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Abstract

Simulated Galaxy Remnants Produced by Binary and Multiple Mergers

by

Gregory S. Novak

I compute simulated integral field kinematic data for the remnants produced in a

large suite of hydrodynamic binary galaxy merger simulations in order to compare to the

galaxies observed as part of the SAURON survey. I find that binary mergers are plausibly

the formation mechanism for the ∼80% of SAURON galaxies with fast rotation velocities, in

agreement with previous studies. However, the simulations of gas-rich binary mergers produce

virtually no slow rotators observed to make up ∼20% of the SAURON galaxies.

In order to identify the origin of these slow rotators, I perform a new set of galaxy

merger simulations involving merger histories more complex than single binary mergers of disk

galaxies. I set up simple, idealized simulations with four or eight progenitor galaxies in order to

build intuition about how a simulated galaxy’s merger history affects its kinematic structure.

I find that if the merger tree consists solely of roughly equal mass binary mergers, then the

remnant is a fast rotator similar to that produced by a single binary merger of disk galaxies.

However, if the progenitors merge with the central galaxy one after another in a sequence of

mergers with decreasing mass ratios, then the remnant does not rotate. This is a plausible

formation scenario for the observed SAURON slowly-rotating galaxies.

To see how frequently this happens with realistic initial conditions, I extract halos

from a large-scale cosmological simulation and re-simulate the region with higher resolution.

These simulations include intergalactic gas that is able to replenish the galaxies’ gas supply

as the simulation runs. In all cases, I get rapidly rotating remnant galaxies in spite of having



several halos with diverse merger histories.
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Chapter 1

Introduction

Three quarters of the stellar mass in the universe is in spheroids (Fukugita & Peebles,

2004), yet there are many open questions about how these systems came to be as we see them

today. Since the pioneering papers by Toomre & Toomre (1972; 1977), the “Major Merger

Hypothesis” has been the dominant explanation of the formation of these spheroids. In the

intervening years, the hypothesis has remained just that: a plausible hypothesis where one can

verify that the results of simulated galaxy mergers are broadly consistent with the properties

of observed galaxies.

The Major Merger Hypothesis has remained “plausible” rather than “proven” or

“disproven” because it is difficult to test the idea quantitatively. For many years computers

lacked sufficient computational power to address the question in detail. Even today, there are

important physical processes that are only included through sub-resolution recipes that purport

to model the underlying physics—in particular the roles of the cosmological environment,

feedback from active galactic nuclei (AGN), and feedback from star formation. Nevertheless,

the state of the art with respect to simulations has progressed to the point where it is useful
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to attempt detailed quantitative comparisons between actual galaxies and simulated galaxy

merger remnants.

Although it is widely believed that many elliptical galaxies (Es) and most classical

galactic bulges formed via mergers, many aspects remain unclear. When did the mergers occur?

Can the structure of the spheroids be explained by simple binary mergers of spiral galaxies, or

are more complex assembly histories necessary? What was the nature of the progenitors, and

how much gas dissipation was involved? How were the super-massive black holes (SMBHs)

associated with galactic spheroids affected by the merger? When did the SMBHs grow by gas

accretion producing bright AGN, and how did they in turn affect the evolution of the remnant

galaxies? How did all these processes result in the observed color bimodality of galaxies, and

in the Fundamental Plane defining the observed correlations between structural properties of

Es? How did they produce the entire evolving population and spatial distribution of early-type

galaxies?

The overall goal of all of this is to turn the “Major Merger Hypothesis” into the

quantitative “Major Merger Theory.” While galaxy merger simulations certainly produce

plausible galaxy remnants, it remains unknown whether or not they produce accurate, realistic

predictions in fine quantitative detail.

The plausibility of the Major Merger Hypothesis based as it is on simulations with

incomplete implementations of the relevant physics indicates that the gross properties of stellar

spheroids are well explained by very simple physics. Toomre & Toomre got useful results using

only restricted-three-body simulations. However, observations of stellar spheroids have grown

ever more detailed and there is discriminatory power in those fine details. The fact that the

Major Merger Hypothesis has remained plausible but not proven also indicates that tests it

has passed have not been very demanding.
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1.1 History

The Atlas of Peculiar Galaxies (Arp, 1966) highlighted the diversity of stellar systems

in the universe. The role of mergers in generating this diversity was pointed out in the papers

by Toomre & Toomre (1972; 1977). Since then the “Major Merger Hypothesis” that elliptical

galaxies primarily form by major mergers of spiral galaxies has remained plausible and has

become the dominant model of how these galaxies formed.

Toomre & Toomre (1972) emphasized the importance of running simple, computa-

tionally cheap simulations as a way of gaining insight in into the vast space of input parameters

to a galaxy merger simulation. They restricted 3-body simulations and showed that their (ad-

mittedly vastly oversimplified) simulations nevertheless reproduced the gross features of both

interacting galaxies (tidal tails) and early type galaxies (spheroidal merger remnants).

Hernquist et al. (1993) argued on the basis of phase space density that gas physics

and dissipation must be essential to elliptical galaxy formation, and the need for hydrody-

namics effectively put a floor on the computational cost associated with a minimally realistic

simulation. In the mid 90’s it become possible to run hydrodynamic simulations with reason-

able parameterizations of sub-resolution physics (Mihos & Hernquist, 1996; Weil & Hernquist,

1996; Springel, 2000)

Naab & Burkert (2003) ran a large set of gas-free (and thus computationally relatively

cheap) simulations and extensively analysed the diskiness/boxiness of the isophotes of the

resulting galaxies. Cox (2004) ran ∼ 100 hydrodynamic simulations of gas-rich spiral galaxy

mergers, focusing on the star formation history of galaxies during the interactions. Dekel et al.

(2005) used those simulations to show that simulated galaxy mergers are plausibly similar to

early type galaxies using a variety of kinematic observables.

The most interesting recent results in our understanding of the role that mergers play
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in galaxy formation concern the role of cosmological environment and the effects of AGN on

galaxy merger remnants. The background on these issues is discussed below as it relates to

the proposed research.

Another important source of uncertainty in early galaxy merger simulations was that

there was little guidance about the cosmologically likely orbits of merging galaxies, dark halo

concentrations, and time between mergers. The past ten years have seen revolutionary ad-

vances in the precision measurement of cosmological parameters. At the same time, cosmo-

logical simulations of large-scale structure formation have reached a point where it is possible

to extract realistic probability distributions for orbit geometries (Khochfar & Burkert, 2006).

The past decade has seen a confluence of observational and theoretical information

that makes this problem ripe for revisiting. 1) The computational cost of a single hydrodynamic

simulation of sufficient resolution to determine many detailed observables has become low

enough that it can be thought of as cheap. 2) The cosmological parameters are now known to

high precision and simulations of structure formation can give needed information about the

cosmological context in which galaxies form. This removes a significant source of uncertainty

from galaxy-scale simulations.

Detailed testing of hydrodynamic simulations using observational data is vital because

of the many modeling uncertainties, such as the treatment of include supernova and AGN

feedback. It is often possible to show that astrophysical simulations satisfy gross constraints,

for example that the galaxies resulting from merger simulations fall on the Fundamental Plane

(Robertson et al., 2006; Boylan-Kolchin et al., 2006) Moreover, we have shown in detail (Dekel

et al., 2005) that the remnants of our hydrodynamic binary major mergers accurately match the

observations of planetary nebular velocity dispersions around typical nearby elliptical galaxies.

However, ever-richer data sets provide ever-more-detailed quantitative comparisons with the
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simulated galaxy merger remnants.

There are two general goals when analyzing the output of numerical simulations. One

goal is purely theoretical: What are the characteristics of the galaxy produced by a given initial

state? What were the important features of that initial state that led to each property of the

final state? A single simulation does not teach the simulator anything since he does not yet

know which aspects of the simulation contributed to the success and which were extraneous.

Therefore it is important to develop an understanding of which simulation input parameters

determine which properties of the final galaxy.

The second goal connects with the actual universe: Does the final state of this sim-

ulation correspond to galaxies that we see in the universe? The first step in comparison with

observed galaxies is to focus on particular observables, one at a time, in order to see if sim-

ulated and observed galaxies occupy the same region of the observable space with similar

distributions.

In this thesis I will characterize the structure and kinematics of a large set of hydro-

dynamics binary merger remnants. I will also take the first steps toward an understanding of

how a galaxy’s mass build-up history affects its final structure, and how a galaxy’s cosmological

environment influences its properties.
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Chapter 2

Properties of Simulated

Remnants

The starting point for this study is the set of hydrodynamic binary major merger sim-

ulations done by Cox as part of his Ph.D. thesis (Cox, 2004; Cox et al., 2006b). In this chapter

I briefly describe these simulations, the code used to run them, and the major assumptions

that were made in order to model star formation and gas heating due to supernovae.

The goal of this chapter is to characterize the shapes and density profiles of the

simulated merger remnants. This is interesting in its own right in order to understand how

the progenitor galaxies, merger orbits, and numerical code each influence the properties of

the merger remnant. It is also necessary to have a good understanding of the properties

of binary merger remnants in order to make sense of the simulations incorporating multiple

galaxy mergers to be discussed in Chapter 4.

I will show that these merger remnants have density profiles that are very close to

isothermal profiles with a logarithmic density slope -2. There is little if any feature in the total
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density profile at the point where the remnant switches from being dominated by baryonic

matter to being dominated by dark matter.

There is a robust and easily understood correlation between the shapes of stellar

merger remnants and their dark halos. This correlation has interesting implications for the

interpretation of observations of galaxy-galaxy gravitational lensing. The procedure in galaxy-

galaxy lensing is to build up an observational signal by optically aligning and stacking many

foreground galaxies and then to look for systematic effects in the shapes of the background

galaxies in order to measure dark halo masses and shapes. I calculate the effect of the intrinsic

correlation between the shapes of simulated stellar remnants and their dark halos on galaxy-

galaxy lensing surveys.

2.1 Previous Work

Detailed testing of hydrodynamic simulations using observational data is vital because

of the many modeling uncertainties, such as the treatment of include supernova and AGN

feedback. It is often possible to show that astrophysical simulations satisfy gross constraints,

for example that the galaxies resulting from merger simulations fall on the Fundamental Plane

(Robertson et al., 2006; Boylan-Kolchin et al., 2006). Moreover, Dekel et al. (2005) showed in

detail that the remnants of these hydrodynamic binary major mergers accurately match the

observations of planetary nebular velocity dispersions around typical nearby elliptical galaxies,

contrary to the claims (Romanowsky et al., 2003) that these galaxies do not have massive dark

matter halos.

Naab & Burkert (2001, 2003) performed a large suite of dissipationless disk galaxy

merger simulations with a variety of orbits and mass ratios from 1:1 to 4:1. They found that

equal mass mergers produce remnants that can show boxy or disky isophotes (Bender et al.,
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1988) depending on viewing angle, but that higher mass ratio mergers produce disky isophotes.

Naab et al. (2006b) used merger simulations paired with a semi-analytic model of

galaxy formation (e.g. Cole et al., 1994, 2000; Somerville & Primack, 1999) to argue that

nearly dry mergers between two early-type progenitors are necessary to produce massive,

slowly rotating elliptical galaxies with boxy isophotes.

Naab et al. (2006a) found that mergers with gas fractions 10% have observable prop-

erties that are significantly different from gas-free merger remnants. In particular, the presence

of gas favors tube orbits at the expense of box orbits in the remnants, leading to galaxies with

disky isophotes.

Cox et al. (2006a) extensively analysed the kinematic structure of dissipationless and

dissipational simulated galaxy merger remnants, including where remnants fall in the v/σ

vs. ellipticity diagram, the frequency of kinematic misalignments, and the three-dimensional

shapes of remnants. Regarding shapes, they found that dissipationless remnants had triaxial

shapes while increasing gas fractions resulted in more oblate remnants.

Naab & Trujillo (2006) and Hopkins et al. (2008b) analysed the surface brightness

profiles of simulated merger remnants. Naab & Trujillo (2006) used dissipationless simulations

where the progenitors had or did not have bulges. They found that mass ratios of 1:1 and 2:1

lead to Sérsic parameters between 3 and 4, characteristic of elliptical galaxies. However, higher

mass ratios (3:1, 4:1, and 6:1) have disk-like components with exponential surface-brightness

profiles. Hopkins et al. (2008b) and found that their remnants had centrally concentrated

populations populations of young stars produced in a starburst during the merger. A two-

component surface-brightness formula consisting of the sum of an inner exponential and an

outer Sérsic profile allowed them to separate the two populations in the photometric profile

of the merger remnant. They went on to apply their fitting formula to merger remnants in
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the nearby universe and claim that i) their formula results in better fits than a single Sérsic

function, and ii) that the light in the inner exponential profile accurately recovers the amount

of gas converted to stars in the last major merger experienced by a given galaxy.

González-Garćıa & Balcells (2005) looked at equal- and unequal-mass dissipationless

mergers and found that the presence or absence of bulges had a large effect of the structure of

remnants. Bulges in the progenitors led to remnants with higher rotation velocities and less

triaxiality. Their progenitors with bulges had stellar bulge mass fractions of 1:3.

Bournaud et al. (2005) used a particle-mesh code with hydrodynamics implemented

via a sticky-particle scheme to study merger remnants with mass ratios up to 10:1. They

looked at surface brightness profiles, isophotal shapes, and rotation velocities, concluding that

mergers with mass ratios from 1:1 to 3:1 produce elliptical remnants while mass ratios above

4:1 produce hybrid objects that have some of the properties of elliptical galaxies and some of

the properties of spirals.

2.2 Numerical Simulations

I analyse the binary merger simulations performed by Cox in his Ph.D. thesis and

in subsequent years, specifically minor merger simulations described in (Cox et al., 2008). In

chapter 4 I analyze simulations of multiple galaxy mergers with idealized and cosmologically

motivated initial conditions that I performed. In order to gain some understanding of what is

going on in the binary merger case and, by comparison, the multiple merger case, for now I

restrict my attention to the binary mergers.

