factor of order 2 are comparable
to the observational uncertainties.
We stress that we are fully aware that the simulations present

many limitations and that they are still very far from capturing
all the complex physics of galaxy formation. This is mainly
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why the present work needs to be considered a proof-of-
concept work in that respect. However, we are at a stage at
which we can produce fairly realistic galaxies that capture
some of the physical processes governing the assembly history,
and we have good reason to think that this will be improved in
the future. This enables a comparison with observations in a
more general way that we explore in this work.

2.2. Mock CANDELized Images

The full output of the simulation is saved at many time steps
and analyzed at steps of Δa=0.01 of the expansion factor,
which roughly correspond to ∼100 Myr at z∼2. For every
snapshot between z∼4 and z∼1 , we generate mock 2D
images as they would be observed by the HST. They are
generated using the radiative transfer code SUNRISE13 (Jonsson
2006; Jonsson & Primack 2010; Jonsson et al. 2010) by
propagating the light of stars through the dust. We refer to
Snyder et al. (2015) for details on the procedure followed.

Very briefly, a spectral energy distribution (SED) is assigned
to every star particle in the simulation based on its mass, age,
and metallicity. The dust density is assumed to be directly
proportional to the metal density predicted by the simulations.
We set a dust-to-metals mass ratio of 0.4 (e.g., Dwek 1998;
James et al. 2002) and the dust grain size distribution from that
updated by Draine & Li (2007). SUNRISE then performs dust
radiative transfer using a Monte Carlo ray-tracing technique.
As each multiwavelength ray emitted by every star particle and
H II region (according to its SED) propagates through the ISM
and encounters dust mass, its energy is probabilistically
absorbed or scattered until it exits the grid or enters one of
the viewing apertures (cameras). The output of this process is
then the SED at each pixel in all cameras. For this run, we set
19 cameras, of which five are fixed with respect to the angular
momentum vector of each galaxy, seven are fixed in the
simulation coordinates, and the remaining seven are fully
random at each time step. The camera numbers are summarized
in Table 1.

Finally, from these data cubes, we create raw mock images
by integrating the SED in each pixel over the spectral response
functions of the CANDELS WFC3 filters (F160W, F125W,
and F105W) in the observer frame. Images are then convolved
with the corresponding HST point spread function (PSF) at a
given wavelength. We finally add a random real-noise stamp
taken from the CANDELS data. This ensures that the galaxies
are simulated at the same depth as the real CANDELS data and
the correlated noise from the HST pipeline is well reproduced.
We call this process CANDELization.

For each 3D snapshot (Δa= 0.01), we therefore generate 19
different 2D images corresponding to the 19 different camera
orientations. The resulting data set corresponds to approximately
∼10,000 images in each of three filters. Even if the CANDELS
filters probed the optical rest frame up to z∼3, we included
galaxies up to z∼4, since the most intense compaction events
tend to happen at higher redshift in the VELA simulations. Given
that the gas fractions (stellar-to-halo mass relations) are slightly
underestimated (overestimated) in the simulations, as previously
stated, including a higher redshift is justified and increases the
size of our training set. We have checked, however, that the main
results of the paper remain unaltered if only galaxies up to
z∼3 are used. We emphasize that the same procedure has been
used to generate mock JWST galaxies in the different filters;
therefore, a similar analysis to the one presented in this work can
be applied to this data set in order to prepare JWST observations.

3. Data

We also use HST observational data to test our model in
Section 6. We use CANDELS images in the three infrared filters
(F105W, F125W, and F160W) from the two GOODS fields
(North and South; Grogin et al. 2011; Koekemoer et al. 2011).
The selection is based on the morphological catalog presented in
Huertas-Company et al. (2015), which is essentially a selection
of the brightest galaxies (F150W<24.5) from the official
CANDELS catalogs (Guo et al. 2013; Barro et al. 2017). This is
required to have enough signal-to-noise ratio (S/N) to measure
morphological information from images. For this work, we select
only galaxies in the redshift range 1–3 to match the simulated
redshift range. As shown in Huertas-Company et al. (2016),
the sample is mass complete down to 109 Me at z∼1 and
1010 at z∼3. We restrict our analysis to galaxies more massive
than 109 Me to have enough statistics and match the typical
stellar masses from the simulations. The sample might therefore
suffer from incompleteness at high redshift. This is not critical for
the illustrative purpose of this work.
In addition to the reduced images, we also use official

CANDELS redshifts (Dahlen et al. 2013), which are a
combination of photometric redshifts computed with several
codes and spectroscopic when available. Stellar masses and star
formation rates from SED fitting are also used. Stellar masses
are computed through SED fitting using the best redshift
adopting a Chabrier (2003) initial mass function (IMF). The
SFRs are computed by combining IR and UV rest-frame
luminosities (Kennicutt 1998; Bell et al. 2005) with a Chabrier
(2003) IMF (see Barro et al. 2011 for more details).
The following relation was used: SFR 1.09UV IR = ´+

L L10 3.310
IR 2800+- ( ). Total IR luminosities are obtained

using Chary & Elbaz (2001) templates fitting MIPS 24 μm
fluxes and applying a Herschel-based recalibration. For
galaxies undetected in 24 μm, SFRs are estimated using rest-
frame UV luminosities (Wuyts et al. 2011). We also compute,
for the selected data set, the central mass density (Σ1) following
the methodology of Barro et al. (2017).

