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Introduction: ACDM

Most of the matter in the universe is dark, and wectsLER T AL 2002
exists in dark matter ‘halos’ — gravitationally 0.122
bound and virialized overdensities of dark matter 0.169
particles. Y ' 0253
VI ALTLIRIANN 0.287
Baryonic galaxies form within dark matter halos, SN 0335 <Gy
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Introduction: ACDM

IEEE Spectrum - October 2012

500 Million Years 2.2 Billion Years
After the Big Bang Large scale structure

traces a hierarchical
‘cosmic web’ with voids,
flaments, sheets, and
nodes (clusters) on
many length scales

THE UNIVERSE IN A SUPERCOMPUTER

How do halo properties
differ in different density
environments?

6 Billion Years

What can this tell us
about the galaxies
those halos host?

Joel Primack

Christoph Lee, UCSC January 25th, 2018 UCSC



Kej Queskions:
1. How are dark makber halos i Llow ciemsi&v
reqions different from those in higher

density reqions?
Y T

2. Why do some halos lose mass, and what are

the consequences of mass Loss?



Motivakic

¢ 0AL: Understand how galaxies evolve,
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Even though these are fundamental questions about
halos, this is the first time they have been addressed in

dekail using moderin simulabions.



Properties of CDM Halos: Cnrw

NFW Profile:
2 parameter fit (po, Rs)
. 4,08
pLT) = ) Y
LA 1
R, (1 ! Rs)

Scale radius (Rs): radius at which log p - log r
slope of profile changes from -1 to -3

Inner part of halo (<Rs) falls off proportional to r-

Outer part of halo (>Rs) falls off proportional to r-3

Log p/10'° M, kpc3

-8

CNEW

— Rvir / Rs

Log radius/kpc

Halo formation can be split into an initial fast growth phase and subsequent slow growth phase

Fast growth is characterized by rapid violent accretion and tends to build up an r-1 profile

(increasing Rs, so Cnrw remains low)

Slow growth is characterized by gentle accretion onto the outer part of the halo and tends to
build an R-3 profile (Rs stays constant, but Rvir grows, increasing Cnrw)

Christoph Lee, UCSC
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Properties of CDM Halos: A

Introduced by Bullock+01:

N J
J= ) mr; xv, )\3 =
J2MVR

‘Spin Parameter’

Defined within radius R, with mass enclosed M and circular velocity V.
Halos acquire angular momentum through tidal torques.

Tidal torques most influential at early times when pre-collapsed halos are
maximally extended, diminish as universe expands.

Angular momentum is also strongly affected by mergers.

Christoph Lee, UCSC January 25th, 2018 UCSC



Properties of CDM Halos: Vmax

Circular Velocity: Vcirc(R)
Velocity required for test particle to maintain
circular orbit at radius R, assuming spherical halo

1.5

- Klypin+01

O 1 1 I|IIII|

0.01 0.0 0.1

R/ Rvir

Christoph Lee, UCSC

Can be analytically related
to Cnrw, assuming NFW
profile. Measuring Vmax then
provides alternative way to
determine concentration.

Max Circular Velocity: Vmax

V2max = max(GM(R)/R) where M(R)
IS mass enclosed within R

January 25th, 2018 UCSC



Properties of CDM Halos: Prolateness and Tidal Force

1

Prolateness:
P =1-([(b/a)2 + (c/a)2]/ 2)1/2

Length of vector (b/a, c/a), normalized to be
equal to 1 at the maximum.

C (short axis)

Think of as ‘elongation’. P =0 is perfect
sphere, P = 1 is maximally elongated ‘pencil’.

Elongated

B (middle axis) Most halos fall somewhere between 0.2-0.6.

Tidal Force (TF)

We define tidal force in dimensionless units as the ratio of the halo virial radius
to the minimum Hill radius of all of its neighbors (Rvi/RHin).

The Hill radius is the largest radius at which material can remain gravitationally
bound to a secondary halo due to the presence of a primary halo.