Simulations were performed using the entropy-conserving version of the SPH code

GADGET (Springel et al., 2001; Springel & Hernquist, 2002; Springel, 2005) with a gravita-

tional smoothing length of 100 pc. The progenitor galaxies have baryonic masses from 1.6×109
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Sbc G3 G2 G1 G0
Mdark 81.2 116 51.0 20 5.10
Mdisk 3.92 4.11 1.35 0.470 0.0980
Mbulge 1.00 0.889 0.150 0.0300 0.00200
Mgas 5.36 1.22 0.480 0.200 0.0600
fbaryon 12.7 5.46 3.88 3.5 3.14
fgas 52.2 19.6 24.2 28.6 37.5
fbulge 20.3 17.8 10.0 6.00 2.00
Ndark 100 120 80 50 30
Ndisk 30 50 30 20 10
Nbulge 10 20 10 5 1
Ngas 30 50 30 20 10
Rvir 241 272 207 151 96.0
Rdisk 5.5 2.85 1.91 1.48 1.12
Rbulge 0.45 0.62 0.43 0.33 0.25
Rgas 16.5 8.55 5.73 4.44 3.36
C 11 6 9 12 14

Table 2.1: Basic properties of merger simulation progenitors. Mdark, Mdisk, Mbulge and Mgas

are the masses of the dark matter, stellar disk, stellar bulge, and gas disk respectively, in units
of 1010M�. The values fbaryon, fgas, and fbulge are the baryonic-to-dark, gas-to-baryonic, and
bulge-to-stellar mass ratios in percent, respectively. The values Ndark, Ndisk, Nbulge, Ngas

are the number of dark matter, stellar disk, stellar bulge, and gas particles respectively, in
thousands. The values Rvir, Rdisk, Rbulge, and Rgas are the virial radius, the stellar disk
exponential scale length, the stellar bulge exponential scale length, and gas disk exponential
scale length in kiloparsecs, respectively.

to 2 × 1011M�, gas fractions between 20% and 70%, consist of ∼100,000 particles, and use

a parameterization of star formation feedback from supernovae tuned to match the empirical

Schmidt law (Kennicutt, 1998).

There are five progenitor galaxies considered here: G3, G2, G1, G0 and Sbc. The

G series progenitors are designed to resemble low-redshift galaxies as observed by the Sloan

Digital Sky Survey (SDSS, York et al., 2000). These progenitors follow the trends with mass

of gas fraction, bulge-to-disk ratio, disk scale lengths, and so forth seen in the SDSS. The Sbc

progenitor is a massive, gas-rich, spiral galaxy designed to resemble galaxies at higher redshift

than the Sloan survey. Table 2.1 summarizes the properties of the progenitors.
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2.2.1 Star Formation and Supernovae

The simulations include a sub-resolution scheme to model star formation and su-

pernova energy injection into the interstellar medium. Motivated by the empirical Schmidt

law Schmidt (1959) relating star formation rate to three-dimensional gas density, the star

formation rate is:

dρ∗
dt

=


c∗ρgas/tdyn : ρgas ≥ ρth

0 : ρgas < ρth

(2.1)

where rho∗ is the density of stars, ρgas is the density of gas, and tdyn = (4πGρgas)−1/2 is the

gas dynamical time, ρth is the minimum density for gas to form stars, and c∗ is a constant.

The threshold density used here is 0.0171 M� pc−3, motivated by Kennicutt’s finding that star

formation rates drop significantly for gas surface densities of less than 10 M� pc−3. The value

of c∗ is chosen so that the galaxies lie on the Tully-Fisher relation.

Every star above 8 M� is assumed to instantaneously explode as a supernova, in-

jecting 1051 ergs of energy into an ad-hoc reservoir separate from the thermal energy of the

gas particle. One may think of this separate energy reservoir as the energy in sub-resolution

turbulent motions of the gas. The turbulent energy contributes to the pressure of the gas

particle, but does not, for example, affect the temperature (and therefore cooling) of the gas

particle. This turbulent energy is then slowly transferred back to the thermal energy of the

gas particle.

dq

dt
=
εSN

ρgas

(
dρ∗
dt

)
− q

τfb

(
ρgas

ρth

)(1−n)/2

(2.2)

where q, is the specific energy in the turbulent reservoir, εSN is the energy injected by su-

pernovae per solar mass of stars formed, τfb is the timescale over which turbulent energy is

thermalized, and n is a constant that sets the polytropic index of the effective equation of state
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of star forming gas. The first term represents energy injection into the turbulent reservoir due

to star formation, and the second represents thermalization of the turbulent energy. When

the gas density is below ρth, the value of n is fixed to 2 in order to avoid long thermalization

timescales for non-star-forming gas.

Thus the uncertain parameters in the supernova feedback recipe are n and τfb. Three

possibilities for each value are considered: n = 0, 1, or 2 and τfb= 0.827, 8.27, and 82.7 Myr.

These values of τfb are named low, med, high, respectively. I will not always explore all nine of

the resulting possibilities, because some of the parameter values are very expensive to simulate.

Lower values of τfb and n result in higher computational costs. The most common value used

in the simulations considered here is n2med; those are the parameters used unless otherwise

indicated.

A scheme like this is necessary because star formation takes place in cold, dense gas,

where the energy loss from radiative cooling is high. Early simulations of galaxy mergers with

star formation found that purely thermal feedback had little effect in stabilizing the gas against

runaway star formation because the energy injected into the the temperature of the gas was

radiated away very quickly (Navarro & White, 1993; Springel, 2000)

There are two sets of simulations of binary mergers considered here. The Sbc series

consists of equal mass mergers between two identical Sbc progenitors on a variety of orbits. the

G series focuses on the effect of different galaxy mass ratios. Only a few orbits are considered.

Table 2.2 gives a list of the merger orbits considered and their sometimes convoluted naming

scheme. I will usually refer to orbits by their characteristics rather than their simulation names

so that Table 2.2 will not often be necessary.

Given the large number of simulations under consideration, it is sometimes useful to

focus on a single simulation in order to avoid being overwhelmed by a large number of plots.

12



Name θ1 φ1 θ2 φ2 Rperi e Description
Sbc201 0 0 30 60 11.0 1.0 P-P
Sbc202 180 0 30 60 11.0 1.0 R-P
Sbc203 180 0 210 60 11.0 1.0 R-R
Sbc206 90 0 30 60 11.0 1.0 T-P
Sbc207 270 0 30 60 11.0 1.0 T-P
Sbc217 90 0 90 60 11.0 1.0 T-T
Sbc204 0 0 30 60 5.5 1.0 P-P, small impact parameter
Sbc208 180 0 30 60 5.5 1.0 R-P, small impact parameter
Sbc209 180 0 210 60 5.5 1.0 R-R, small impact parameter
Sbc205 0 0 30 60 44 1.0 P-P, large impact parameter
Sbc211 180 0 210 60 44.0 1.0 R-R, large impact parameter
Sbc212 0 0 30 60 11.0 0.9 P-P, bound orbit
Sbc218 180 0 210 60 11.0 0.9 R-R, bound orbit
Sbc213 0 0 30 60 25.0 0.8 P-P, lower energy orbit, large impact pa-

rameter
Sbc214 0 0 30 60 44.0 0.8 P-P, lower energy orbit, even larger im-

pact parameter
Sbc216 0 0 30 60 100.0 0.8 P-P, lower energy orbit, largest impact pa-

rameter
Sbc210 150 0 150 180 2.918 1.0 R-R, zero angular momentum
Sbc219 150 0 150 180 2.89 0.97 R-R, zero angular momentum

Table 2.2: Orbits for in the Sbc series of galaxy simulation. From Cox (2004), reproduced
here for convenience. The two progenitor disk galaxies are initially in the x− y plane and are
rotated about the x axis by θ and then about the z axis by φ. Abbreviations in the Description
column refer to the spin of each galaxy relative to the orbit, and are P for prograde, R for
retrograde, and T for tilted such that the disk is perpendicular to the orbit plane.
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Figure 2.1: Density profiles of the two fiducial simulations with each type of matter indicated.
The 3D effective radii of the remnants are 5.25 and 5.05 kpcrespectively. These profiles are
typical of those for the binary galaxy merger remnants. Chapter 5 will explore the density
profiles of all of the remnants in greater detail.

The Sbc201a-u4 and G3G3b-u1 simulations are therefore christened the “fiducial” simulations.

Cox (2004) and Cox et al. (2006b) contain more detailed information about the code,

simulations, star formation, and feedback schemes.

2.3 Results

In this section I seek to briefly characterize the density profiles, shapes, and velocity

profiles of the simulated binary merger remnants.

2.3.1 Density Profiles

Figure 2.1 shows 3D density profiles for two of the binary merger remnants. A few

features to note are that the centers are dominated by stars that started out in the bulge or

stars that were formed during the simulation, that the outer parts of the stellar remnants are

dominated by stars that started out in the stellar disks, and that the dark matter density

becomes larger than the stellar density at 0.8 to 1.6 effective radii for these two simulations.

Furthermore, the total mass density profile is extremely close to a power law, with
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virtually no feature where the density transitions from being dominated by baryons to being

dominated by dark matter. This is the old disk-halo conspiracy (Burstein & Rubin, 1985;

Bahcall & Casertano, 1985; Kent, 1987) arising naturally in simulations. A precise under-

standing of the origin of these nearly-perfect power laws in spite of the different physics that

governs the evolution of the stellar, dark, and gaseous components of the simulation is an

interesting question that unfortunately remains unaddressed in this work. Violent relaxation

(Lynden-Bell, 1967; Shu, 1978) would seem to provide part of the understanding since it de-

scribes how energy is transferred between individual stars through global potential fluctuations

during violent collapse in spite of the lack of two-body collisions in stellar systems. However,

Lynden-Bell’s analysis considered dissipationless collapse of a single type of matter (that is,

no dark matter or gas), and most simulations focusing on violent relaxation (e.g. van Albada,

1982) have done the same. The dynamics that robustly lead to this property of simulated

remnants remains unclear.

Given the the total mass density profile is strikingly close to a power law, and that

the dark matter and stellar density profiles individually are not far from power laws, simple

power law fits to the density profiles are a compact way to summarize the density profiles of

the remnants.

Figure 2.2 shows power-law fits to the central densities of all of the G and Sbc series

mergers. The fit runs from 500 pc to the 3D effective radius of the baryonic component. Thus

the fit to all of the different matter components is over the same radial range. This radial

range is chosen to provide a close comparison to the gravitational lensing data discussed in

Chapter 6, which typically extends to half of an effective radius. The zero-point of all of the

fits is the density at half of the effective radius.

Focusing on the central density does not do justice to the full density profile of the
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Figure 2.2: Central slopes and densities of matter by type. From the left: all matter, dark
matter, and stellar matter. All remnants have quite similar density structure in spite of the
large number of orbits, progenitors, and gas fractions. The power-law index of the stellar
density profiles are slightly steeper than isothermal profiles (for which the power-law index
is -2). The densities at half of the effective radius (the zero-point of the fits) very by about
an order of magnitude. This figure introduces a convention that will be used throughout this
thesis: In scatter plots, the Sbc major mergers are represented by blue circles, G series equal
mass major mergers by red circles, G series unequal mass major mergers by red crosses, and
G series minor mergers by small red Xs. The legend will not be repeated in every figure.

dark matter, which extends to much larger radius. However, the dynamical time falls rapidly

with radius and the dark halos have not relaxed by the time these simulations are stopped.

Therefore the density profile of the dark matter at large radius has more to do with the

initial conditions of the model galaxies than the dynamics at play during the simulation. Most

observational information about galaxies comes from the central parts, so I do not further

consider the large-radius behavior of the remnant density profiles.

The density structure of the total mass density of all of the remnants is quite re-

markably similar, and in agreement with the assertion in Bolton et al. (2008) that singular

isothermal ellipsoids are the best mass models for elliptical galaxies. The most obvious differ-

ence between the G and Sbc series is in the dark matter density profiles. The Sbc remnants
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Figure 2.3: Central slopes and densities of stars by type. From the left, stars that were orig-
inally in the disk, originally in the bugle, and stars that were created during the simulation.
Bulge stars and new stars have quite steep density profiles while disk stars are close to isother-
mal. For stars created in the simulation, there is wide variation in both the slope and the
density at re/2.

have steeper, denser dark matter profiles than most of the G series simulations. This is be-

cause the Sbc progenitor has a high halo concentration and adiabatic contraction of the halo

due to baryonic infall was taken into account. By contract, the G series progenitors did not

use adiabatically contracted halos.

Figure 2.3 shows the density structure split by type of star. Bulge stars have a

steep density profile because they start out in a small, tightly-bound spherical structure and

are not much disturbed by the merger. New stars have steep density profiles because their

formation is a strong function of gas density. Finally, disk stars end up with a nearly isothermal

distribution, with the G-series mergers having systematically slightly steeper density profiles.

Figure 2.4 shows a histogram of the the dark matter fractions (either projected or

3D) for all of the merger remnants. There are significant differences between major and minor

mergers as well as between G and Sbc series mergers. G series minor and unequal-mass major
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Figure 2.4: Histograms of the dark matter fractions within one effective radius. On the left,
within one 3D effective radius, and on the right, projected mass fraction within one projected
effective radius. There is a distinct difference between the G and Sbc series of mergers, with
the Sbc series having larger central dark matter fractions than the G series minor and unequal-
mass-major mergers.

mergers show lower dark matter fractions than Sbc equal mass major mergers. The G series

equal mass major mergers span a wide range of DM fractions.

Remnants thus show some diversity in their mass profiles, but one remarkable regu-

larity is the slope of the total mass profile near one stellar effective radius. Figure 2.2 shows

that in spite of very different initial galaxy models, orbits, and feedback recipes, the density

structure remains very consistent.

2.3.2 Shapes of Stellar Remnants and Dark Halos

I find that stellar remnants are mostly oblate while dark matter halos are mostly

prolate or triaxial. The stellar minor axis and the halo major axis are almost always nearly

perpendicular. This can be understood by considering the influence of angular momentum

and dissipation during the merger. If binary mergers of spiral galaxies are responsible for the

formation of elliptical galaxies or some subpopulation thereof, these galaxies can be expected

to be oblate and inhabit their halos with the predicted shapes and orientations. These predic-

tions are relevant to observational studies of weak gravitational lensing, where one must stack

many optically aligned galaxies in order to determine the shape of the resulting stacked mass
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distribution. The simple relationship between the dark and luminous matter presented here

can be used to guide the stacking of galaxies to minimize the information lost.

The shapes and mass profiles of dark matter halos from cosmological N -body sim-

ulations have long been studied (Dubinski & Carlberg, 1991; Navarro et al., 1996; Allgood

et al., 2006, and references therein). Cosmological simulations still lack sufficient resolution

to track the shape and orientation of galaxies within their dark matter halos. There is no

reason to believe that the shapes of galaxies and dark matter halos should be similar. It has

only recently become feasible to perform large suites of high-resolution binary galaxy merger

simulations (Naab & Burkert, 2003; Cox, 2004; Cox et al., 2006b; Robertson et al., 2006), and

here I use such simulations in order to study the shapes of the resulting galaxies and their host

halos statistically.

Observationally, the intrinsic shapes of elliptical galaxies have remained elusive. It

has long been known that there seem to be at least two classes of elliptical galaxies: massive,

anisotropic galaxies and lower mass, oblate rotators (Bender et al., 1988, 1992). However,

allowing the possibility of triaxiality leads to degeneracies in deprojection (Franx et al., 1991).