4. Methods: Training the Network

4.1. Training Set: Using the Simulation
Metadata to Label Images

The final goal is to train a deep neural network to identify,
from the mock images, the BN phase (and, consequently, the
pre- and post-BN phases as well). As put forward by a previous

Table 1
Explanation of the 19 Camera Orientations Used to Generate

Mock 2D Images from the Simulations

Camera Number Orientation

cam00/02 Angular momentum face-on (opposite directions)
cam01/03 Angular momentum edge-on (opposite directions)
cam04 Angular momentum 45°
cam05/06/07 Fixed to x-, y-, and z-axis simulation box
cam08-11 Random (same simulation coord. for all snapshots)
cam12-18 Fully random

13
SUNRISE is freely available athttps://bitbucket.org/lutorm/sunrise.
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analysis of the same simulated data set(Zolotov et al. 2015),
almost all the simulated galaxies seem to evolve in three
characteristic phases. They go from diffuse to compact star-
forming objects through wet gas compaction and then quench
in the central regions and build a central bulge that will, in most
cases, rebuild a surrounding stellar disk. We notice that the
intensity of the compaction depends on stellar mass, and while
most of the simulations go through a BN phase, only the most
massive become compact star-forming galaxies.

As part of the training set, we first define these three phases
for all the galaxies in the simulation. The identification of the
three phases is performed on an individual basis for each
galaxy using the gas density evolution in the central galactic
regions, as explained in Zolotov et al. (2015) and A. Dekel
et al. (2018, in preparation). Basically, we identify the peak of
the BN phase as the time at which the gas density in the central
kpc is maximum. We define the end of the BN phase when the

central stellar density stops increasing, which is a signature that
star formation has been quenched in the center of the galaxy.
The onset of the BN phase is considered to be when the central
gas density starts to increase toward the BN peak. Naturally,
this is more complicated than selecting the peak. In our current
approach, the selection is done by eye using the 2D projection
of the gas density to confirm the choice. Figure 1 shows the
cold gas and stellar mass evolution in the central kpc for some
galaxies for illustrative purposes. We also show the dark matter
content in the central kpc. The key takeaway from these plots is
that compaction is not always well defined and that it comes in
many different flavors. There are, for instance, some clean
cases, such as VELA12, in which there is a single peak of the
gas mass. However, there are other cases, such as VELA25, for
which the peak is not so pronounced and identifying the
boundaries of the BN phase is not obvious and somewhat
arbitrary. Notice also that many galaxies experience several BN

Figure 1. Definition of the different phases. Both the cold gas and the stellar mass in the central kpc are used to define the BN phase. The blue and red lines show the
evolution of the cold gas and stellar mass in the central kpc as a function of time. The black line is the dark matter mass (adapted from Zolotov et al. 2015). The yellow
shaded region shows the main BN event as defined in this work (see text for details). The second and third events are shown in cyan and orange, respectively. The
ranking refers to the intensity of the event and not to the time of occurrence (see text for details). Each panel shows a different galaxy. The top panels show clear
examples of massive galaxies with one unique BN phase. The bottom panels show more complex cases with more than one BN event.
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phases, as, for example, discussed in Tacchella et al. (2016a).
In this work, we define a maximum of three BN phases for each
galaxy, as shown in Table 2. Table 2 summarizes the redshifts
of the BN phase of all galaxies analyzed. This is to say that the
network that will be trained needs to somehow capture this
heterogeneity in the process. It is important to keep this in mind
when analyzing the results.

As can be seen in Table 2, in the simulations, the BN phase
tends to happen at a characteristic galaxy stellar mass
∼109.2–10.3 Me (e.g., Zolotov et al. 2015). Given the existing
correlation between mass and luminosity, this implies that there
is a brightness gradient between pre-BN, BN, and post-BN,
with pre-BN galaxies being generally fainter than post-BN
galaxies. The difference in luminosity also implies a difference
in S/N when the HST noise is added. A DL approach, as the
one used in this work, has the unique power to automatically
extract the optimal tracers from the data to minimize the
classification error. It also implies a risk, since the network can
potentially use any available information. In our case, given the
properties of the training set, there is a potential risk that the
network uses the S/N difference existing between the different
phases to classify. Since we do not want the network to learn
based on S/N but rather learn the characteristic features of the
BN phase, we artificially shuffle the magnitudes of the galaxies
given to the network. To do so, before adding the noise (see
Section 2.2), we associate a random magnitude to all snapshots
in the F160W filter (19–25, in order to match the CANDELS

distribution). This way, galaxies in the different phases have
similar luminosities and S/N distributions. By doing so, the
characteristic mass information is also washed out, preventing
the network from using that information to learn. We will
discuss the effect of this choice in Section 6. We remark that all
other properties are kept unchanged. It includes, obviously, the
spatial distribution of pixels that measure the degree of
compactness and the relative luminosities in each filter that
are correlated with the SFR.
We thus use this three-class classification (pre-BN, BN, and

post-BN) to associate a unique label to every simulated image.
Pre-BN includes all galaxies before experiencing any compac-
tion event, i.e., with a redshift larger than the maximum of
(z z z, ,onset

1
onset
3

onset
3 ). Galaxies in the BN phase are the ones with

redshifts between z y
onset and z y

post, with y 1, 2, 3= . Finally, all
remaining images are labeled as post-BN. So, galaxies with
several compaction events are classified as post-BN between
two events. As a result of this labeling process, every mock
image has an associated label corresponding to its evolutionary
phase. The final data set consists, therefore, of ∼10,000 labeled
images with the simulation assembly history that will be used
to train and test a convolutional neural network (CNN) model.
Figure 2 shows some random example stamps of galaxies in

the three phases in the HST/WFC3 F160W filter. Pre-BN
galaxies generally look smaller, and post-BN galaxies tend to
have a diffuse disk structure. However, no obvious visual
difference is apparent. This underlines the challenge of this