Christoph Lee, UCSC January 25th, 2018 UCSC



Numerical Simulations

Bolshoi Planck

« 250 Mpc/h per side

* Particle mass ~2 x 108 Msun
* Force resolution 1 kpc/h

- Complete to 50 km/s

» ~ 8 billion particles

* ~10 million halosatz =0

Cosmological dark matter simulation

Planck 2013 parameters

Christoph Lee, UCSC

ROCKSTAR

- Halo finder developed by

Peter Behroozl

- Used 6d phase space + 1d

time FOF algorithm

* Consistent Trees code

determines gravitationally
consistent merger trees

January 25th, 2018 UCSC



Properties of Dark Matter Halos as a Function of Local Environment Density
C. Lee, J. Primack, P. Behroozi, A. Rodriguez-Puebla, D. Hellinger, A. Dekel MNRAS, 2017

We focus on central (distinct) halos in the Bolshoi-Planck
cosmological dark matter simulation

(i.e. NO subhalos at z = 0)

y [Mpc/h]

We compute local density using a
gaussian smoothed Cloud-In-Cell
counting algorithm with voxels of

width 0.25 Mpc/h

y [Mpc/h]
logy po/pavg

All Rockstar halos are tagged with
smoothed local density on many
scales

y [Mpc/h]

10 20 30 40 50 60 10 20 30 40 50 60
x [Mpc/h] x [Mpc/h]
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Properties of Dark Matter Halos as a Function of Local Environment Density

C. Lee, J. Primack, P. Behroozi, A. Rodriguez-Puebla, D. Hellinger, A. Dekel
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2

MNRAS, 2017

arxXiv:1610.02108

« Shape of Distributions indicate
length scale at which nonlinear
structures emerge

» Large smoothing scales probe
narrower range of densities than
small scales

- Statistics at high density end
limited by voxel size

- Distribution well fit by Generalized
Extreme Value Distribution
(GEVD)
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Properties of Dark Matter Halos as a Function of Local Environment Density

C. Lee, J. Primack, P. Behroozi, A. Rodriguez-Puebla, D. Hellinger, A. Dekel
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Properties of Dark Matter Halos as a Function of Local Environment Density

CNFW
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Properties of Dark Matter Halos as a Function of Local Environment Density
C. Lee, J. Primack, P. Behroozi, A. Rodriguez-Puebla, D. Hellinger, A. Dekel
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Properties of Dark Matter Halos as a Function of Local Environment Density

C. Lee, J. Primack, P. Behroozi, A. Rodriguez-Puebla, D. Hellinger, A. Dekel MNRAS, 2017
log,g Myir/Mc = —1.5 £ 0.375 —0.75 0 0.75
log,o Myir = 11.20 £ 0.375 11.95 12.70 13.45

e B s L LI B 7 T L B L ) B B B

I ] 1 o=1/2h Mpc — | 1 == 4 - 16 e ] 92

T 95% CI [ T 2 8 n ><

: 1 1<

S T T 1=

| 1 =

+ ‘n.-.:‘. ‘ ‘ ---..‘.'..'.1 --------- "' ‘ i O

H:lH}‘HH‘HH‘}HHHHH‘HH‘H:'C)

P i ERe

e T e ] —k

| T T 10

= ! | 00
m B e ]
< T -
— | \EE\ | | | ‘ | | | | ‘ | | | | ‘ | | | | | | ‘ | | | | ‘ | | | | ‘ | \E
— L L L L L L BN
N T T oy h
e T T 1
JERSN ()| S~ | A S S U S I .
= T i
= T T N
- [ T i
% i 4 7 = 0 .
g _8 j T i Loy | Coeo e 4 oo b e by ?: oo b e B

0 1 2 0 1 2 0 1 2 0 1 2
10810 P/ Pavg 10g10 Po / Pave l0g10 o/ pave log10 po/ pave

Concentration increases from 12 to 16 (~30%) for 1 Mpc/h smoothing

Christoph Lee, UCSC January 25th, 2018 UCSC



Properties of Dark Matter Halos as a Function of Local Environment Density
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Properties of Dark Matter Halos as a Function of Local Environment Density