Alam & Ryden (2002) and Vincent & Ryden (2005) have used Sloan Digital Sky Survey (SDSS)

data to conclude that not all elliptical galaxies can be oblate.

The relative orientations of galaxies and their dark halos is relevant to studies of

weak gravitational lensing. Observers stack many images of galaxies in order to use the av-

erage deformation of the shapes of background galaxies to infer properties of the foreground

mass distribution. It is important to stack galaxies coherently in order to build up a detectable

signal. The model presented here represents a physically well-motivated Ansatz to help inter-

pret the results of weak lensing observations. Section 2.3.2.1 gives a description of the galaxy

merger simulations and our method of determining the shape of merger remnants, §2.3.2.1

19



gives our results, and §2.4 summarizes our conclusions.

2.3.2.1 Methods

In order to reduce the dependence on the progenitor galaxy model, here I only consider

major mergers with mass ratios of 1:1 (G3-G3, G2-G2, G1-G1, and G0-G0) and roughly 3:1

(G3-G2, G2-G1, and G1-G0). I also analyze the Sbc series of merger simulations.

To calculate the shape of a merger remnant, I iteratively diagonalize a moment of

inertia tensor using an ellipsoidal window (Dubinski & Carlberg, 1991):

Mij = Σkmkri,krj,k (2.3)

where ri,k is the position vector, i, j refer to coordinates, and k refers to particle number. The

triaxial radius is given by Franx et al. (1991):

ζ =
√
x2/a2 + y2/b2 + z2/c2 (2.4)

where a, b, and c are the major, intermediate, and minor axis lengths, respectively. The sum

over k includes all particles for which r lies within the ellipsoid ζ = 1. The iteration is started

with a spherical window (a = b = c = baryonic half-mass radius), and after each iteration a,b,

and c are scaled so that half of the baryonic mass is enclosed. The result does not appreciably

change if equation (2.3) is modified to include ζ2 in the denominator. Using a spherical window

rather than an ellipsoidal one results in systematically larger axial ratios but does not change

the main result.

When shapes are calculated in this way, sometimes equation 2.3 is modified to include

ζ2 in the denominator. This has the effect of giving equal weight to a given mass independent

of its position within the remnant. However, it has the undesirable side-effect that it mixes

information at all radii with equal weight. That is, if a remnant has axis ratios that change
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with radius, then the calculated shape at large radius will be significantly affected by the mass

at small radius. Our goal in calculating these shapes is to cheaply find an isodensity surface.

Therefore I would like the shape calculated at each radius to include mostly information near

the radius under consideration.

Three-dimensional shapes of galaxies can be quantified with the triaxiality parameter

T = (a2−b2)/(a2−c2). I call an object oblate, triaxial, or prolate if T < 0.25, 0.25 < T < 0.75,

or 0.75 < T , respectively. Shapes of galaxies can also be quantified by ellipticity ε = 1− b/a.

Ellipticities are most often used to describe two-dimensional shapes; I occasionally refer to the

three-dimensional ellipticity of perfectly prolate or oblate (T = 0 or 1) objects since there is

no ambiguity about the use of the equation.

Figure 2.5 illustrates that most stellar remnants are oblate, while the dark matter

halos in which they reside are mostly prolate or triaxial. Figure 2.6 shows that the short

axis of the stellar system and the long axis of the dark matter halo are almost always nearly

perpendicular. This can be understood simply in terms of angular momentum and dissipation,

as shown in Figure 2.7.

This model helps interpret the findings from studies of weak gravitational lensing.

Hoekstra et al. (2004) find that the ellipticity of dark halos is 0.77+0.18
−0.21 times the ellipticity

of the light (i.e., halos are somewhat less flattened than galaxies), assuming that the two are

aligned. According to our result, elliptical galaxies would either show an elliptical halo (if the

long axis of the prolate halo is in the plane of the sky) or a circular halo (if the long axis of

the halo is pointed toward the observer). Thus, the flattening of the dark matter would follow

that of the luminous matter, in agreement with these observations.
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Figure 2.5: Shapes of the luminous and dark components of simulated merger remnants. Left :
the intermediate-to-major axis ratio vs. the minor-to-major axis ratio for stars. Right : Same
as left panel, but for dark matter halos. Objects near the diagonal line are prolate spheroids,
objects near b/a = 1 are oblate spheroids, and objects in between are triaxial. Dotted lines
indicate constant triaxiality T . Most stellar remnants are oblate with ε = 0.5. Most dark
matter halos are either prolate or triaxial.
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Figure 2.6: The angle between the minor axis of the stars and the major axis of the dark
matter. The stellar material is mostly oblate, the dark matter halos are mostly prolate, and
the “preferred” axes of the two shapes are nearly always perpendicular.
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Figure 2.7: The physical interpretation of Figs. 2.5 and 2.6 in terms of angular momentum
and dissipation. The total angular momentum in a merger simulation is usually dominated by
the orbital angular momentum of the two galaxies. As the galaxies merge, both the luminous
and dark components acquire angular momentum from the orbits of the progenitors. Their
velocity dispersion increases along the axis parallel to the direction of approach, leading to
an anisotropic velocity dispersion tensor. Gas in the simulation cools while largely conserving
angular momentum so that it spins up to the point where the shape of the resulting stellar
system is determined by rotation, not velocity dispersion anisotropy. Meanwhile, the dark
matter cannot cool, so its shape is determined by velocity dispersion anisotropy. Therefore, the
stellar system is oblate, dark matter halos are prolate, and the angle between the “preferred”
axes of these two shapes is '90◦.
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2.3.3 Shapes as a Function of Radius

Using an aperture technique as above will always mix information about all radii.

Therefore to compute the shapes of remnants as a function of radius I diagonalize the moment-

of-inertia tensor within an ellipsoidal shell. In this case I seek both inner and outer similar

ellipsoids such that a specified fraction of the mass is contained within each ellipsoid. The

diagonalized moment-of-inertia tensor for the mass within the ellipsoidal shell defines the

shape for that radius. In all of the work below I use ellipsoids containing 0, 10, 20, 30, 40, 50,

60, 70, 80, and 90 percent of the mass. I compute shapes for the mass between each adjacent

pair of ellipsoids, resulting nine shape measurements per remnant. The simulated remnants

have nearly r−2 density profiles, for which the enclosed mass as a function of radius is linear.

Therefore although I compute the shapes for a specified enclosed mass fraction, the shapes are

almost linearly distributed in radius as well.

Figure 2.8 shows the median (over all of the simulated remnants) axis ratios as a

function of radius for the simulated remnants. The median is shown to avoid confusion since

all of the shape profiles are quite similar. Both stars and dark matter become less spherical at

increasing radius. This is expected since the dynamical time is larger at larger radius, so the

system will take longer to come to equilibrium. Note, also, that the shape at a specified mass

fraction is very different for different types of matter. The shape of dark matter in Figure 2.8

refers to larger radii than the shape of stellar material.

These ellipsoids defining the shape of the remnant are not constrained to be centered

on the same point. However, in nearly all cases the distance between the centers of two of

these ellipsoids for a given remnant is less than 10% of their radius. Therefore the remnants

are close to having a common center at all radii.
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Figure 2.8: Median axis ratios of remnants as a function of radius for different types of matter.
The innermost axis ratios are marked with open circles. Both the dark and stellar matter
become less round as you get further from the center of the remnant. The gas at the center of
each remnant is in a very flattened disk, as expected. At larger radius, the gas is mostly in a
hot triaxial halo.

2.3.4 Application to Weak Gravitational Lensing

The interpretation of the Hoekstra et al. data is complicated by the inclusion of

spiral as well as elliptical galaxies in the sample. Mandelbaum et al. (2006b,a) have done a

similar study using SDSS galaxies separated by Hubble type and found that the projected

halo shapes for elliptical galaxies are aligned with the projected stellar shapes, in agreement

with Hoekstra et al. Finally, the projected positions of satellite galaxies also seem to indicate

that the projected shapes of elliptical galaxies and halos are aligned (Sales & Lambas, 2004;

Brainerd, 2005; Yang et al., 2006).

Weak lensing studies necessarily underestimate the flattening of dark matter halos.

Figures 2.9 and 2.10 quantify this by simulating the weak gravitational lensing observations.

Given assumptions about the three-dimensional shapes and mass profiles of galaxies and their
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Figure 2.9: Consequences of our model for weak gravitational lensing measurements where one
must stack many optically aligned galaxies in order to detect flattening of the dark matter
halo. The plot shows the apparent ellipticity of the halo mass surface density vs. the apparent
optical ellipticity of the stacked galaxies. Each shaded region shows the range of possible
apparent ellipticities given an intrinsic, three-dimensional halo ellipticity. The lower bound
of each shaded region is given by assuming a prolate halo and the upper bound by assuming
an oblate halo. This is the result one would obtain if all galaxies followed the trend noted in
this Letter and one stacked galaxies only with a given optical ellipticity. The observed halo
ellipticity goes to zero for apparent optical ellipticities near zero because the galaxies cannot
be oriented so that the stacking is coherent, even though each individual halo will have a
nonzero projected ellipticity. The observed halo ellipticity only equals the three-dimensional
ellipticity when halos are intrinsically oblate and the galaxies are viewed edge on; otherwise
the flattening is underestimated.

halos and a scheme for combining many galaxies into a single mass surface density, these two

figures show shapes of the projected halo mass surface densities. They allow observers to trans-

late their two-dimensional measurements to a range of possibilities for the three-dimensional

structure of dark matter halos.

The hydrodynamic simulations discussed here do not represent a cosmologically un-

biased sample, so they are not used as input to the simulated lensing observations. Instead I

adopt a slightly idealized version of the correlation between halos and galaxies noted in this

Letter. Nearly all of the baryonic components of the simulated galaxies are close to 2:1 oblate
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Figure 2.10: Weak gravitational lensing measurements when all galaxies with optical elliptic-
ities greater than some value are included in the stacking. The shaded regions are defined as
in Fig. 2.9. In both panels the x-axis is the minimum apparent optical ellipticity of galaxies
included in the stacking. Left : The y-axis shows the apparent ellipticity of the stacked halo
mass surface density. This is the halo ellipticity that would be measured if one stacked all
galaxies with optical ellipticity greater than the given value. Right : Effect of different optical
ellipticity requirements on the S/N ratio of the halo ellipticity measurement. Increasing the
minimum optical ellipticity increases the signal (as seen in the right panel) but also increases
the noise by reducing the number of galaxies included in the stack. The y-axis is Ψ defined
by Equation (2.6). For small optical ellipticity cuts, the increase in signal is almost exactly
canceled by the decrease in available solid angle, meaning that nothing is lost (or gained) by
removing round galaxies from the stack. In reality, there is an advantage to removing low-
ellipticity galaxies since their position angle is ill-defined. (This analysis assumes no error in
position angle.) Above a minimum ellipticity of ∼ 0.25 the quality of the measurement declines
rapidly because of smaller solid angle of available viewing directions.
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spheroids, so I assume that all early-type galaxies are so described. Thus, there is a simple

mapping between viewing angle and optical ellipticity. We assume all galaxies follow the cor-

relation between halos and galaxies noted here and that the halo mass density is given by a

triaxial Navarro-Frenk-White profile: ρ = ρ0/(ζ/rs)(1 + ζ/rs)2, where ρ is the mass density

and ρ0 is a constant (Navarro et al., 1996; Jing & Suto, 2002).

Contopoulos (1956) showed that for a triaxial ellipsoid with constant three-dimensional

axis ratios, the contours of constant projected surface density are ellipses with constant ellip-

ticity and position angle, independent of the radial density profile. I only use the ellipticity

and position angle of the baryonic component, so the radial profile of the baryons does not

matter. The Contopoulos (1956) analysis does not apply to the stacked dark matter halos, so

Figures 2.9 and 2.10 depend on the radial density distribution of the halos. In practice the

difference is not large.

To simulate weak lensing measurements, I align the projected mass distributions

based on projected light distributions, stack the projected halo mass distributions, and fit an

ellipse to the halo mass surface density distribution where the area of the ellipse is constrained

to equal π(3rs)2. This size for the ellipse is motivated by the approximate radius at which

weak lensing observations are sensitive to the halo shape (M. J. Hudson 2006, personal com-

munication). The stacking either assumes a given inclination of the optical galaxy, averaging

over the azimuthal angle (as in Fig. 2.9), or assumes that some minimum optical ellipticity is

required to be included in the stack, averaging over the portion of the unit sphere that gives

rise to sufficient optical ellipticities (as in Fig. 2.10).

Figure 2.9 shows that galaxies with low optical ellipticities will have low halo ellip-

ticities because there is no preferred axis to use to stack galaxies. The only situation where

the projected halo ellipticity equals the three-dimensional halo ellipticity is when all stacked
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galaxies are viewed edge-on and halos are intrinsically oblate. Flattening is underestimated in

all other cases.

Figure 2.10 shows the result of the more realistic scenario where all galaxies with

optical ellipticities greater than some value are included in the stack. This allows one to

transform projected ellipticities to three-dimensional ellipticities. For example, if an observer

sets the minimum optical ellipticity to 0.2 and measures a stacked halo ellipticity of 0.25, one

can conclude that the three-dimensional ellipticity of halos is either 0.3 (for oblate halos), 0.5

(for prolate halos), or somewhere in between.

As one enforces tighter constraints on the optical ellipticity, the halo ellipticity goes

up, but the cost is that fewer galaxies will make it into the stack. Under simple assumptions,

one can estimate the signal-to-noise ratio (S/N) of the halo ellipticity measurement to be

(S/N)tot = ε2D
√

ΩNtot/σ1 (2.5)

where ε2D is the apparent ellipticity of the stacked halo mass surface density, Ω is the solid

angle of viewing angles for which a galaxy will be included in the stack, Ntot is the total

number of galaxies in the survey, and σ1 is the error on the halo ellipticity when only one

galaxy is used. We define Ψ as the part of this expression which depends on the signal and

the available solid angle:

Ψ = ε2D
√

Ω (2.6)

Figure 2.10 thus also allows observers to estimate the quality of their measurement given the

size of their survey and an estimate of the one-galaxy error on the halo ellipticity. In reality,

observers do not know Ω, but they could estimate it from the from the minimum ellipticity

of galaxies in their sample as long as our assumption that the stellar remnants are 2:1 oblate

spheroids is not far wrong.
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2.4 Conclusions

In this chapter I have characterized the three-dimensional shapes and density profiles

of remnants produced by hydrodynamic simulations of binary galaxy mergers. Stellar remnants

are nearly all oblate, with a few examples of triaxiality in the most gas-poor mergers. Dark

matter halos are either prolate or triaxial, and the short axis of the baryons is perpendicular to

the long axis of the dark matter. All of these facts can be understood in terms of the effects of

angular momentum and dissipation during the merger. If there is a class of elliptical galaxies

that were formed by gas-rich binary galaxy mergers, they can be expected to display these

characteristics.