Table 2
Summary of the BN Phases for All Simulated Galaxies Used in This Work

Simulation zonset
1 z1post zonset

2 z2post zonset
3 z3post M MLog *  M MLog * 

z=zcomp z=2

VELA01 1.86 1.38 L L L L 10.05 9.39
VELA02 1.70 1.00 L L L L 9.72 9.32
VELA03 3.00 1.94 1.27 0.96 L L 9.47 9.70
VELA04 2.23 1.63 1.50 1.17 L L 9.18 9.07
VELA05 1.38 1.08 L L L L 9.47 9.09
VELA06 5.25 3.17 2.57 1.86 L L 9.60 10.42
VELA07 3.55 2.57 4.88 3.35 L L 10.39 10.83
VELA08 2.23 1.50 0.96 0.69 L L 9.79 9.79
VELA09 4.00 3.00 1.63 1.33 L L 9.73 10.09
VELA10 3.17 2.13 1.44 1.13 L L 9.59 9.83
VELA11 4.00 2.85 2.12 1.70 L L 9.67 10.05
VELA12 4.56 3.17 L L L L 9.98 10.33
VELA13 2.85 2.03 L L L L 9.76 10.06
VELA14 2.33 1.56 L L L L 10.26 10.19
VELA15 2.70 2.13 1.70 1.38 L L 9.70 9.77
VELA17 7.33 3.55 3.76 2.57 L L 9.63 L
VELA19 9.00 4.56 2.70 2.13 L L 9.75 L
VELA20 4.00 2.85 5.67 3.76 L L 10.33 10.62
VELA21 3.55 2.57 4.88 3.35 7.33 4.56 10.51 10.65
VELA22 4.88 3.55 L L L L 10.02 10.67
VELA25 2.33 1.86 3.76 2.57 1.86 1.50 9.89 9.91
VELA26 3.17 2.13 5.25 3.55 L L 9.82 10.25
VELA27 2.23 1.70 3.35 2.57 L L 9.90 10.01
VELA28 1.63 1.22 L L L L 9.71 9.51
VELA30 5.67 3.17 L L L L 9.87 10.25
VELA32 7.33 4.00 L L L L 9.71 10.52
VELA33 4.88 3.00 3.35 2.45 2.33 1.78 9.61 10.73
VELA34 3.00 1.78 4.26 2.70 L L 10.06 10.32

Note.For each galaxy, we show the redshift(s) at which the BN phase(s) were identified to start (zonset) and end (zpost). We also indicate the stellar mass of the galaxy
when the main BN phase occurs, as well as the stellar mass at z=2. A dash (−) means that the simulation did not run until z∼2.
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work, which is to train a CNN capable of distinguishing
between the different phases.

4.2. Architecture

We use a very simple sequential CNN architecture with only
three convolutional layers followed by two fully connected
layers implemented in Keras14 with a Theano back end
(Figure 3). The main reason to use a relatively shallow
network is the limited size of the training set. The architecture
is inspired by previous configurations that were successful in
detecting strong lenses in space-based images (Metcalf
et al. 2018) and also for classical morphological classifica-
tion(Domínguez-Sánchez et al. 2018). We then add two fully
connected layers to perform the classification. The last layer
has a softmax activation function to ensure that the three
outputs behave like probabilities and add to one. We use a
categorical crossentropy as loss function, and the model is
optimized with the adam optimizer.

The network is fed with images (fits format) of fixed size
(64× 64 pixels), with three channels corresponding to the three
main NIR CANDELS filters (F160W, F125W, and F105W).
We also tried to include bluer filters (F850LP), but the results

did not change significantly. For simplicity in this illustrative
work, we used the three redder filters, since the pixel scale is
the same and hence no interpolation is required. In principle,
the number of filters could be increased without any significant
modification of the methodology. The input size is a trade-off
between properly probing the galaxy outskirts (∼30 kpc in the
redshift range 1–3) and having a small enough number of input
parameters to prevent overfitting.
In addition to this, we also use standard techniques to avoid

overfitting at first order. First, after each convolutional layer,
we apply a 50% dropout. Second, we include a Gaussian noise
layer at the entrance of the network to avoid the model learning
from the noise pattern, given that our training set is small.
Finally, we use real-time data augmentation. Images are
randomly rotated (within 45°), flipped, and slightly off-
centered by 5 pixels maximum at every iteration so that the
network never sees exactly the same image.

4.3. Training and Validation Strategy

One obvious limitation we face in this work is that our
training data set is made up of only ∼28 galaxies. Even though
we increase the number of available images by using different
camera orientations, as well as data augmentation, there is a
potential risk that the network learns how to identify the

Figure 2. Random examples of simulated F160W CANDELized images in the three phases discussed in this work. The image size is 3 8×3 8. The top row shows
pre-BN galaxies, the middle row shows galaxies in the BN phase, and the bottom row shows post-BN objects. The images have been rescaled so that they span the
same range of luminosities in the three phases.
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different phases for this particular set of galaxies without
generalizing. To avoid this situation, we have designed a
custom training strategy that slightly differs from the classical
approaches typically used in machine learning.