C. Lee, J. Primack, P. Behroozi, A. Rodriguez-Puebla, D. Hellinger, A. Dekel MNRAS, 2017
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Properties of Dark Matter Halos as a Function of Local Environment Density

C. Lee, J. Primack, P. Behroozi, A. Rodriguez-Puebla, D. Hellinger, A. Dekel MNRAS, 2017
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Properties of Dark Matter Halos as a Function of Local Environment Density

C. Lee, J. Primack, P. Behroozi, A. Rodriguez-Puebla, D. Hellinger, A. Dekel MNRAS, 2017
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Properties of Dark Matter Halos as a Function of Local Environment Density
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Properties of Dark Matter Halos as a Function of Local Environment Density

In low density
regions:

Tidal Force
always lower on
average

Spin parameter
always lower on
average

Explanation:

halos didn’t have
as many
neighbors to
torqgue them up as
they formed /
evolved.

Christoph Lee, UCSC
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What about using observational densities?

Usmg Bolshoi-Planck and SDSS:
e Compute observer centric densities in both the simulation and
SDSS (Nth nearest neighbor, counting galaxies/halos within
spheres, Voronoi volume).

* Check whether halos in low density regions still have lower
spin parameters, higher concentrations.

* Check dependence of galaxy size on density measured the
same way as In the simulations.

* Use an abundance-matched catalog to directly compare how
actual galaxy size compares to galaxy size predicted using
halo spin parameter.

* Preliminary results indicate that galaxies are not smaller in low
density regions, i.e. that spin parameter does not control size
for these halos.

* We are testing other predictors of galaxy size as well, such as
a concentration based estimator developed by Fangzhou
Jlang. In collaboration with Graham Vanbenthuysen, Viraj Pandya, Joel Primack,

Peter Behroozi, Aldo Rodriguez-Puebla

Christoph Lee, UCSC January 25th, 2018 UCSC



Using Bolshoi-Planck and SDSS:

What about using observational densities?

e Compute observer centric densities in both the simulation and
SDSS (Nth nearest neighbor, counting galaxies/halos within
spheres, Voronoi volume).

* Verity whether halos in low density regions still have lower spin
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Dark Matter Halo Properties vs. Local Density and Cosmic Web
Location

Tze Goh; Joel R. Primack; Christoph T. Lee; Miguel Aragon-Calvo; Doug
Hellinger; Peter Behroozi; Aldo Rodriguez-Puebla; Elliot Eckholm; Kathryn
Johnston; MNRAS, 2019 Abstract:

We study the effects of the local environmental density and the cosmic web envi-
ronment (filaments, walls, and voids) on key properties of dark matter halos using the
Bolshoi-Planck ACDM cosmological simulation. The z = 0 simulation is analysed into
filaments, walls, and voids using the SpineWeb method and also the VIDE package
USiﬂg Bolshol Planck of tools, both of which use the watershed transform. The key halo properties that we
: study are the specific mass accretion rate, spin parameter, concentration, prolateness,

COsmO|OglCa| dark matter scale factor of the last major merger, and scale factor when the halo had half of its
simulation. with cosmic z = 0 mass. For all these properties, we find that there is no discernible difference

, 7 , , between the halo properties in filaments, walls, or voids when compared at the same
web identified via I\/I|guel environmental density. As a result, we conclude that environmental density is the core

; attribute that affects these properties. This conclusion is in line with recent findings

Aragon—CaIvo S that properties of galaxies in redshift surveys are independent of their cosmic web
SpineWeb framework. environment at the same environmental density at z ~ 0. We also find that the local
web environment of the Milky Way and the Andromeda galaxies near the centre of
a cosmic wall does not appear to have any effect on the properties of these galaxies’
dark matter halos except for their orientation, although we find that it is rather rare
to have such massive halos near the centre of a relatively small cosmic wall.

We compare the properties of halos in different cosmic web environments, but at
the same environmental density.