Given the three-dimensional correlation between galaxy shapes and halo shapes, I

have calculated the expected projected halo flattening when galaxies are stacked based on

their optical orientation. This information can be used to help interpret data on halo shapes

from weak galaxy-galaxy lensing surveys such as the one by Parker et al. (2007).

Real galaxies in a ΛCDM universe are thought to have experienced many mergers

over the course of their history, and these multiple mergers can be expected to weaken the

relationship between the shapes of galaxies and their halos described here. The extent to which

the effects of large-scale structure, such as mass accretion along filaments, tend to preserve the

relationship between galaxies and their halos is an interesting and open question.

The density profiles of remnants are quite regular in their structure. The slopes of the

baryonic and total density profiles are confined to a small range, although the densities at re/2

vary by about an order of magnitude. The dark matter density profiles of the Sbc simulations

are significantly different from the G series, attributable to the initial configuration of the

halos of the progenitors.
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2.4.1 Future Work

The material in this chapter is far from being either the first or the last word on the

properties of simulated galaxy merger remnants. Questions to be resolved in immediate future

work to prepare the most interesting parts of this chapter for publication are:

• Is the difference in the central dark matter fractions between the Sbc and G series

simulations due to the higher dark halo concentration and adiabatic contraction in the

Sbc progenitor or due to the fact that gas physics is more important in the Sbc simulation

owing to its higher gas fraction?

• What is the exact physical mechanism by which remnants come to have a density profile

that very nearly goes as r−2? Is gas physics important? Under what circumstances will

remnants not have this profile?

• Why does the dark matter density profile in both the Sbc and G series simulations

steepen? Is this because of adiabatic contraction due to radiative gas cooling during the

simulation?

• Exactly how do remnants avoid a feature in the density profile at the transition between

baryonic domination and dark matter domination? Is this related to the Blumenthal

et al. (1986) explanation of the featureless rotation curves in spiral galaxies?
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Chapter 3

Comparison with Integral Field

Observations

Rich observational data sets allow powerful tests of the extent to which simulated

galaxy merger remnants resemble early-type galaxies. One such set is the SAURON survey,

which uses a purpose-built integral field unit with a 41x33 arcminute field-of-view on the 4.2

meter William Herschel Telescope (Bacon et al., 2001). The team observed 48 nearby early-

type galaxies out to one effective radius, giving kinematic information from deconvolved stellar

absorption line spectra (Emsellem et al., 2004). They are extending the survey to increase the

number of galaxies by a substantial factor (Roger Davies, personal communication). The

SAURON survey is unique in that it increases not only the quality of the kinematic data

available for nearby galaxies, but the dimensionality of the data. This chapter evaluates the

extent to which remnants of simulated hydrodynamic mergers of disk galaxies resemble actual

early-type galaxies.

I have analysed the merger remnants produced in a series of gas-rich binary galaxy
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merger simulations run by T.J. Cox as part of his Ph.D. thesis and subsequent work (Cox,

2004; Cox et al., 2006b, 2008), in order to determine which elliptical galaxies have arisen from

binary mergers of spiral galaxies and which have not. Approximately 80% of the SAURON

early type galaxies are fast rotators and the remaining 20% of SAURON Es are slowly rotating

nearly spherical systems (Emsellem et al., 2007).

Fast-rotating elliptical galaxies appear to be very similar to the remnants from our

merger simulations once the simulations are smoothed to the SAURON resolution and the

full SAURON data-reduction pipeline including stellar spectrum deconvolution is included.

However, these binary gas-rich galaxy merger remnants do not make good candidates for

relatively high-mass, nearly spherical, non-rotating elliptical galaxies that make up 20% of the

early-type galaxies in the SAURON survey. Thus binary mergers of disk galaxies are not a

plausible scenario for the formation of these massive elliptical galaxies.

3.1 Previous Work

Bendo & Barnes (2000) used Gauss-Hermite moments (discussed in Section 3.2 below)

to analyze the line-of-sight velocity distribution (LOSVD) of sixteen dissipationless merger

simulations with mass ratios of 1:1 and 3:1. They found that equal mass mergers display a

variety of kinematic features (including kinematically decoupled components, and kinematic

misalignments), and that 3:1 mergers result in disk-like kinematics. Their remnants show a

positive correlation between the line-of-sight velocity v and the third Gauss-Hermite coefficient

h3, in conflict with observations (Bender et al., 1994).

Naab & Burkert (2001, 2003) analysed the kinematic structure of the remnants pro-

duced by a large suite of dissipationless disk galaxy merger simulations with a variety of orbits

and mass ratios from 1:1 to 4:1. They found that the majority of equal mass mergers resulted
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in slowly rotating objects, with (v/σ)∗ < 0.4 (where σ is the velocity dispersion). However,

the three dimensional shapes of these remnants were usually triaxial, and intrinsically triaxial

objects have very few viewing angles from which they appear round (Binney & de Vaucouleurs,

1981). Thus the ellipticities of the slowly rotating objects are statistically too large to cor-

respond to the SAURON round slowly-rotating galaxies. They find that 3:1 and 4:1 mergers

produce remnants that can be identified with low-luminosity, fast-rotating ellipticals.

Burkert & Naab (2005) further developed the claim that unequal mass major mergers

have photometric and kinematic properties that correspond to low-luminosity elliptical galax-

ies. In particular, they found that rapidly rotating remnants are not flattened solely by their

rotation, but also by their anisotropies which range from nearly isotropic to very anisotropic.

Cappellari et al. (2007) used Schwarzschild (1979) modeling to determine the 3D

orbital structure of the SAURON galaxies. They found a positive correlation between rotation

and anisotropy. That is, galaxies with little rotation have nearly isotropic velocity ellipsoids,

and hence have spherical 3D shapes. Galaxies with larger rotation velocities also have larger

anisotropies. The velocity ellipsoid is flattened in the z direction (σR > σz), so these galaxies

have 3D shapes flattened by both rotation and anisotropy.

Burkert et al. (2007) made the point that no such correlation between rotation and

anisotropy is seen coming from numerical simulations of binary galaxy mergers. They claim

that this is a major problem for the idea that early-type galaxies are formed via major mergers.

Cox et al. (2006a) extensively analysed the behavior of a large set of remnants in

the v/σ vs. ellipticity plane, but did not focus on two-dimensional kinematics. They found

that simulations with sufficient gas produce remnants that match low-luminosity ellipticals in

a v/σ vs. ellipticity plot, but that massive ellipticals are not produced.

González-Garćıa et al. (2006) studied the LOSVDs of dissipationless merger remnants
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and found that central bulges result in higher values of v/σ and in the observed v − h3 anti-

correlation.

Jesseit et al. (2007) analysed the LOSVDs of a set of 1:1 and 3:1 merger remnants

where the progenitors were either gas-free or contained 10% gas. There was no star formation,

no supernova feedback, and no AGN feedback. They found that the presence of gas is necessary

to produce the observed v−h3 anti-correlation, in disagreement with the finding of González-

Garćıa et al. (2006).

3.2 Methods

Hermite polynomials are familiar from the eigenfunctions of the quantum harmonic

oscillator. They are useful as a parameterization of LOSVDs in galaxies because the low-

est order eigenfunction is the Gaussian distribution with the increasing energy levels of the

oscillator being increasingly different from a Gaussian. These functions are preferred over

the classical moments (skewness and kurtosis) because the classical moments are most sen-

sitive to the tails of the distribution, where signal-to-noise is low in galaxy LOSVDs, while

the harmonic oscillator eigenfunctions parameterize the same deviations from Gaussianity but

have decreasing sensitivity in the wings of the line profile. Henceforth Hi(x) refers to the ith

eigenfunction of the quantum harmonic oscillator, which is a Gaussian function times the ith

Hermite polynomial. The coefficient of the Hi(x) in the expansion of an LOSVD is hi.

It is important to note that the Hermite polynomials are a complete, orthogonal set

of functions and can therefore represent any function using any choice of the v and σ as long as

enough terms are included in the expansion. We know that LOSVDs are nearly Gaussian, so

we would like to make an intelligent choice of v and σ so that the extra terms in the expansion

parameterize small deviations from Gaussianity. One possibility is to use the computed first

35



Effect of H3

−0.2

0

0.2

0.4

0.6

−3 −2 −1 0 1 2 3

V/σ

H3 = -0.2
H3 = 0.0
H3 = 0.2

Effect of H4

−0.2

0

0.2

0.4

0.6

−3 −2 −1 0 1 2 3

V/σ

H4 = -0.2
H4 = 0.0
H4 = 0.2

Figure 3.1: The effect of variations in h3 and h4 on the line-of-sight velocity distribution. On
the left, h3 parameterizes the skewness of the distribution. On the right, h4 parameterizes the
kurtosis or “peakiness” of the distribution.

and second moments of the distribution (
∫
vf(v) dv and

∫
v2f(v) dv) (Gerhard, 1993). This

approach allows the entire expansion to be computed directly, with no need to minimize any

function. A disadvantage is that h1 and h2 will be nonzero in general. Therefore to reconstruct

the LOSVD to fourth order, one must provide v, σ, h1, h2, h3, and h4.

Another possibility is to require that v and σ be chosen so that h1 and h2 are zero

(van der Marel & Franx, 1993; Cappellari & Emsellem, 2004). One must therefore perform a

constrained minimization of the difference between the LOSVD and the expansion. However,

the advantage is that v and σ are provided by the fit and reconstructing the LOSVD to fourth

order only requires knowledge of v, σ, h3, and h4.

In looking at the Gauss-Hermite functions, the most natural candidates for measuring

skewness and kurtosis are H1(x) and H2(x) which have one and two zeros, respectively. The

requirement that v and σ be set by requiring that h1 and h2 be zero has the slightly non-

intuitive effect that skewness and kurtosis are measured by functions that have three and four

zeros, respectively. This can be seen in Figure 3.1 where the curves with non-zero H cross the

Gaussian curve three and four times, respectively.

As a result, non-zero h3 and h4 values indicate something about both the center and
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the tails of the line profile. With respect to h4, a positive value indicates a peaky center and

heavy tails in the distribution. A negative value indicates a flat-topped center and light tails.

Similarly, a positive h3 value indicates that the LOSVD has a center shifted towards negative

values with a light tail on the negative side and a heavy one on the positive side. A negative

h3 value indicates the opposite.

Non-Gaussian LOSVDs can give information about anisotropy or about kinematically

distinct populations of the galaxy. Figure 3.2 shows schematically how radial and tangential

anisotropy affect the LOSVD. Figure 3.3 shows how two kinematically distinct populations

can give non-Gaussian LOSVDs. For very kinematically distinct populations observed at high

spectral resolution, Gauss-Hermite moments become a poor representation of the underlying

LOSVD. In that case a double-Gaussian fit would be more appropriate. A double-Gaussian

fit requires one extra parameter (the relative normalization of the two populations) compared

to a Gauss-Hermite fit up to h4, but it the advantage that the fit coefficients would directly

give the relative sizes of the two populations. There us evidence that real early-type galaxies

contain distinct kinematically hot and cold components (Cappellari et al., 2007). A double-

Gaussian fit appears well-motivated both theoretically and observationally, so we propose that

observers and theorists move toward this way of parameterizing LOSVDs. However, I do not

pursue the idea further in this work.

This chapter makes extensive use of SAURON-style plots of two-dimensional galaxy

kinematics, an example of which is shown in Figure 3.4. For all of the plots in this chapter,

the minimum and maximum of the line-of-sight velocity color bar as well as the maximum of

the velocity dispersion color bar are set to the projected velocity dispersion (σp) within re/8

for each galaxy, unless otherwise noted in the figure caption. The minimum of the velocity

dispersion color bar is set to zero, σp/2, or allowed to float to the minimum value actually
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Figure 3.2: Radial and Tangential anisotropy and its contribution to non-Gaussian LOSVDs.
Two images of M87 (image credit: David Malin and the Anglo-Australian Observatory) are
shown with hypothetical lines of sight through the outskirts of the galaxy. The ellipses rep-
resent the velocity ellipsoid at different points along the line of sight assuming radial or tan-
gential anisotropy. The luminosity density drops off rapidly with 3D distance to the center of
the galaxy, so the LOSVD is primarily determined by the middle ellipse with small changes
introduced by the top and bottom ellipses. On the left, a tangentially anisotropic galaxy. In
this case the largest contribution to the LOSVD comes from the region where the velocity
dispersion along the line of sight is the highest. Therefore the top and bottom ellipses leave
the wings of the profile unchanged but build up a broad center of the profile, leading to neg-
ative (flat-topped) h4 values. On the right, a radially anisotropic galaxy. Here, the brightest
contribution to the LOSVD comes from the point where the velocity dispersion along the line
of sight is the smallest. Therefore the primary effect of the top and bottom ellipses is to build
up the wings of the profile, leading to positive h4 values.
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Figure 3.3: The effect of kinematically distinct populations of a galaxy on the LOSVD. Here, a
kinematically cold disk component is superimposed upon a kinematically hot bulge component,
leading to a very peaky distribution and hence very positive value of h4. For the merger
remnants studied here, this is the primary driver of nonzero h3 and h4 values inside one
effective radius. The smooth solid line is the best-fitting Gauss-Hermite expansion to forth
order. The poor representation of the underlying LOSVD shows that the Gauss-Hermite series
becomes a less faithful representation of the LOSVD as systems with very different kinematic
populations are observed at high spectral resolution.
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Figure 3.4: A Sample SAURON-style plot, used extensively throughout this section. From top
to bottom, the panels are: surface brightness, velocity, velocity dispersion, h3, and h4.

appearing in the plot.

One of the principal results of the SAURON survey has been to highlight the division

of galaxies into so-called fast-rotators and slow-rotators. It has long been known that there is

a systematic trend where more massive elliptical galaxies have lower rotation speeds (Davies

et al., 1983), but the division of early-type galaxies into two distinct classes (Kormendy &

Bender, 1996), dramatically demonstrated with integral-field data (Emsellem et al., 2007) is

new. Figures 3.5 and 3.6 show a selection of SAURON fast and slow rotators, respectively.