Among the 28 galaxies, we use 24 galaxies for training (i.e.,
∼9000 images), two for real-time validation during the
training, and two additional completely independent galaxies
for testing at the end of the training process. It is important to
keep in mind that, when we say two galaxies, it does not mean
two images. Each galaxy corresponds to the full assembly
history of the galaxy between z=4 and 1, with 19 images at
each time step. Therefore, the test and validation sets contain
∼1000 galaxies each.

We then train for a maximum of 250 epochs. The novelty is
that every 50 epochs, we move two galaxies from the training
set to the validation sample and add the validation galaxies to
the training. This helps the network not to overfit on the first
sample of 24 galaxies while training for enough epochs to
enable convergence. The two test galaxies are obviously never
used in the process. Finally, in order to have more than two
galaxies to test the classification accuracy, we repeat the
training procedure just described five times, using two different
galaxies for the test sample at every run. The final test data set
thus contains 10 galaxies, classified with five slightly different
models. Figure 4 illustrates the learning history parameterized
by the evolution of the accuracy as a function of the number of

epochs of one of the five runs for illustration purposes. We plot
the accuracy computed on the training and validation data sets.
As expected, the training curve monolithically increases and
reaches roughly an accuracy of 80%. Notice, however, some
small discontinuities every 50 epochs, corresponding with the
modification of the training set. The fact that the discontinuity
is small suggests that small modifications of the training sample
do not significantly alter the network performance. In other
words, there is no overfitting. The validation curve shows a
particular behavior. This, again, is a consequence of the
adopted training strategy. Every 50 epochs, there is a clearly
noticeable jump. The break is larger than that for the training
because the validation is only made of two galaxies and the
sample is fully changed every 50 epochs. So the break
somehow reflects the accuracy variation between galaxies,
which can go from 100% for some galaxies to ∼60%. As
previously stated, compaction is not a very well-defined
process, and some galaxies have complex assembly histories
with multiple BN phases. The red curve in Figure 4 also
presents large jumps between epochs. This is also most
probably a consequence of the size and redundancy of the
sample. Given that there are 19 images per snapshot, a change
in the classification of a few snapshots implies big changes in
the accuracy value.

5. Results

In this section, we analyze the classification accuracy. For
that purpose, we use the test data set (10 galaxies) that was not
used in the training process (see Section 4) throughout the
section.

5.1. Detection of BNs

We first analyze the average accuracy of the trained model to
detect pre-BNs, post-BNs, and BNs. The global accuracy,
defined as the fraction of images correctly classified, computed
on the test data set is ∼70%, which means that 30% of the
objects are misclassified. This is certainly not very high. Recall,
however, that there is a significant amount of redundancy in the
test set. It is helpful to look into more detail to better
understand what is going on before drawing conclusions. We
first compute a standard confusion matrix showing the relation
between input and output classes (Figure 5) for different
probability thresholds. At the lower probability threshold (0.5),
most of the confusion comes from true pre-BNs (or post-BNs)
that are predicted as BNs. This is probably because, as
previously stated, the compaction event is not very well
defined. The duration and intensity strongly depend on the
galaxy. As expected, the degree of contamination decreases
when a higher probability threshold is used to select galaxies.

Figure 3. Architecture of the deep network used for classification in this work. The network is a standard and simple CNN configuration made of three convolutional
layers followed by pooling and dropout.

Figure 4. Learning history resulting from the strategy described in the text. The
blue solid lines show the accuracy of the training set, and the red solid lines
show the accuracy of the validation set. Every 50 epochs, the validation and
training data sets are modified, which explains the discontinuities. The
accuracy of the validation is generally unstable because it is only made of two
galaxies. See text for details.
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At the highest threshold (0.8), 25% of true BNs are predicted to
be post-BNs. In fact, one should keep in mind that the test set
contains snapshots in steps of Δa=0.01. A galaxy might be
misclassified as post-BN just before the compaction event ends,
for example, or where there are multiple compactions closely
followed in time, reducing the accuracy of the classification.
However, the classification might still be meaningful.
To investigate this further, in Figure 6, we plot the output

probabilities for a subset of individual galaxies from the test
sample as a function of time. In this figure, the lines show the
average probability over all camera orientations at a given
snapshot. The shaded regions show the scatter due to different
camera orientations. For illustration purposes, we show three
cases with increasing complexity. The first example (VELA30)
has a single intense BN phase. VELA11 is less massive and has
two events of smaller intensity. Finally, VELA08 is a low-mass
galaxy with a very weak compaction. These three examples
bracket the diversity of assembly histories the network needs to
capture. As can be seen, there is a good correlation between the
evolution of the probability values and the evolutionary phase.
We observe that, typically, the probability of pre-BNs tends to
decrease before the compaction event, while the compaction
probability increases. Toward the end of the BN phase, the
probability of post-BNs increases. This is true even for galaxies
with complex assembly histories. This result indicates two
main things. First, it shows that the machine has learned
somehow that there is a sequential order between the three
phases. This is not obvious, since all images were randomly
included in the training process with random luminosities and,
as seen in Table 2, the BN phase can happen at very different
redshifts and have very different durations. Second, it shows
that despite the relatively low global accuracy, the confusion
seems to essentially come from the snapshots taken at the
transition phases. This is important because it means that when
the machine misclassifies, it is not fully random. The
misclassification, therefore, is a reflection of the difficulty in
defining the different phases. It is also worth noticing that the
scatter due to different camera orientations is generally not
large (∼0.1–0.2 in terms of probability). It suggests a mild
impact of the projection in the classification accuracy.