We find that density rules — that is, at the same local density, there is no significant
difference in the distributions of the halo properties we consider between halos in
walls, filaments, or voids.
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Tidal Stripping and Post-Merger Relaxation of Dark Matter Halos:

Causes and Consequences of Mass Loss
C. Lee, J. Primack, P. Behroozi, A. Rodriguez-Puebla, D. Hellinger, J. Zhu, A. Tuan, A. Dekel
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Tidal Stripping and Post-Merger Relaxation of Dark Matter Halos:

Causes and Consequences of Mass Loss
C. Lee, J. Primack, P. Behroozi, A. Rodriguez-Puebla, D. Hellinger, J. Zhu, A. Tuan, A. Dekel
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Tidal Stripping and Post-Merger Relaxation of Dark Matter Halos:

Causes and Consequences of Mass Loss
C. Lee, J. Primack, P. Behroozi, A. Rodriguez-Puebla, D. Hellinger, J. Zhu, A. Tuan, A. Dekel
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Tidal Stripping and Post-Merger Relaxation of Dark Matter Halos:

Causes and Consequences of Mass Loss
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Causes and Consequences of Mass Loss

C. Lee, J. Primack, P. Behroozi, A. Rodriguez-Puebla, D. Hellinger, J. Zhu, A. Tuan, A. Dekel

Why do halos lose mass?

Most halos lose mass via
relaxation after a major (or
MiNor) merger.
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What happens when halos
lose mass?
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What happens when halos
lose mass?

Major Merger

Xoft = Center of Mass - Peak Density

Virial Ratio
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What happens when halos
lose mass?

Major Merger

Major mergers typically
(temporarily) cause:

Initial iIncrease in scale radius,
spin parameter, prolateness,
X_off, and virial ratio

Xoit = Center of Mass - Peak Density
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What happens when halos
lose mass?

Major Merger

Major mergers typically
(temporarily) cause:

Initial Increase in scale radius,
spin parameter, prolateness,
X_off, and virial ratio

As they relax, they shed high
energy material and slowly settle
back to lower values of scale
radius, spin parameter,
porolateness, X_off, and virial ratio
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What happens when halos
lose mass?
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Tidal stripping typically
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Decrease in scale radius, spin
parameter, and prolateness

due to preterential removal of
high energy material from outer
halo and steepening of outer
density profile
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Summary

* L ow mass halos in LOW density regions at z = O experience consistently low
tidal forces over time, have consistently low spin parameters, slightly higher
concentrations, similar accretion rates, and are more prolate compared to
median density halos.

* | ow mass halos in HIGH density regions at z = O experience increasingly strong
tidal forces over time compared to median density halos. These tidal forces
cause: reduced accretion rates, increased concentrations, reduced spin
parameters, and sphericalization.

* Halo mass loss is relatively common at z = 0 (10-20% of all halos have lost more
than 5% of their peak mass).

* \We identity two primary mass loss mechanisms: tidal stripping and relaxation
following a merger.

* Major mergers often result in 5-15% mass loss, while tidal stripping can remove
significantly more, depending on tidal force history.

e Tidal stripping results in reduced scale radius (increased NFW concentration),
spin parameter, and prolateness.

* Mergers cause increased scale radius (lower NFW concentration), spin
parameter, prolateness, X_off, and virial ratio, followed by a gradual settling as
the halo relaxes.
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Deep Learning applied to Galaxy Evolution: Clump Detection

Goal: accurately predict the presence and properties of star-forming
clumps in high redshift galaxies.
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Deep Learning applied to Galaxy Evolution: Clump Detection

Goal: accurately predict the presence and properties of star-forming
clumps in high redshift galaxies.

Christoph Lee, UCSC

Why?

Massive star-forming clumps are
thought to play an important role in
the evolution of galaxy structure,
stellar feedback, and black hole
growth.