3.2.1 Template Spectra

In order to treat the simulations in a manner as close to the observations as possible,

we convolve the stellar LOSVD in each pixel with a template stellar spectrum, then use the

same code used as part of the SAURON project to recover v, σ, h3 and h4 values from the

simulated spectrum. Template spectra are taken from Vazdekis (1999). For most of the plots
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Figure 3.5: A selection of SAURON fast rotators from Emsellem et al. (2004). From left to
right, N524, N821, N3377, N4477, N4473, and N4550. The two right-most galaxies (N4473
and N4550) are included as interesting anomalous galaxies – they both have counter-rotating
kinematic components. The elongated feature in the velocity dispersion map of N4473 is
evidence for a counter-rotating thin disk which must make a sub-dominant contribution to the
mass since the feature does not show up in the velocity map (Cappellari & McDermid, 2005;
Krajnović et al., 2006). N4550 shows similar bilateral symmetry in the velocity dispersion map
as well as tri-fold symmetry in the rotation map. This indicates the presence of both a thick
rotating component and a thin counter-rotating component (Rubin et al., 1992).
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Figure 3.6: A selection of SAURON slow rotators from Emsellem et al. (2004). From left to
right, N4374, N4458, N4486, N5813, and N5846.
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Figure 3.7: Effect of different ages of stellar populations on moment fitting. From the left,
assuming a stellar population age of 1, 5, 10, 12.6, and 17.8 Gyr from Vazdekis (1999). The
effect is negligible.

here, we use the spectrum corresponding to solar metallicity and a luminosity weighted stellar

age of 12.6 Gyr because massive ellipticals typically have old, metal-rich stellar populations.

Figures 3.7 and 3.8 show that the choice of stellar template does not make a significant except

for very metal poor ([Fe/H] = -0.68) populations. Figures 3.9 and 3.10 show that even template

mismatch does not make a significant difference in recovering the LOSVD except in the case

where an old stellar population (10 Gyr) is used for the convolution and a very young (1 Gyr)

population is used for the LOSVD recovery.

3.3 Results

There are several important regularities visible in Figures 3.5 and 3.6. The slow

rotators are systematically rounder than fast rotators Cappellari et al. (2006), the (v/σ)∗

values are close to unity for fast rotators and very small for slow rotators, there is a distinct
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Figure 3.8: Effect of different metallicities of stellar populations on moment fitting. From the
left, [Fe/H] = 0.2, 0.0, -0.38, and -0.68. The effect is negligible except for the lowest metallicity
case, where the h3 values are less significant.

anti-correlation between v and h3, and h4 is rotationally symmetric with a preference for

positive values.

Figures 3.11 and 3.12 take advantage of the symmetry of the remnants and show a

sequence of viewing angles in inclination. Each view is separated by 15 degrees, and the very

regular kinematic structure of the remnants is visible in these two simulations. The remnants

rotate about the short axis of the remnant and the visibility of the rotation is a function of

inclination angle. This simple structure describes nearly all of the simulated remnants.

There is a clear and very interesting trend in the h4 values as a function of inclination

shown in Figures 3.11 and 3.12. As the remnant is seen increasingly face-on, the h4 values

rise significantly. This is because of the kinematically cold population of stars formed in a

gaseous disk after the merger has finished. The kinematically cold stars are sub-dominant

in terms of the total number, so they make their presence felt as deviations from a purely
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Figure 3.9: The effect of stellar age template mismatch on LOSVD recovery. The LOSVD from
the Sbc201a-u4 simulation is convolved with a model spectrum from a solar metallicity, 12.6
Gyr old population. The model spectrum used for deconvolution uses the same metallicity
and ages of 1, 5, 10, 12.6, and 17.8 Gyr from left to right. Velocities and dispersions are
unaffected except for lower velocity dispersions when the deconvolution spectrum is for a 1
Gyr old population. The higher order moments are mostly unaffected except for the 1 Gyr
case and slightly elevated h4 values in the 17.8 Gyr case.
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Figure 3.10: The effect of stellar metallicity template mismatch on LOSVD recovery. The
LOSVD from the Sbc201a-u4 simulation is convolved with a model spectrum from a solar
metallicity, 10 Gyr old population. The model spectrum used for deconvolution uses the same
age and metallicities of 0.2, 0.0, -0.38, and -0.68 from left to right. The recovered LOSVDs
are not dramatically affected.
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Figure 3.11: The Sbc201a-u4 remnant as a function of inclination. From left to right, face-on
to edge-on in 30 degree increments. The isophotes are obviously disky as the remnant is viewed
increasingly edge-on. The velocity shows the characteristic rotation pattern unless the remnant
is viewed very close to face-on. The velocity dispersion drops fairly gently with radius except
for the nearly face-on views where it drops dramatically as the fit picks up the kinematically
cold disk component. The h3 coefficient shows the same anti-correlation as the observations.
Finally, h4 shows a preference for positive values, particularly in the face-on case.
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Figure 3.12: The G3-G3 merger remnant as a function of inclination in 30 degree increments.
This remnant is quite similar to the Sbc201a-u4 simulation shown in Figure 3.11 except that
the disk is somewhat less prominent in this case. Even so, rotation is clearly visible.

Gaussian line profile as discussed in connection with Figure 3.3. When the disk is seen with

some inclination, the primary effect of these stars is to skew the LOSVD, creating the well-

known v−h3 anti-correlation (Bender et al., 1994). However, when the disk is viewed face-on,

these stars contribute to the LOSVD near the peak of the distribution of kinematically hot

stars, albeit with a smaller dispersion. They thus make the LOSVD peakier, hence make h4

significantly more positive.

Thus the v−h3 anti-correlation and the significantly positive h4 values when there is

no rotation are both indications of a “fossilized” gaseous disk embedded in the merger remnant.

The disk is fossilized in the sense that the gas has turned into stars which make their presence

known through stellar absorption-line observations.

Figure 3.13 shows the effect of different disk rotation orientations on the resulting

remnant. The central velocity dispersion is virtually unchanged, but the retrograde-retrograde
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Figure 3.13: The effect of disk rotation orientation on merger remnant kinematics. These
mergers have the “fiducial” geometry where one galaxy disk is in the plane of the orbit and the
other is inclined by 30 degrees with respect to the plane of the orbit. From left to right, the disk
rotations are prograde-prograde, prograde-retrograde, and retrograde-retrograde. Retrograde
disks result in more distinct rotation.

mergers show more distinct rotation. This is perhaps counter-intuitive at first glance because

retrograde mergers have less total angular momentum since the internal angular momentum

of the galaxies is opposite to their merger orbital angular momentum.

The reason for the trend is that merging galaxies with prograde rotation throw out a

large fraction of their mass into a tidal tail. The local dynamical time is a strong function of

radius, meaning that the tidal material is “frozen” at large radius while the central merging

galaxies evolve quickly. The tidal material eventually returns to the remnant, but the location

of its infall is no longer correlated to the position and orientation of the merger remnant.

Therefore this material is added to the stellar spheroid with less coherent rotation.

By contrast, merging retrograde disks are highly disturbed and show copious star

formation, but most of the mass stays near the center of each remnant until they finally
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Figure 3.14: The effect of disk orientation on merger remnant kinematics. Here one or both
of the disks is perpendicular to the plane of the orbit. From left to right: 1) one disk is
perpendicular to the orbit plane and the other is inclined with prograde rotation. 2) The
same as 1 except that the rotation of the perpendicular disk is reversed. 3) both disks are
perpendicular to the orbital plane. Having both galaxies perpendicular to the orbital plane
results in a lower central velocity dispersion and less ordered rotation.

merge. There is enough angular momentum in the orbit of the merging galaxies to overcome

the small initial deficit implied by retrograde disk rotation, and the resulting remnant shows

distinct, ordered rotation.

Figure 3.14 shows merger remnants where one or both of the galaxies was perpendic-

ular to the orbital plane. These show decreasing rotation as one and both of the galaxies are

perpendicular to the orbital plane.

Figure 3.15 shows orbits with impact parameters reduced and increased by a factor

of two compared to the previous plots. This figure clearly highlights the fact that conservation

of energy and angular momentum do not determine the results of a galaxy merger. This is

simply because dark matter, stars, and gas may all exchange energy and angular momentum

subject to the constraint that the total is conserved. Observations of the stellar remnant only
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Figure 3.15: The effect of variations in the impact parameter. The left set of remnants has
an impact parameter smaller by a factor of 2, and the right set has an impact parameter
larger the same factor, both compared to the “fiducial” simulations in Figure 3.13. The
remnants also differ in the progenitor disk orientations. From left to right: prograde-prograde,
prograde-retrograde, retrograde-retrograde, prograde-prograde, and retrograde-retrograde. As
with Figure 3.13, these remnants also demonstrate that retrograde-retrograde mergers show
greater rotation. Furthermore, the mergers with smaller impact parameters show higher central
velocity dispersions and higher rotation speeds than those with larger impact parameters, in
spite of their lower total angular momentum.

probe a small piece of the system, so decreasing the total angular momentum in the simulation

does not necessarily decrease the resulting angular momentum of the central baryons.

Figure 3.16 shows remnants where the orbits are moderately bound, with eccentric-

ities of 0.8 or 0.9. Decreasing the energy of the orbit results in remnants with lower central

velocity dispersions, and the radial fall-off of velocity dispersion seems to be somewhat steeper.

However, rotation as a fraction of velocity dispersion is quite similar among all of the rem-

nants. It is somewhat puzzling that all of the e = 0.8 orbits show h3 maps that are nearly zero

instead of the usual anti-correlation.

Figure 3.17 shows the two zero angular momentum simulations. If the structure
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Figure 3.16: Remnants where the progenitors are bound. The left set have eccentricities of 0.9,
and the right set have eccentricities of 0.8. For the left set, the left-most is prograde-prograde
and the right-most is retrograde-retrograde, both with pericenter distances of 11 kpc. For
the right set, all mergers are prograde-prograde, with pericenter distances of 25, 44, and 100
kpc from left to right. The trends are that central velocity dispersion and rotation drop with
eccentricity, and central velocity dispersion rises gently with increasing pericenter distance.
One remnant (the R-R case with an impact parameter of 11 kpc) shows a significant v − h3

anti-correlation, but the other remnants show a weak or non-existent v − h3 anti-correlation.

52



Figure 3.17: Zero angular momentum orbits. On the left, a parabolic orbit with a pericenter
distance of 3 kpc. On the right, a bound orbit where the galaxies start out nearly at rest at a
distance of 200 kpc.

of galaxy merger remnants were solely determined by conservation of energy and angular

momentum, then one would expect that these galaxies would not rotate at all. In one case,

that expectation is nearly correct, but in the other there is quite robust rotation.

Figures 3.18 and 3.19 show the effect of the supernova feedback recipe on the kine-

matic structure of the merger remnants. In these simulations, feedback is parameterized by

two parameters: n, giving the effective polytropic index of the equation of state of star forming

gas, and τfb, giving the timescale over which energy injected into the gas by supernovae is

thermalized. A particular scheme is specified by choosing one of n0, n1, and n2 (indicating

the value of n) as well as one of low, med, high (indicating that τfb = 0.83, 8.3, and 83 Myr,

respectively. See Cox et al. (2006b) for details.

The feedback recipe has its most dramatic effect on the central velocity dispersion of

the remnants. The central velocity dispersion declines by 20-30% in going from τfb = 8.3 Myr
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Figure 3.18: Effect of different supernova feedback parameter sets. From the left, the feedback
parameter sets are n0med, n1med, and n2med. The main effect is that the central velocity
dispersion declines with increasing n

Figure 3.19: Effect of different supernova feedback parameter sets. From the left, the feedback
parameter sets are n0high, n1high, and n2high. As in Figure 3.18, the central velocity dispersion
declines with increasing n. Comparing to Figure 3.18, it is clear that the central velocity
dispersion declines dramatically with increasing τfb.
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to 83 Myr. It also declines somewhat more gently as a function of n: from 5 to 20 %. The

velocity structure is similar in all cases, with significant, but not dramatic, variation in v/σ.

Figures 3.20 and 3.21 show equal mass major merger remnants as a function of mass

for the series of simulations with G-series progenitors. The G-series remnants generally show

less rotation because their gas fractions are lower than the Sbc-series of mergers. Gas in a

merger simulation is able to cool and sink to the center of the remnant, resulting in a more

compact object with higher rotation given the same total angular momentum. Nevertheless,

the G3-G3 and G2-G2 mergers show clear rotation with one exception: the G3-G3 merger

with bulgeless progenitors. This is in agreement with the González-Garćıa & Balcells (2005)

result that progenitors with compact bulges result in remnants with higher rotation.

This is surprising given that the bulge contains such a small fraction of the mass of

each progenitor. The only thing that makes the bulge special is its density compared to the

other components of each remnant. It serves to prevent instabilities near the center of each

gas disk. The high density of the two bulges in each galaxy means that the bulges readily

“find” each other, merge, and sink to the center (indeed, define the center) of the remnant.

The lack of such a bulge means that there is less of a preferred location defining the center of

the remnant. There is also significantly less mass enclosed in a small sphere near the center,

reducing the circular velocity.

The G1-G1 and G0-G0 remnants show relatively indistinct kinematic structure. The

prograde-prograde mergers show virtually no rotation, while the retrograde-retrograde show

clear, but somewhat disordered rotation.

Figure 3.22 shows kinematic data for dissipationless simulations. Note that the scale

length of the gas disk in the progenitors is set to three times the scale length of the stellar

disk, so changing the gas disk into stars does not correspond to simply erasing the gas disk
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Figure 3.20: G3-G3 and G2-G2 equal mass major mergers. The four plots on the left are
G3-G3 mergers, while the two on the right are G2-G2. From the left: a slightly bound orbit,
then retrograde, then bulgeless progenitors. The two remnants on the right are G2-G2 major
mergers, prograde on the left and retrograde on the right.

Figure 3.21: G1-G1 and G0-G0 equal mass major mergers. All of the orbits are slightly
bound, with eccentricities of 0.9. From the left, G1-G1 prograde, G1-G1 retrograde, G0-G0
prograde, and G0-G0 retrograde.
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Figure 3.22: Dissipationless Sbc merger remnants. Here one or both of the progenitor galaxies
has had its gas disk replaced by collisionless particles. From left to right, remnants where both
of the progenitors have gas disks, only one has a gas disk, and neither progenitor has a gas
disk. To make the progenitors without gas disks, the particles in the Sbc gas disk were simply
converted to star particles. The projected effective radii of the remnants are from 4.12, 10.4,
and 17.8 kpc, respectively. The rotation drops distinctly and the central velocity dispersion
drops by a total of 28%.

and scaling up the mass of the stellar disk. Nevertheless the results are illuminating. Gas-free

progenitors result in large remnants with little rotation. This is in line with the much more

exhaustive study of dissipationless remnants by Naab & Burkert (2003).

Finally, Figure 3.23 shows the effect of varying the gas fraction in the G3-G3 major

merger. Increasing the gas fraction leads to a compact, quickly-rotating stellar remnant.