5.2. Impact of Camera Orientation

We investigate this further in Figure 7, which shows the
confusion matrix divided by camera orientation. Despite some
statistical fluctuations, no significant differences are appre-
ciated, as already suggested by the results shown in Figure 6.
This is also quantified in Figure 8, which shows the global
accuracy as a function of the camera number (see Table 1 for an
explanation of the different numbers). The figure confirms that
there is no systematic trend with the orientation. The global
accuracy increases equally for all cameras when the probability
threshold is increased.

5.3. Calibration of Observability Timescales

In fact, in view of applying the model to real data, probably
the most interesting property to investigate is whether we can
calibrate the observability timescales of the features learned by
the classifier. In other words, what is the typical time window
in which the network detects BNs? This is important because it
allows us to better interpret the classification in terms of an
evolutionary sequence and to compute a BN rate from the

Figure 5. Normalized confusion matrix of the three-label classification on a test
data set not used for training or validation. The y-axis shows the true class from
the simulation metadata, and the x-axis is the predicted class. From top to
bottom, we show the effect of increasing the probability threshold to select the
galaxies belonging to a given class.
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Figure 6. Examples of predictions on a test sample of increasing complexity. The left column shows the mean probability of being pre-BN (blue line), BN (green line),
and post-BN (red line) predicted by the CNN. The shaded regions around the lines indicate the scatter due to different camera orientations. The right column shows the
input simulation metadata used to define the phases, as in Figure 1. The yellow and cyan shaded regions show the primary and secondary BN phases.
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observations, as usually done for mergers. To do so, we take
the test sample and classify all galaxies in the three classes
according to the output probabilities. We simply add each
image to the class of maximum probability and require that the
probability value is larger than 0.5. We then compute, for each
galaxy, the time difference with the main BN phase (computed
as a fraction of the Hubble time at the BN peak, i.e., 1/H(t),
H(t) being the Hubble constant). Figure 9 shows the histograms
for the three classes. We confirm that the three classes tend to
probe a different regime, although with some overlap, as
expected from the results of the previous sections. Pre-BN
galaxies are, on average, selected ∼0.40/H(t) before the event,
and post-BN galaxies are typically observed ∼0.80/H(t) after
the compaction. The galaxies classified are centered on the BN
phase (0.05± 0.3 Hubble times).
Although there is some overlap between the different

histograms, it is worth noticing that all galaxies that passed
the BN phase by more than half a Hubble time are classified as
post-BN galaxies. Also, there are no galaxies classified as BN
or pre-BN objects for which the event is more than ∼0.5

Figure 7. Same as Figure 5, but the confusion matrix is shown for different
camera orientations. Top: face-on (cam00/02); middle: edge-on (cam01/03);
bottom: random (cam13+).

Figure 8. Measured accuracy on the test data set as a function of the camera
orientation. The numbers indicate the orientation (see Table 1). The different
colors indicate different probability thresholds, as labeled. The accuracy does
not depend on the camera orientation.

Figure 9. Observability of the BN phase with the calibrated classifier. The
histograms show the distributions of time (relative to the Hubble time at the
time of the peak of the BN phase). The blue, green, and red histograms show
the pre-BN, BN, and post-BN phases. The dashed vertical lines show the
average values for each class with the same color code. Despite some overlap,
the classifier is able to establish temporal constraints on the different phases.
The darker regions indicate overlapping histograms.
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Hubble times away. This means that our classifier can indeed
establish some temporal constraints regarding the BN phase
based only on the stellar distributions. This is extremely
important because it shows that there is a temporal sequence
implied in the classification. So when applied to real data, one
can more easily interpret the results in terms of evolution, as
will be discussed in Section 6.

5.4. Inside the Network

An important caveat of the machine-learning approach
presented above is that it somehow behaves as a black box.
It is thus difficult to precisely determine what features the
machine is using to decide the output classification. This is a
general problem for all DL applications. However, there exist
more and more network interrogation techniques that identify
the pixels in the input image that most contributed to the final
classification. One recent method is called integrated gra-
dients(Sundararajan et al. 2017). It is based on the measure-
ment of the differences between gradients computed by the
network in an input image as compared to a test image (usually
a blank image with only zeros). We tested this method in our
model and computed the integrated gradients for some of the
galaxies. Figure 10 shows one example for each class. The

interpretation is not straightforward. However, some useful
information can be extracted from this exercise. It is interesting
to see that the model automatically segments all the pixels
belonging to the galaxy and takes the decision based on all the
galaxy pixels. It also means that it understood that there is no
information in the noise and confirms that the model is not
overfitting on the noise pattern. Also, as pointed out in previous
works, after the BN phase, a gaseous disk is often built in the
simulations (Zolotov et al. 2015; Tacchella et al. 2016b). The
bottom panels of the figure clearly show that the machine
detects the diffuse disk component even if faint and probably
uses this information to make the decision concerning the post-
BN and sometimes the BN phase. For galaxies in the
BN phase, the relevant pixels are more concentrated in the
center, since the galaxies are generally more compact as the
obvious signature of this phase. It is also worth noticing that
the gradient tends to have values of different sign in the center
and outskirts, as if the machine was using a difference in flux
between the center and the outskirts to classify. This is
expected, since the compaction event is, by definition,
accompanied by a burst of central star formation, and the
sSFR profiles evolve from decreasing to rising, indicating
quenching outside-in in the pre-BN phase and inside-out in the
post-BN phase (Tacchella et al. 2016b). The model is capturing

Figure 10. Integrated gradient output of the model. Each row shows a galaxy in a different stage (pre-BN, BN, post-BN). The left column is the original image, and
the second, third, and fourth columns show the integrated gradients for the different filters. The network automatically detects the pixels belonging to the galaxy and
uses all of them to make the decisions.
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all these correlations automatically. This is the strength of the
presented methodology. Although the information that can be
extracted from integrated gradients is quite limited at this stage,
it is reasonable to think that interrogation techniques will
become more advanced, and therefore there is potentially
information that can be learned from postprocessing of the
model outputs in the future.