In galaxy simulations, one of the
biggest uncertainties is what
feedback prescription to use.
Stellar clumps are a key diagnostic
tool to constrain the feedback
prescription and crucial in
understanding how galaxies evolve.
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Deep Learning applied to Galaxy Evolution: Clump Detection

GalSim Training Image Clump Mask
1 px =0.06"

A

7.68"

128 px ~ 60 Kpc

\ 4 v

To do this, we've trained a deep learning (U-Net) model using simple
GalSim mock images of clumpy galaxies, paired with mask images
showing the clump locations for each training image.
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Deep Learning applied to Galaxy Evolution: Clump Detection

Model Design:; U Net
19 ¥ (Example network from Ronneberger et al 2015)
128 64 64 2
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Deep Learning applied to Galaxy Evolution: Clump Detection

Training and testing with GalSim mock clum alaxies

How well does the model recover clumpy regions
from the GalSim test set? (AImost exactly!)
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Deep Learning applied to Galaxy Evolution: Clump Detection

Training and testing with GalSim mock clumpy galaxies

How well does the model recover clumpy regions from the GalSim test set?
(Almost exactly!)

1.0-_ % 1.0-_ W:::_ R 4
0.9 GC) 0.9 - ——
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= = 08" — Al
S 0.7 5 07- ——- 2223
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# True Clumps (GalSim) # True Clumps (Galsim)

Purity (# True clumps / # SExtractor clumps): Of all the clumps detected by the model, how many
are correct? Best performance is about 95-99% for galaxies with multiple, non-overlapping
clumps, except for the faintest galaxies (m > 25).

Completeness (# True clumps / # GalSim clumps): How many of the true clumps did the model
recover? Best performance is nearly 100%, except for the faintest galaxies (m > 25).
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Deep Learning applied to Galaxy Evolution: Clump Detection

We then apply the clump-detection model to real CANDELS galaxies,
including the same clumpy galaxies analyzed by Yicheng Guo et al 2018, to

determine how well the model predictions agree with the clumps identitied in
Guo’s catalog.

Christoph Lee, UCSC January 25th, 2018 UCSC



Deep Learning applied to Galaxy Evolution: Clump Detection

Comparison with existing clump catalog for CANDELS galaxies
How do the clumpy regions identified by the model compare to the clumpy regions

: o . o |
identified by the Guo analysis? Guo Detection Band (Rest Frame UV)
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Purity (# True clumps / # SExtractor clumps): Of all the clumps detected by the model, how
many are correct”? About 40-50% in cases where SExtractor detection band matches Guo
detection band (red dots).

Completeness (# True clumps / # GalSim clumps): How many of the true clumps did the
model recover? About 85-90%, in cases where SExtractor detection band matches Guo
detection band (blue dots).
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Deep Learning applied to Galaxy Evolution: Clump Detection

Comparison with existing clump catalog for CANDELS galaxies
How do the clumpy regions identified by the model compare to the clumpy regions

identified by the Guo analysis? After applylng compatlblllty cuts

0.9
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Purity (# True clumps / # SExtractor clumps): Of all the clumps detected by the model, how
many are correct”? About 70% in cases where SExtractor detection band matches Guo
detection band (red dots).

Completeness (# True clumps / # GalSim clumps): How many of the true clumps did the
model recover? About 85-90%, in cases where SExtractor detection band matches Guo
detection band (blue dots).
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Deep Learning applied to Galaxy Evolution: Clump Detection
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Summary and Continuing Work...

¢ U-Net model enables image segmentation, allowing us to generate clump
likelihood images from input galaxy images.

e Qur training set consists of 50,000 fake clumpy galaxies (and associated clump
masks) generated using GalsSim toolkit.

* U-Net model paired with SExtractor identifies clumps in our test set with nearly
perfect purity and completeness.

* \When run on the same CANDELS galaxies used by Yicheng Guo in his 2015 and
2018 papers, the U-Net model achieves about 70% purity and 85%
completeness

* Guo focused only on star forming clumps detected in rest-frame UV, but we can
now find clumps in any wave band — including clumps that are not star forming.

* Guo’s analysis was limited to several thousand galaxies, but we can now extend
this multi-band clump analysis to the full CANDELS survey of ~100,000 galaxies.

® Using the U-Net developed here, our collaborators are extending this analysis to
find clumps in “CANDELIized” images (realistic images degraded to HST
resolution) from high resolution hydrodynamical galaxy simulations.
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