3.4 Kinemetry

Kinemetry is a generalization of photometry designed to work with higher order

moments of the LOSVD (Krajnović et al., 2006). One may think of the luminosity as the

zeroth order moment of the LOSVD, simply summing up the light emitted by all stars along
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Figure 3.23: The effect of different gas fractions. From the left, gas fractions are 10%, 20%,
58%, and 75%. Note that these plots are scaled to the projected effective radius for each
remnant, which is from right to left: 4.6, 3.7, 1.5, and 1.3 kpc. Clearly, gas-rich progenitors
lead to very compact, fast-rotating remnants. Increasing gas fractions also make the v − h3

anti-correlation more distinct.
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a line of sight:
∫
f(v) dv. Streaming velocity, then, is the first moment:

∫
vf(v) dv and so on.

Photometry has been useful in compactly characterising the appearance of early-type

galaxies because the isophotes are so close to ellipses. It is then possible to provide a good,

quantitative, compact representation of a galaxy’s image by specifying the flattening and posi-

tion angle of the ellipses as a function of radius, perhaps along with a quantity parameterizing

deviations from perfect ellipses such as a4 (Bender et al., 1988).

3.4.1 Method

In order to define a useful representation of LOSVD moments, it is necessary to

choose a similar “baseline mode” that is a good representation of the typical behavior of the

LOSVD moments. Even moments of the LOSVD (
∫
vnf(v) dv where n is even) tend to be

symmetric under reflections about the projected short axis of the galaxy. Therefore ellipses

continue to be a good baseline model for them. The expansion should vary the position angle

and flattening of an ellipse to find a curve of constant surface brightness, velocity dispersion,

or h4.

By contrast, the odd moments of the LOSVD are typically antisymmetric under

reflections through the projected short axis of the galaxy. Krajnović et al. (2006) therefore

chose a cosine law as the baseline model in this case. That is, the algorithm is to vary the

position angle and flattening of an ellipse so that the line-of-sight velocity along the ellipse

satisfies a cosine law. For flattened, inclined, thin disks, the line-of-sight velocity along a

(three-dimensional) circle in the plane of the disk satisfies a cosine law, and the projection of

the circle is an ellipse.

Therefore, if the objects under study are thin disks, the choice of a cosine law as the

baseline model makes the flattening and position angle of the fitted ellipses readily interpretable
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in terms of the inclination and orientation of the disk. Elliptical galaxies are not thin disks, so

there is no a priori guarantee that the baseline model will provide a good fit to the behavior

of integral field data from actual galaxies, and there is no guarantee that the coefficients will

be easily interpretable. Nevertheless, in practice the expansion seems to work quite well and

compactly summarizes the salient features of the integral field data.

Concretely, for a given LOSVD moment ψ(x, y) where x, y are projected positions on

the sky, and a given major axis length a, choose a minor axis length p and position angle φ,

and center x0, y0, determining a parametric curve of x and y values: (x, y) = (a cos(t + φ) +

x0, b sin(t + φ) + y0). Extract the value of ψ along the ellipse: ψ(t) = ψ(x(t), y(t)). Fourier

expand the difference between ψ(t) and the baseline model M(t) (either a constant for even

moments or M(t) = cos t for odd moments) to some order n:

ψ(t)−M(t) = A0 + Σnk=1Ak sin kt+Bk cos kt (3.1)

Now allow b, φ, x0, and y0 to change until the ellipse matches the model as closely as possible.

For even moments, the criterion for choosing b, φ, x0, and y0 is that the combination

A2
1 +B2

1 +A2
2 +B2

2 should be minimized. This is easily understood by applying trigonometric

identities to re-write these four terms of the expansion in terms of x = r cos θ and y = r sin θ,

and then noting that these four terms in the expansion correspond to the first and second

moments of position. Thus the ellipse is correctly centered and oriented when the first position

moments vanish and the second moments are minimized.

For the odd LOSVD moments, some experimentation led Krajnović et al. (2006) to

settle on the requirement that the combination A2
1 + A2

2 + B2
2 + A2

3 + B2
3 be minimized. The

absence of B1 is related to the fact that a cosine model is being used as the baseline model, and

the presence of A3 and B3 is simply because empirically these coefficients seem to be sensitive

to mis-oriented ellipses in the case of odd moments.
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3.4.2 Previous Work

Jesseit et al. (2007) fit kinematic moments to a set of 1:1 and 3:1 mergers where

the progenitors were gas-free or had 10% gas. Their analysis focused on doing a kinemetric

expansion on the LOSVDs of a few galaxies with fine spacing in projected radius in order

to detect kinematically decoupled components. They found that equal mass mergers with a

dissipational component were necessary to produce counter rotating cores in merger remnants.

Gas-free mergers and unequal mass-major mergers showed more regular kinematic structure,

without multiple components.

Jesseit et al. (2007) also found that gas-free mergers do not produce the observed

v − h3 anti-correlation. Such merger remnants either have no correlation or else a positive

correlation between the two quantities.

Krajnovic et al. (2008) fit kinemetric moments as a function of radius to the 48

SAURON early-type galaxies and found very similar behavior to the results presented here

for fast rotators. They also found significant differences between slow and fast rotators in all

moments of the LOSVDs, which they argue points to a different evolutionary path for the two

populations. This is in good agreement with the findings of this study.

3.4.3 Results

Figure 3.24 shows kinemetric moments fit at half of the effective radius. As described

above, the output of the kinemetry routine is the shape and orientation of an ellipse such that

the line-of-sight velocity extracted along the ellipse is as close as possible to a cosine law. All

of the remnants are viewed along the vector x̂+ ŷ+ ẑ where x̂, ŷ, and ẑ are the principal axes

of the remnant.

This figure compactly summarizes the rotation of all of the remnants. A non-rotating,
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Figure 3.24: Kinemetric moments of the line-of-sight velocity data. On the left, kinemetric
flattening versus photometric flattening. These two quantities would be equal if the objects
under study were thin, rotating disks. There is not a one-to-one correlation between the two,
but about half of the merger remnants do show similar values for the two quantities. On the
right, kinematic misalignments. Only a small fraction of merger remnants show kinematic
misalignments of greater than 10 degrees.

isotropic remnant would have both a photometric and a kinemetric flattening of nearly zero

(near the origin in the left panel). A non-rotating remnant flattened by anisotropy would have

non-zero photometric flattening but nearly zero kinemetric flattening (along the x-axis in the

left panel). Thin disks should have a one-to-one correspondence between the photometric and

kinemetric flattening. The actual merger remnants have non-zero, nearly equal photometric

and kinemetric flattenings, with the mean photometric ellipticity around 0.25 and the mean

kinemetric flattening around 0.3. This indicates that the great majority of merger remnants

are flattened and rotating.

The left panel of Figure 3.24 shows kinematic misalignments in the merger remnants.

Only a small fraction of merger remnants have more than 10 degrees between their kinematic

and photometric axes.

Taken together, the two panels of Figure 3.24 show that the great majority of gas-

62



rich binary merger remnants are rotating, and that the axis of rotation is aligned with the

photometric axis.

3.5 Conclusions

The many SAURON-style plots in Section 3.3, as well as the kinemetric moments

for all merger remnants presented in Section 3.4 show that the current sample of gas-rich

hydrodynamic merger remnant simulations plausibly correspond to the SAURON fast-rotators.

However, there are very few galaxies in the sample with little rotation, and none at the upper

end of the mass range. The origin of massive, non-rotating early-type galaxies remains, at the

moment, a mystery.

A standard suggestion is that perhaps these massive galaxies formed via dry mergers.

Dry mergers can only decrease their phase-space density (Hernquist et al., 1993), so such

mergers have relatively large effective radii. The angular momentum in a typical merger

simulation is dominated by the orbit of the two galaxies, so it is reasonable to guess that

the remnant produced by a dry merger will have similar total angular momentum to that

produced by a gas-rich merger. However, the larger effective radius of the dry merger means

that the rotation velocity of the remnant will be smaller. Thus at least the argument goes in

the right direction. However, most of the galaxies in Figure 3.6 show remarkably little rotation,

consistent with zero to the level of ∼ 1%. Low but nonzero rotation velocities would have been

easily seen by the SAURON survey.

Projection effects on the rotation velocity cannot be the culprit. If the slow rotators

were intrinsically rotating (either slowly or quickly) but simply happen to be seen face-on, one

would expect at most one case in the SAURON survey. In fact 20% of the SAURON galaxies

are slow rotators. The SAURON survey has a non-trivial selection function (de Zeeuw et al.,
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2002) and is therefore not a statistically unbiased sample, so this does not mean that 20% of all

early-type galaxies are slow rotators. However, the number is much too high to be accounted

for by projection effects. Therefore the slow rotators must be intrinsically non-rotating.

If the slow-rotators were intrinsically rotating, then their definition as a class of

objects would mean they were seen nearly face-on and therefore should have preferentially

round projected shapes. However, if they are intrinsically non-rotating as I just argued, then

they are not expected to be viewed from a preferred direction and hence their projected shapes

are not biased with respect to their three-dimensional shapes. The projected shape of the slow

rotators is nearly round (Cappellari et al., 2007), indicating that the three-dimensional shape

of these galaxies is nearly spherical. Schwarzschild modeling of the LOSVDs of these galaxies

indicates that they do, indeed, have nearly isotropic velocity dispersion tensors (Cappellari

et al., 2007), expected if a self-gravitating, non-rotating object is to have a spherical intrinsic

shape.

These galaxies thus nearly spherical, nearly isotropic, non-rotating objects. This

bears on the possibility of their origin via dry major mergers because such mergers produce

triaxial remnants (Naab & Burkert, 2003). Objects that are intrinsically triaxial appear round

from very few viewing angles (Binney & de Vaucouleurs, 1981), so as a population, the slow

rotators cannot have been formed by dry major mergers of galaxies. In Chapter 4 I will try

to make headway on this problem.

3.5.1 Future Work

Issues that must be addressed in immediate future work in order to prepare this

chapter for publication are:

• I need a compact way of summarizing information about the kinematics of more than
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100 merger remnants from many viewing angles. Kinemetry may provide this, but I have

not yet fully exploited it.

• I need a better digested, more complete, quantitative understanding of how merger

orbit influences the kinematic structure of merger remnants. For example, retrograde-

retrograde mergers seem to result in more rotation in the final remnant, and central

velocity dispersion seems to increase with n and decrease with τfb, but I will quantify

these trends.

• So far I have only computed kinematic data for seven viewing angles and have not

properly averaged them according to the probability with which each configuration will

be seen.

• I need to think more carefully about how particle discreteness influences the error esti-

mates in kinemetric moments.

• Do these remnants have velocity dispersion profiles that are in agreement with those seen

in real galaxies?

• The bulgeless G3 progenitor seems to have quite different kinematics from the G3 pro-

genitor that includes a bulge, in agreement with the findings of González-Garćıa & van

Albada (2003). What is the bulge transition mass between these to outcomes? Does

increasing the mass of the bulge result in yet different remnants?

• The low-mass G-series simulations seem to have indistinct kinematic structure. Is this

due to the small number of particle in the simulation, or is it a real effect that scales

with the mass of the progenitors?

• I have not systematically exploited the h3 and h4 coefficients. Many, but not all, of the

remnants show the observed V − h3 anticorrelation. Do the remnants that show little
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V −h3 anticorrelation have anything in common? The h4 profiles are generally rotation-

ally symmetric. Is it easier to extract meaningful information from the simulations by

averaging h4 in annuli?

• How accurate are the masses of sub-dominant “fossil” disks recovered from analysis of

deviations from Gaussian LOSVDs (particularly positive h4 values)?

• Some of the simulations have rather large positive h4 values. Is this a problem?

This work leaves untouched many questions related to the integral-field kinematics

of galaxies, some of which will be addressed in future papers:

• What are the kinematic characteristics of remnants produced by unequal-mass major

mergers and minor mergers?

• Do integral-field measurements for in-progress simulated mergers correspond to what

Puech et al. (2006) and Shapiro et al. (2008) believe to be in-progress mergers at high

redshift?

• How do the large-radius (several effective radii) relate to the small-radius kinematics?

What does the relationship between the two tell us about the history of the galaxy under

study?

• Does a double-Gaussian fit to the LOSVD provide tangible benefits to observers com-

pared to the Gauss-Hermite series?

• Do kinemetric moments as a function of radius reveal interesting information about the

remnants?

• What is the effect of subsequent minor mergers on v, σ, and higher order moments?
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Chapter 4

Galaxy Formation by Multiple

Mergers

I just argued that binary mergers, whether dissipational or dissipationless, do not

generate massive elliptical galaxies that are spherical and non-rotating. Binary major mergers

of galaxies tend to produce remnants that are aspherical due to anisotropic velocity dispersion

(Burkert & Naab, 2005). A more plausible formation mechanism for these massive elliptical

galaxies is multiple mergers, either successive minor mergers or roughly simultaneous major

mergers that are expected to happen in compact groups of galaxies. Both of these situations

lack the “preferred direction” determined by the orbit of the galaxies in a binary merger, where

the orbital angular momentum tends to produce fast-rotating systems.

An important goal of this work is to identify the relevant physical processes that

lead to the formation of realistic spheroids. Therefore I have also run a series of companion

simulations where the initial conditions are not from a cosmological simulation, but rather

are idealized cases designed to focus on particular merger histories as possibly determining
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the observable properties of the remnant. These will make it possible to effectively interpret

the physical processes that are driving the “realistic” simulations to either resemble or not

resemble observed massive elliptical galaxies.

There is observational evidence that they are in fact systems of galaxies with multiple

mergers taking place simultaneously (Borne et al., 2000).

4.1 Motivation

Ideally, one would run a first-principles cosmological simulation all the way from ini-

tial conditions to final galaxies, but a simulation with sufficient resolution (100 pc instead of

the 1 kpc that’s the state of the art in cosmological simulations today) is computationally

prohibitive. Therefore I am taking initial galaxy positions, velocities, and orientations from an

adaptive-mesh hydrodynamic cosmological simulation and re-simulating the sub-region with

higher resolution using the smoothed-particle-hydrodynamics code Gadget (Springel, 2005).

Furthermore, current cosmological simulations have not produced realistic disk galaxies, al-

though there have been some recent near-successes (e.g. Governato et al., 2007). Our method

involving resimulation of a sub-region of a large cosmological simulation permits higher spatial

resolution, and it allows more realistic initial galaxy models to be used.

The build-up of massive structures in the universe has been effectively characterized

by dark matter merger trees from dissipationless simulations. However, cosmological simu-

lations still lack sufficient spatial resolution to study the properties of the resulting galaxies.