6. Identifying BNs in the Observations

We now apply the model to the HST/CANDELS sample
presented in Section 3. We simply cut stamps around the
selected galaxies in the three infrared filters (F160W, F125W,
and F105W) and classify them into three classes using the
trained models. Since 10 models were produced (see
Section 4), we use each of them to classify all galaxies. Each
real galaxy has, therefore, 10 different classifications using
slightly different models. We then compute the average
probability to increase the robustness of the classification.
We stress that there is a general good agreement between the
different models that confirms that the classification does not
strongly depend on the specific subset of simulated galaxies
used for training. The typical scatter in the probability values is
of the order of ∼0.1.

The first thing to notice is that the classification applied to
real data returns objects with high probability values in the

three classes. The fraction of galaxies with all probabilities
lower than 0.5 is only 2% of the total sample. It means that
the model found galaxies that resemble the galaxies in the
simulation with high confidence. This reflects that the
simulated galaxies are fairly similar to the observed ones and
that the network found characteristic features learned in the
simulations in the CANDELS observations. Figure 11 shows
some example stamps of observed galaxies in the three phases.
It is not obvious to establish what would happen if galaxies
from the training were very different from real data sets. This
will be explored in future work. In order to have a first idea of
how the network would behave when confronted with very
different objects, we perform a simple exercise. We take the
real observed galaxies from CANDELS and first randomly
shuffle the central pixels of the galaxies, then shuffle all the
pixels in the galaxies (inner+outskirts). This creates two fake
data sets with different degrees of perturbation, which are given
to the network. Figure 12 shows the probability distributions
for the three classes when these fake data sets are given. The
figure shows that the first effect of shuffling the center is that
the number of galaxies with a compaction probability larger
than 0.5 almost drops to zero. This is somehow expected, as
most of the compaction features are naturally seen in the central
parts. It confirms that the network is significantly using this
information to classify. Since the probabilities need to add up

Figure 11. Random examples of F160W CANDELS images in the three phases discussed in this work. The image size is 3 8×3 8. The top row shows pre-BN
galaxies, the middle row shows galaxies in the BN phase, and the bottom row shows post-BN objects.
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to 1, central shuffling also provokes an increase in the number
of galaxies with a large probability of post-BNs. Given that
post-BNs tend to be more extended, the fact of shuffling the
central pixels pushes the network to boost the post-BN
probability, since it focuses on the outer pixels. However, the
values remain low (∼0.6), indicating a moderate level of
confidence. When both outskirts and inner pixels are shuffled,
both probability distributions, BN and post-BN, significantly
narrow and peak at ∼0.4–0.5, meaning that the network is not
able to clearly assign galaxies to classes. This exercise shows
that the probability distributions somehow reflect the similarity
between the simulations and the observations. We notice,
however, that even in the shuffled images, there is a fraction of
galaxies with high post-BN probabilities. A visual inspection
shows that these are bright galaxies for which the shuffling has
pushed bright pixels toward very large distances. The network
most likely interprets this as a very extended disk.

The fact that the distributions on CANDELS galaxies
resemble the ones obtained on the test simulated sample (red
solid/dashed lines in Figure 12) suggests, therefore, that
simulated and observed galaxies look similar to the network.
This allows us to push the analysis a bit further by exploring
the properties of galaxies in the three phases (BN, post-BN, and
pre-BN) in the observations.

6.1. A Characteristic Mass Range for the BN Phase

In Figure 13, we first look at the stellar mass distributions of
CANDELS galaxies in the three different phases. Recall that
the simulations used for training stop at z∼1, so we only
show galaxies above this redshift in the observations. The
abundance of galaxies in different phases strongly depends on
stellar mass. Pre-BN galaxies tend to increase at low stellar
masses (M*/Me< 109–9.5), and post-BN galaxies dominate at
large stellar masses (M*/Me> 1010.5). The BNs are most
frequent at intermediate masses and peak at ∼109.2–10.3.
Interestingly, the position of the peak seems to be relatively
independent of redshift, with a small tendency to move toward
lower masses at lower redshifts. We notice that at this
characteristic stellar mass, the CANDELS data set is affected
by incompleteness, as indicated by the vertical line in the plots.
This should not affect the result in the sense that there are no

reasons to think that post-BN galaxies are more difficult to
detect.
This characteristic mass for compaction is a prediction from

the VELA simulations, as first reported in Zolotov et al. (2015)
and Tomassetti et al. (2016) and reflected in Table 2 (see also
Tacchella et al. 2016a and A. Dekel et al. 2018, in preparation).
The fact that it appears clearly in the observations confirms that
the network is automatically extracting the correlations existing
in the simulations. It is worth recalling that the luminosity has
been removed from the training set, which ensures that the
network is not classifying based on luminosity that is directly
correlated with the stellar mass. The network is necessarily
using other information, such as spatial distribution, shape, or
color, to identify the different phases. The characteristic mass
naturally emerges in the observations. The network success-
fully identifies a population that resembles simulated galaxies
experiencing compaction in the feature space learned, and these
galaxies tend to be near a characteristic stellar mass similar to
the characteristic mass seen in the simulations.
For comparison purposes, we also show in the Appendix the