Therefore we will simulate five qualitatively different scenarios—three are idealized situations

designed to cleanly separate the physically distinct possibilities; two are realistic models of

how galaxies formed in our universe. They are as follows:

1) Sequential mergers of eight galaxies of identical mass. This is the idealized model
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of a galaxy that grows primarily by minor mergers. The smaller galaxies are accreted onto

the larger galaxy isotropically. 2) As in 1, but with anisotropic accretion of smaller galaxies

along cosmological filaments. 3) Successive binary major mergers of the the same eight pro-

genitor galaxies in a “binary tree,” where each merger is between galaxies of equal mass 4)

A realistic simulation of the merger history of a galaxy that grew mainly by minor mergers

in a dissipationless cosmological simulation. Initial positions, velocities, and masses of the

progenitor galaxies will be taken from the cosmological simulation. 5) A realistic simulation

of a compact group of galaxies, where all of the mergers are happening simultaneously rather

than sequentially.

We feel that simulating these five scenarios will allow us to effectively explore how

the properties galaxies with different merger trees are differ (via the idealized situations).

This program will also allow us to determine how closely actual galaxies can be expected to

approach the idealized situations.

Roughly speaking, there are three ingredients to a simulation of a galaxy merger:

1) Physics included in the simulation, including schemes for implementing sub-resolution pro-

cesses 2) Initial orbits and orientations of the galaxies, 3) An initial structural model for the

progenitor galaxies. It is crucial to understanding that we be able to determine whether a given

property of a simulated galaxy remnant depends on a particular one of these three ingredients.

The biggest physical uncertainties in galaxy merger simulations today are the effects

of the cosmological environment and the effects of sub-resolution physics, specifically the effects

of feedback from star formation and active galactic nuclei.

The cosmological environment must be important because normal star forming galax-

ies at high redshift have star formation rates of tens of solar masses per year (Noeske et al.,

2007). At that rate, the gas consumption timescale for a typical galaxy is so short that merging
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galaxies would consume a significant fraction of their before they even have a chance to merge

(Cox et al., 2008). Gas must be replenished by the local environment, perhaps as cold flows

(Dekel & Birnboim, 2006).

It is important to note that the character of the problem changes considerably when

considering minor mergers. With mass ratios between 1:1 and perhaps 1:10, it makes sense

to simulate individual galaxy encounters. However, for lower mass encounters the interesting

question is not the effect of a single merger but the cumulative effect of many small mergers.

Then the parameters of the orbit of an individual small galaxy are not as important as the

distribution of such parameters. Furthermore, in an individual simulation many such mergers

would occur and would help to reduce the dependence of the result on any one small galaxy.

That is, if each simulation involves 10 minor mergers, then an impractical approach would

be to consider the orbits of each individual small galaxy as separate parameters that must

be explored. However, the fact that there are many mergers means that the orbits of the

individual mergers are only important in a statistical sense. Thus it is important to run

several realizations of a multiple merger simulation, but it is not important to quantify the

sensitivity of the result to the exact parameters of each merger orbit. Thus multiple mergers

help to reduce the dimensionality of the input space rather than causing it to explode.

4.2 Previous Work

The characteristics of galaxies resulting from multiple simultaneous mergers has been

studied in only a few earlier works (Weil & Hernquist, 1996; Bournaud et al., 2007; Li et al.,

2007; Naab et al., 2007).

Weil & Hernquist (1996) performed dissipationless simulations of multiple mergers in

groups of up to six progenitors as well as mergers of pairs of galaxies for comparison. They
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found that multiple merger remnants were nearly spherical, and that multiple mergers resulted

in remnants that were less dense than pair mergers.

Li et al. (2007) ran galaxy merger simulations with initial conditions taken from a

cosmological simulation and chosen to match the progenitors of the most massive halo at z = 0.

They are thus focused on very rare objects, studying the material that will make up the most

massive galaxy in a rich cluster today.

Naab et al. (2007) ran simulations starting from cosmological initial conditions but

with a focus on lower-mass galaxies selected to be similar to typical massive ellipticals today.

Their simulations showed very promising results, resulting in a round, nearly isotropic object.

Compared to this work, they started at higher redshift, did not insert model galaxies, and

did not include star formation feedback. Neither this work nor their work includes the effects

of AGN accretion or feedback. I believe that this work is quite complementary to theirs and

facilitates interesting comparisons.

Bournaud et al. (2007) considered sequential mergers of galaxies to build up the same

total mass independent of the mass ratio of the mergers. That is, they compared remnants

produced by a single 1:1 merger, two 2:1 mergers, five 5:1 mergers, ten 10:1 mergers, and so on.

Their work is very similar in motivation to the work presented here. The main methodological

difference is that they used a sticky-particle scheme to represent gas physics (Bournaud &

Combes, 2002). They found that the main difference in building up mass using increasingly

small progenitors is that the anisotropy of the remnant rises.

Martig et al. (2008) is currently performing work very similar to this work. They take

output from an adaptive-mesh cosmological simulation, replace baryonic density peaks with

model galaxies, and re-simulate with higher spatial and mass resolution than the cosmological

simulation. The main difference is again that they use a sticky-particle scheme to represent
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gas physics.

4.3 Methods

I used the same Smoothed Particle Hydrodynamics code GADGET described in

Section 2.2. In addition, some of the simulations described in this chapter use a density

dependent pressure floor designed to ensure that each mass element resolves a specified number

of Jeans masses (Robertson & Kravtsov, 2008). I implemented this because we were concerned

that the large amount of fragmentation of gas into discrete lumps was artificial. I tried setting

the pressure floor to ensure that each SPH kernel corresponded to at least 15 or 45 Jeans

masses. In both cases, there was little effect on the degree of gas fragmentation. One is left

to conclude that the fragmentation in the simulations is caused by the actual Jeans instability

rather than a numerical instability caused by insufficient resolution.

Even though there is little effect on the simulations, ensuring that the Jeans mass is

resolved makes good sense. Therefore I chose to set the relevant parameter to resolve 15 Jeans

masses.

The simulations that use the density-dependent pressure floor are the ones named

cos1-2, cos2-2, cos3-2, cos5-2, cos8-2, and cos9-2. This is the “second” series of simulations

with cosmological initial conditions described in Section 4.5.5.1. All of the other simulations

described here do not use this pressure floor.

4.3.1 Mass Build-up Scenarios

I would like to characterize the differences between galaxies whose mass is built up

in different ways. Figure 4.1 schematically shows one limiting case where a galaxy is built up

via equal mass major mergers. Figure 4.2 shows the opposite limiting case where a galaxy is
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Figure 4.1: Major Mergers

built up via sequential minor mergers.

Minor mergers are thought to be very common. Roughly equal mass major mergers

are thought to be rare when structure forms hierarchically. This is especially true as the

galaxy’s mass increases because equal mass partners with which it can merger get exceedingly

rare. Even if major mergers are rare, we saw in Chapter 3 that they have a large effect on the

kinematics of the resulting remnant. That is, a single major merger can cancel out the effect

of many minor mergers.

Regardless of their frequency, the scenarios outlined above are interesting because

they are designed to bracket reality. In the actual universe, both major and minor mergers

happen in a haphazard fashion, represented schematically in Figure 4.3.

I have run simulations where the initial conditions are taken from a larger-scale

cosmological simulation in order to gain some insight into how much galaxies produced by

realistic initial conditions differ from more idealized initial conditions.
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Figure 4.2: Minor Mergers

Figure 4.3: Cosmological Initial Conditions

74



4.4 Idealized Cases

In order to build intuition about the remnants produced by multiple galaxy mergers,

I first consider the “idealized” cases represented by Figures 4.1 and 4.2. These are in no sense

realistic scenarios given present knowledge of the mass build-up of galaxies through simulation

and semi-analytic modeling. The purpose of this part of the study is to learn about the limiting

cases to guide our understanding of the more complicated cases to be discussed below.

The most massive binary merger in the G-series of simulations is the G3-G3 merger,

where the remnant has a baryonic mass of 1.2 × 1011M� and a dark mass of 2.2 × 1012M�.

In order to end up in the same mass range, I consider simulations involving 4 G2 galaxies

(mb = 7.9 × 1010M�, md = 2.0 × 1012M�) and 8 G1 galaxies (mb = 5.6 × 1010M�, md =

1.5× 1012M�).

The orbit planes and disk orientations are chosen such that the normal vector is

uniformly distributed over the unit sphere. The orbits are nearly parabolic, with eccentricities

between 0.95 and 1.0. Using only parabolic orbits often resulted in encounters rather than

mergers for two reasons. First, as observed in Cox (2004) for binary merger simulations,

dynamical friction does not extract much energy in the first pass and the galaxies take a long

time to merge. Second, it becomes possible to have a three-body encounter where one of the

galaxies is put on a slightly hyperbolic orbit and never comes back. Using slightly bound orbits

helps to ensure that all of the galaxies end up in a single remnant at the end of the simulation.

For each set of progenitors (G2 and G1), I simulated three realizations of the se-

quential and binary mass build-up schemes. Each realization had different orbit and disk

orientations as well as different impact parameters. The impact parameters were chosen to

be factor-of-two increases or decreases from the “fiducial” value of 3 kpc. See Table 4.1 for a

complete list of simulation names and characteristics
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Name Progenitor Number Scheme rperi
G1-8s G1 8 sequential 3.0
G1-8s-1 G1 8 sequential 1.5
G1-8s-3 G1 8 sequential 6.0
G1-8b G1 8 binary 3.0
G1-8b-1 G1 8 binary 1.5
G1-8b-3 G1 8 binary 6.0

G2-4s G2 4 sequential 3.0
G2-4s-1 G2 4 sequential 1.5
G2-4s-3 G2 4 sequential 6.0
G2-4b G2 4 binary 3.0
G2-4b-1 G2 4 binary 1.5
G2-4b-3 G2 4 binary 6.0

Table 4.1: Idealized simulation characteristics

4.4.1 Four Galaxies

Figures 4.4 and 4.5 show the projected gas density in the G2-4b simulation where four

G2 galaxies merge in a “binary tree” configuration. These plots show the initial conditions

and evolution of the simulation for the purpose of providing some orientation for the reader.

This simulation starts out with four G2 galaxies. The two pairs merge, and then the two

remnants merge.

Figures 4.6 and 4.7 show the gas surface density in the G2-4s simulation. In this case

the galaxies are supposed to merge one after another. This is basically what happens, but the

mergers start to overlap because the next galaxy comes in before the previous one has had a

chance to finish its merger. After a violent 2 Gyr, the remnant calms down.

The star formation rates for these two simulations are shown in Figure 4.8. The total

star formation rate is peaks at about 10 M�/yr in both cases, but in the binary merger case

it is evenly divided between the two remnants at 1.5 Gyr, whereas in the sequential merger

case the star formation is concentrated in the central remnant.

Figures 4.9 and 4.10 show kinematic data major merger and sequential merger cases
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Figure 4.4: First set of mergers in the G2-4b simulation. As promised, the two pairs of G2
galaxies merge, producing two early-type systems. This and all similar plots show the x and
y axis in kiloparsecs. The color shows the base 10 log of the gas column density in M�/kpc3.
This and all similar gas-density renderings in this chapter were produced with the software
program Splash (Price, 2007)
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Figure 4.5: Final merger in the G2-4b simulation. Note that the scale is slightly zoomed in
compared to Figure 4.4.
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Figure 4.6: The first merger in the G2-4s simulation. The central two galaxies merge after
1.32 Gyr. The galaxy in the lower right at 1.32 Gyr has a close encounter with the central
galaxy and is flung toward the incoming galaxy in the upper left.
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Figure 4.7: The final mergers in the G2-4s simulation. At 1.68 Gyr, the last progenitor is
undergoing a close-passage with the central galaxy, and is on the right at 2 Gyr. The final
merger is happening at 2.56 Gyr and the remnant calms down by 4 Gyr.
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Figure 4.8: Star formation rates for the G2-4b simulation (left) and the G2-4s simulation
(right).
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Figure 4.9: Kinematic data on the G2-4b simulations. From the left the impact parameters
of the orbits are 1.5 kpc (G2-4b-1), 3 kpc (G2-4b) and 6 kpc (G2-4b-3). These remnants
show significant rotation except for the case of the largest impact parameter where there is
less rotation.

respectively. The trend is that there is more rotation in the binary tree of major mergers

depicted in 4.1. The rotation also seems to be inversely correlated with the impact parameter,

which is at first glance counter-intuitive since larger impact parameters mean larger orbital

angular momentum. However, the large impact parameter cases also take longer to merge and

have more encounters before finally merging. That is, there is more time and there are more

events to change the structure of a disk galaxy into a more slowly rotating early-type galaxy

when the impact parameter is large.

4.4.2 Eight Galaxies

Figures 4.11 and 4.12 show the evolution of the G1-8b simulation. Note that in the

initial snapshot, the positions of the progenitors seem to fall largely along a line. This is an

inherent feature of initial conditions where the progenitors are designed to merge in a binary
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Figure 4.10: Kinematic data for the G2-4s simulations. Again, from the left the impact
parameters are 1.5 kpc (G2-4s-1), 3 kpc (G2-4s) and 6 kpc (G2-4s-3). These remnants have
higher central velocity dispersions and less rotation compared to those in Figure 4.9.

tree. To see this, consider the final merger of two remnants each composed of four previously

merged progenitors. The centers of mass of the two sets of four galaxies must be separated by

nearly 500 kpc at the start of the simulation to ensure that this is in fact the last merger that

occurs. Other mergers in the binary tree must finish sooner, and the progenitors therefore

have smaller initial separations. Therefore any realization of a binary tree merger history will

start out with two clusters of half of the progenitors separated by a large distance.

Figures 4.13, 4.14, 4.15, and 4.16 show the evolution of the G1-8s simulation. With

images of sixteen timesteps, I intended to make it possible to follow the path of each galaxy

from one frame to the next. However, that is quite difficult and the conclusion is mainly that

the galaxies undergo complicated evolution from 1.2 to 4.2 Gyr. Then another 1.5 Gyr passes

before the last few galaxies finally merge and the main remnant can settle down.

Figure 4.17 shows the star formation rates for the G1-8b and G1-8s simulations. As
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Figure 4.11: The first two sets of mergers in the G1-8b simulation with 8 G1 galaxies set up
to merge in a binary tree. After 1 Gyr, the four pairs have merged, and at 2.8 Gyr the two
pairs of remnants have nearly merged.
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Figure 4.12: The final merger in the G1-8b simulation.

84



Figure 4.13: The first several mergers in the G1-8s simulation.
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Figure 4.14: Between 2.42 and 3.52 Gyr, all of the progenitors in the G1-8s simulation have
undergone their first passage close to the central galaxy.
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Figure 4.15: The intermediate stages of the G1-8s simulation. Many of the progenitors are
having interactions with each other as well as with the central galaxy.
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Figure 4.16: Final evolution of the G1-8s simulation. The galaxy in the lower left is heading
off with a large velocity, to return only after several more Gyr. I have analysed the G1-8s
remnant without waiting for it to come back.
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Figure 4.17: Star formation rates for the G1 simulations. On the left, G1-8b, and on the right
G1-8s. The total star formation rates are quite low in an absolute sense, but they are elevated
by more than an order of magnitude over their quiescent values for about 4 Gyr.

with the G2 simulations, the star formation rates are fairly low but sustained for a long period

of time. The star formation rate in these simulations is of course limited by the fact that

the galaxies have no way to increase their gas content after the simulation starts. Eventually

nearly all of the gas is consumed and there is no cosmological environment from which it can

be replenished.