resultant mass distributions in the observations when the
luminosity is left in the training set. The results are similar,
confirming that luminosity is not the main parameter used by
the network. There is a tendency to find more pre-BN galaxies,
however. We speculate that this is because the algorithm uses
some S/N-related information if available. Since pre-BNs are
generally fainter, they also have lower S/Ns in the observed
mock images, so the network will tend to classify fainter
objects as pre-BN. It highlights both the strengths and risks of
the DL approach, in the sense that all information is taken into
account in our unsupervised learning.
An analogous behavior is also seen in Figure 14, where the

redshift evolution of the fractions of galaxies in the three
phases at fixed stellar mass is shown. Both plots are
complementary. As expected, the redshift evolution strongly
depends on stellar mass. The galaxies that are more frequently
potentially in the BN phase in the CANDELS redshift range are
in the stellar mass range of 109.2<M*/Me<1010.3. The
massive compact star-forming galaxies identified in previous
works might be the high-mass tail of the BN population. More
massive galaxies indeed tend to be in the post-compaction
phase at all redshifts. This means that if one wants to observe

Figure 12. Impact of shuffling the pixels on the output probability distributions. From left to right, we show the pre-BN, BN, and post-BN probability distributions.
The red solid lines show the distribution for the original CANDELS images. The blue (green) lines show the same distributions when the central (outskirts+central)
pixels are shuffled. For reference, we also show the distribution for the simulated galaxies in the test data set with a red dashed line. Shuffling the pixels tends to
narrow the distributions around a probability value of ∼0.5.
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the progenitors of these most massive galaxies in the process of
compaction, it is required to probe ∼109.5 Me galaxies at
z>3. That will be straightforward with JWST.

6.2. The L Shape in sSFR versus M*

The previous section has shown that the network success-
fully identifies a characteristic galaxy stellar mass range for the
BN phase in the CANDELS data. This is remarkable given the
known limitations of the simulations (see Section 2) and
suggests that there are important similarities between simulated
and observed galaxies.

In future work, we plan to analyze in more detail how the
different classes relate to other physical properties. As a
preliminary step, we attempt a first look at the sSFRs and
central mass densities (Σ1; Barro et al. 2017) of galaxies in the
pre-BN, BN, and post-BN phases. This is motivated because in
the simulations, the compaction, BN, and quenching sequence
put the galaxy into a characteristic L-shaped track in sSFR–Σ1

with the BN phase at the turning point (e.g., Zolotov
et al. 2015). This L shape is similar to the observed distribution
(Barro et al. 2013, 2017).

In Figure 15, we show the sSFR–Σ1 plane for pre-BN, BN,
and post-BN galaxies in CANDELS as defined by the CNN
trained on the simulations. As previously reported, galaxies
form a characteristic L-shaped distribution in the plane.
At first approximation, the median position (large dots in the

figure) of the pre-BN, BN, and post-BN galaxies is different
and crudely follows the expected evolutionary sequence from
the simulations. Pre-BN galaxies tend to be in the main
sequence and have low central density values, while post-BN
galaxies have lower specific star formation rates and larger
central densities. The BN galaxies lie in between. Given the
observability timescales calibrated in Section 5.3, this suggests
that there is an evolutionary sequence in the plane and that
galaxies tend to move from left to right. We observe, however,
that there is also significant overlap between the different
phases in the three quadrants of the sSFR–Σ1 diagram. For
example, several galaxies are classified as post-BN while they
have low Σ1 values. Also, there is mixing of low- and high-
sSFR compact galaxies that is not fully consistent with
the distinction between the BN and post-BN phases in the
simulations. For comparison, we show the same plot for the
VELA simulations, which shows a clearer separation, namely a
stronger correlation between the three phases as defined based

Figure 13. Stellar mass distributions of CANDELS galaxies in pre-BNs (blue lines), BNs (green lines), and post-BNs (red lines) for different redshift bins, as labeled.
Galaxies in the BN phase typically peak at stellar masses of 109.2–10.3, as predicted by the simulations. In more detail, the BN range is 9.5–10.3 in the high-z bin,
9.25–10.0 in the middle-z bin, and a smaller mass in the low-z bin. This possible redshift dependence may or may not be significant. The vertical dashed lines show the
mass completeness limits from Huertas-Company et al. (2016). The peak is generally below the completeness limit. This should not significantly impact the presence
of the peak unless post-BN galaxies are more difficult to detect at these masses, which is unlikely.

Figure 14. Redshift evolution of the fractions of CANDELS galaxies in pre-BNs (blue lines), BNs (green lines), and post-BNs (red lines) for different stellar mass
bins, as labeled. In the redshift range of CANDELS (1 < z < 3), BNs dominate at a characteristic stellar mass of ∼109.2–10.4 Me, as predicted by the simulations.
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on the gas/SFR distribution and the distribution to three
quadrants in the sSFR–Σ1 diagram as derived from the stellar
distribution.

We emphasize that the main purpose of this work is to
illustrate the methodology. We thus keep for future work a
detailed investigation of the reasons for this increased
confusion in CANDELS. One possible explanation resides
in the definition of the BN phase used for training. We recall
that several galaxies in the simulation present complex

assembly histories, with many wet compaction events of
different intensities (see Figure 1). A similar behavior is also
reported in Tacchella et al. (2016a); i.e., compaction and
quenching events confine the galaxy to the main sequence
until a major BN event that is followed by long-term
quenching as a result of a hot massive halo. Therefore,
according to our labeling of the training set explained in
Section 4.1, galaxies can still be considered post-BN (see, for
example, VELA11 in Figure 6) between several events that

Figure 15. Distribution of pre-BN (blue dots), BN (green dots), and post-BN (red dots) galaxies with M*/Me>109 in the sSFR–Σ1 plane. The large dots show the
average positions, and the black error bars are the 68% confidence intervals obtained through bootstrapping. The top row shows the distribution of CANDELS
galaxies. The middle row shows the simulated galaxies with the phase defined from the assembly history. The bottom row shows the same simulated galaxies when the
phase is determined through DL. The vertical black dashed lines in the top row show the location of the quiescent ridgeline at a stellar mass of 1010 Me computed by
Barro et al. (2017).
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could also contribute to explaining the overlap we see in
CANDELS. A way to explore the effects of minor compaction
events would be to train a network with only major
compactions and see how the classification changes. To do
that, a larger and more diverse training set is needed and also
at higher redshift, in the JWST range, where major events tend
to happen in the simulations. We keep this for future work.

7. Summary and Conclusions

We have explored a new approach to classify galaxy images
using DL calibrated on numerical simulations. The general
methodology first consists of generating mock images of
galaxies, reproducing the observing conditions from hydro-
cosmological simulations, which are then labeled based on the
known evolution of gas, SFR, and stars. The images are then
fed to an unsupervised feature-learning machine that auto-
matically learns the features to detect a given evolution pattern.
We have applied the method for detecting the characteristic BN
phase as seen in cosmological simulations, near a critical mass
and preferentially at high redshifts, following a wet compaction
process and followed by central quenching. We have used for
that purpose a suite of high-resolution zoom-in hydro-
numerical simulations of intermediate-mass galaxies in the
redshift range 1<z<3. We have shown that a simple CNN is
able to detect galaxies in the BN phase with ∼80% accuracy
within a time window of ±0.2 Hubble times and hence
establish temporal constraints in the data. The described
methodology presents several key advantages over more
traditional approaches. First of all, it does not require any
image preprocessing. Only the pixel distributions are fed into
the network, which automatically extracts the relevant
information. This does not, however, prevent combining the
automatically extracted features with other standard measure-
ments, such as colors or sizes. Moreover, there is no need of an
a priori assumption of the optimal observables for a given
physical process. The procedure will automatically extract the
best tracers if present in the data.

We have then applied the trained model to observed galaxy
multicolor images from the CANDELS survey observed with
HST in the same redshift range and classified them into three
main classes: pre-BN, BN, and post-BN.

The key results are as follows.

1. The network finds galaxies with a high probability of
being in the three classes, indicating a similarity between
simulated and observed galaxies.

2. The classification recovers a characteristic stellar mass for
the BN phase of ∼109.2–10.3 M☉ mostly independent of
redshift. More massive compact galaxies are found to be
preferentially in the post-BN class, so they are compatible
with having gone through the BN phase more than 0.5
Hubble times before the time of observation.

3. Pre-BN, BN, and post-BN galaxies occupy different
regions in the sSFR–Σ1 plane, suggesting an evolutionary
sequence in the plane as predicted by the simulations.
There is, however, some degree of confusion, i.e., post-
BN galaxies with low central densities that will be
investigated in future work.

In particular, one important point that will be addressed in
forthcoming works is the impact of the specific set of
simulations used for training. Despite the similarities between

simulations and observations suggested in Section 6.1, the
VELA simulations used in this work might still be too limited
to adequately represent the entire CANDELS data set, not only
because of the lack of AGNs but also because the sample is
small and covers a limited mass range. Additionally, the
assumptions regarding the subgrid astrophysics are not well
constrained by theory or observations, as discussed in
Section 2. To further investigate the impact of these limitations,
we plan to enlarge our training sets by using new available
simulated data sets with the same VELA initial conditions but
different subgrid astrophysics, as well as other independent
simulated data sets including AGNs.
The presented methodology could then be adapted to other

robust physical processes captured in simulations and could
constitute a useful tool to better compare future imaging
surveys with forthcoming simulations.
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Appendix
The Effect of Luminosity

In the training set used in this work, the magnitudes of the
galaxies in the different phases were randomly changed. This is
to ensure that all galaxies have similar S/Ns and the network
does not learn based on that. As a matter of fact, since the pre-
BN galaxies in the simulations are found at higher redshift and
have lower stellar masses than post-BN galaxies, they will be
more noisy in the CANDELized images. The network might
therefore use this information. To check the effect of this in the
final classification, we show in Figure 16 the same stellar mass
distributions of galaxies in the three different phases in
CANDELS as in Figure 13 but obtained with a training set
without randomizing the magnitudes. As can be seen, the
distribution is similar, i.e., a BN peak at a characteristic stellar
mass. However, the code tends to find more pre-BN galaxies at
low mass. This is because it is learning some information from
the S/N distribution. This exercise shows the strength of the DL
approach, since it demonstrates that the network uses all
available information. However, it highlights the risks too.
One needs to control the information that should not be used by
the net.
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