As also seen in the G2-4s and G2-4b simulations, the sequential merger scheme

results in star formation that is more concentrated in a single remnant rather than evenly

spread among the galaxies in the simulation at any given time.

Figure 4.18 shows kinematic data for the G1-8b simulations. There is less overall

rotation than the G1-8b simulation, but there is still a quite clear rotation pattern. As before,

the simulation with the largest impact parameters has the least rotation of the three.

Figure 4.19 shows the same kinematic data for the G1-8s simulation. Here the result is

dramatic and clear: the remnants have nearly exactly zero rotation. They are nearly spherical

in shape. It seems that the building mass by sequential mergers as shown in Figure 4.2 is

capable of giving spherical, non-rotating remnants that are required by the observations but

not produced by binary mergers.
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Figure 4.18: Kinematic data for the G1-8b simulations. From the left, the impact parameters
are 1.5 kpc (G1-8b-1), 3.0 kpc (G1-8b) and 6.0 kpc (G1-8b-3). These remnants show rotation,
with the exception of the right-most case where the rotation is not well-developed.

Figure 4.19: Kinematic data for the G1-8s simulation. These remnants are non-rotating and
nearly spherical. The G1-8s scheme of mass build-up by sequential mergers could be the way
that massive, non-rotating, nearly spherical galaxies are made.
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4.4.3 Conclusions

The goal of running these idealized initial conditions is to build intuition about how

the merger history of a simulated galaxy merger remnant affects its kinematics. Of particular

interest is how non-rotating, nearly isotropic, nearly spherical galaxies may be produced.

We have seen that sequential mergers (Figure 4.2) result in less rotation than succes-

sive binary mergers (Figure 4.1) when starting with the same progenitors. If there are between

four and eight sequential mergers, it is possible to produce a very convincing slowly rotating

galaxy (Figure 4.19).

4.5 Cosmological Initial Conditions

The starting point for these simulations is a cosmological hydrodynamic simulation

run by Doug Rudd with his distributed memory version of the ART code (Kravtsov et al.,

1997; Rudd, 2007). The code uses the WMAP3 cosmological parameters to create a realization

of an 80 h−1 Mpcbox using 5123 dark matter particles.

For the dark matter, the code solves the Poisson equation using a fast Fourier Trans-

form on the largest scales coupled with a multi-grid technique (Brandt, 1977). The mass

resolution is 2.90 × 108M� and the resolution of the most refined grid cell is 1.6 comoving

kpc. For stellar material, the particles have a range of masses depending on the conditions

under which they were created, but they have a nearly log-normal distribution a mean of

4.21 × 105M�, and a variance of 0.67 dex. The forces for star particles are computed using

the same grid as the dark matter, so they have the same force resolution. Finally, the Euler

equations are solved using an adaptive grid where the most refined cell is 1.2 comoving kpc

on a side.
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4.5.1 Resimulations of Subregions

The goal of this study is to explore the consequences of multiple galaxy mergers when

the initial orbits and orientations of the model galaxies are cosmologically realistic. I would

also like to see the effect of the dark matter and gas background material on the resulting

galaxies. The intent of this study is not to run a “simulation to end all simulations” that is

perfect in all respects. Were such a simulation even possible in principle, it would be very

expensive computationally. Rather, the goal here is to employ computationally cheaper, but

well-motivated, simulations to explore a range of possibilities.

Briefly, the sub-simulations are set up by selecting an “interesting” region of the

cosmological simulation where the halo mass is 1 − 2 × 1012M�. The mass resolution of the

WMAP80 simulation is too coarse for my purpose, so I define a “high-resolution” region and

split the dark matter particles to achieve higher mass resolution. The “galaxies” from the

WMAP80 simulation are also quite spherical and lack disks, so I replace them with model

galaxies of an appropriate mass. The WMAP80 simulation tracks gas information on a grid

so it is necessary to produce a particle-based realization of the density field. Finally, I include

a large “low-resolution” region to provide the tidal field in the high resolution region.

In the low resolution region, the mass of the dark matter particles is increased to

account for the fact that stars and gas are not present. For most of the simulations, the high

resolution region is 1 proper megaparsec in diameter and the low resolution region is 5 proper

megaparsecs in diameter.

4.5.2 Splitting Particles

I generate higher-resolution initial conditions for sub-regions of this simulation by

splitting particles. The technique is obviously not self-consistent in the sense that a truly
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higher-resolution cosmological simulation would contain information about the primordial

power spectrum of matter fluctuations via dark matter substructure. Given that I cannot

recover the lost information, I would nevertheless like my higher-resolution simulation to have

the freedom to track smaller-mass-scale information as the simulation proceeds. I would like

to generate a new realization of the same physical system that is in some sense faithful to the

information provided by the cosmological simulation.

N -body simulations can be viewed as a Lagrangian way of solving the collisionless

Boltzmann equation. Each particle represents a small volume of phase space that is integrated

forward in time. Phase space is six dimensional, so even a million particle simulation would

only allow ten cells per dimension if the cells are to be distributed uniformly in phase space.

Given that phase space must be grossly under-sampled, N -body simulations can be seen as a

Monte Carlo method of solving the CBE.

While splitting particles, I would like to be faithful to the density and velocity struc-

ture of the underlying distribution function while simply sampling it at additional phase-space

points. The offspring of each particle should be smeared in position and velocity space com-

pared to the parent particle.

The distance to the nearest neighbor particle provides a simple, adaptive estimate of

the spatial resolution of the underlying distribution function, so the position of each daughter

particle gets a Gaussian displacement compared to the parent particle.

It is not as obvious how to handle the velocities of the daughter particles. One strategy

would be to find the nearest neighbor in phase space and give a velocity kick determined by

the distance in velocity space. However, defining a distance metric on phase space requires a

constant with units of time, e.g. d2 = ∆x2 + τ2∆v2. We also know that our sparse sampling

ensures that some particles will lack close neighbors in our simulation (though not in the real
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physical system), resulting in spuriously large velocity kicks.

It is desirable for the scheme to be invariant to Galilean transformations in the sense

that the procedure gives the same result even if we are splitting a particle that is falling into

a larger system.

If no velocity kicks are given, then the daughter particles will recollapse into a bound

structure if their free-fall time is shorter than the dynamical time of the system they inhabit.

Since this essentially re-creates the parent particle, this both fails to allow the system to track

finer structure as it evolves and excessively burns computer time since Gadget must integrate

the orbits of the bound particles.

This observation leads to a natural way of determining the velocity kicks: The local

dynamical time should be somewhat shorter than the collapse time of the daughter particles

so that their evolution is determined by the global potential rather than their proximity to

each other. Ideally the daughter particles should initially be gently unbound so that they soon

“forget about” each other and phase mixing can erase their common origin.

4.5.3 Creating the gas density field

From the ART code I know the density, temperature, position, and size of gas cells.

Given a background gas particle mass, I find the number of particles required to represent

the mass in a given cell and then distribute the particle coordinates randomly with a uniform

distribution within each cell. Since all of the gas particles are coming from a single cell with a

single velocity, this is conceptually similar to the dark matter particle splitting discussed above.

Therefore I give the gas particles a small, normally distributed velocity dispersion to prevent

them from recollapsing into a single effective particle. This calculation takes into account the

pressure support the particles receive via their temperatures. In practice, the temperature
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correction is small and the velocity dispersions are a few percent of the peculiar velocities.

The number of gas particles in each cell is close to an exponential distribution with

a mean of about five gas particles per cell. The adaptive grid ensures that the dynamic range

in the number of particles per grid cell is much smaller than the dynamic range in densities.

4.5.4 Cosmology

I perform these simulations in physical coordinates. Therefore the Hubble expansion

velocity is explicitly added to the dark matter and gas background particles. Furthermore an

overall Hubble expansion velocity is added to each model galaxy (but there is no expansion

within each model galaxy itself since they are bound structures). The simulation does not

include dark energy, so the cosmological expansion will cease to be correct when dark energy

comes to dominate the energy density of the universe around z ∼ 0.4. This will not be too much

of a problem since the high-resolution region is bound and hence will not feel the cosmological

acceleration. The low resolution region and the tidal field it provides will suffer, however.

A more pressing problem for carrying the simulation to low redshift is the fact that

the simulation becomes unrealistic when dark matter particles from the low-resolution region

start to reach the galaxy forming at the center of the high-resolution region. This depends on

the size of the high-resolution region and happens between 3 and 5 Gyr for the simulations

presented here.

4.5.5 Inserting Model Galaxies

The process of inserting the model galaxies is straightforward but tedious. The

tedium results from attempting to at the same time be faithful to the underlying cosmological

simulation and the model galaxies.
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Finding high density regions is much aided by the fact that the WMAP80 simulation

includes a recipe for star formation. Stars are only formed in the central regions of the highest

density peaks, therefore the stellar halos are readily identifiable and separable.

By contrast, identifying dark matter halos within a simulation is much more difficult

because the halos are less dense and often overlap. The standard tool is a simple friend-of-

friends halo finder (Davis et al., 1985) (technically the transitive closure of the adjacency graph

where particles are adjacent if the distance between them is less than the linking length). For

use in dark matter halo finding, there have been a wide variety of refinements to avoid, for

example, two separate halos being joined because of a thin bridge of particles connecting them

(e.g. Kravtsov et al., 1997; Diemand et al., 2006; Bett et al., 2007).

The higher density and spatial separation of stellar halos in the WMAP80 simulation

permits the use of the simple FOF algorithm.

The list of stellar halos is processed in descending order by mass to ensure a sane

allocation of mass to model galaxies. I find the effective radius of the stellar FOF halo and

define the baryonic mass of the galaxy to be all stellar and baryonic mass within 5 times the

effective radius. For a Hernquist profile, 85% of the mass is included withing 5 times the (3D)

effective radius.

Given a baryonic mass, I choose an appropriate galaxy from the G series where the

boundaries in baryonic mass between one galaxy model decision and another are equidistant

in log space from the actual baryonic mass of the model galaxies. The orientation of the model

galaxy is set so that the angular momentum vectors of the mass in the simulation and in the

model galaxy are parallel.

To make room for the model galaxy, I remove all of the star particles attributed to

the galaxy under consideration, and remove gas particles using a Gaussian window function
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with a radius calculated to ensure that the total baryonic mass removed is equal to that in the

model galaxy.

Making room for the dark matter is somewhat trickier because of the large, sometimes

overlapping halos. As each WMAP80 simulation particle is “used up” by the insertion of

a model galaxy, it is marked as such so that the total mass in the simulation is conserved.

Therefore, if inserting galaxy A results in much of the dark matter near galaxy B to be marked

as used, then when it comes time to insert a model for galaxy B, distant mass belonging to a

third galaxy will again be needed. Therefore having one galaxy mark too much dark matter

as used causes a cascading failure to reasonably represent the matter distribution.

On the other hand, the G series galaxies were carefully constructed to be in equilib-

rium. Maintaining equilibrium requires that the dark matter density near the center of the

model galaxy not change.

Therefore the WMAP80 simulation mass removed for each model galaxy should be

as much as possible (up to the total mass of the dark matter in the model galaxy) without

removing mass that rightfully belongs to another galaxy. The maximum allowed radius of the

Gaussian window function is determined to be the largest radius r at which the mass to be

removed has a center of mass that falls withing 0.35r of the center of the galaxy (corresponding

to 4.3% of the volume under consideration).

This does not behave well when one galaxy is significantly more massive than the

other, so there is an additional constraint that the center of mass of a thin shell of radius r

should fall within 0.35r of the center of the galaxy.

The dark matter mass to be removed from the WMAP80 simulation is now deter-

mined, so we must trim the model dark matter to fit. This uses the same Gaussian window

function with a radius calculated to leave the correct dark matter mass in the model galaxy.
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Generally half of the model dark matter survives, but in some cases as little as 20% survives.

The important point is that the dark matter near the center of the model galaxy

is nearly undisturbed, even when 4/5 of the dark matter mass is trimmed from the model.

Furthermore, the total mass of the galaxy halo must be considered to be the combined mass

of the model dark matter and WMAP80 simulation dark matter that survive. That is, even

if a nearby satellite prevents much dark matter mass from being removed from the WMAP80

simulation (and therefore forces the model dark matter to be trimmed aggressively), then the

outer part of the galaxy’s halo hasn’t gone away—it’s simply realized in terms of WMAP80

simulation particles instead of model galaxy particles.

4.5.5.1 Two Sets of Realizations

In section 4.6, I present two realizations of the these simulations which differ in the

algorithm used to insert model galaxies. The first set of realizations is denoted cos1, cos2,

and so on. In those realizations, I do not trim the model galaxy dark matter halos. This has

the effect of moving most or all of the dark matter in the high resolution region to the model

galaxy halos. That is, most of the dark matter filaments are “reassigned” to model galaxy

halos.

I made two changes when generating the second set of realizations, denoted cos1-2,

cos2-2, and so on. The first change is that when choosing which model galaxy to insert based

on the baryonic mass in the a density peak in the WMAP80 simulation, I process the galaxies

in order of descending mass. In the first set of realizations I simply processed the galaxies in

the order in which they were found. This difference sometimes results in a different decision

being made about which model galaxy to insert, because baryonic mass already assigned to

one of the model galaxies is removed from the WMAP80 simulation before further processing.
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The second change is that I attempt to trim the outer parts of the dark matter halos

in the model galaxies to preserve the filamentary structure of the dark matter in the high

resolution region, and leave the equilibrium of the central model galaxy undisturbed. This

second set of realizations is more faithful to the larger-scale cosmological simulation and is

presumably more realistic. However, these simulations are currently running and are in various

states of completion, so I present results from both the old and the new sets of simulations in

Section 4.6.

The algorithm to generate the second set of simulations (e.g. cos1-2) is described

in detail below. The algorithm to generate the first set (cos1) is the same, except that the

dark matter halos of the model galaxies are not trimmed. I conserve mass in both cases. The

primary affect of this change is that the cos1 simulation evolves much faster than the cos1-2

simulation (and similarly for the other cases).

4.6 Results

I initially started nine simulations with cosmological initial conditions, numbered

cos1 through cos9. Some of them turned out to be less interesting, so there are gaps in the

numbering of simulations presented here. Table 4.2 shows the number of model galaxies that

went into each realization of the simulations starting from cosmological initial conditions.

To provide some orientation, Figures 4.20 and 4.21 show the projected density for

the cos9 simulation at various times.

4.6.1 Mass Accretion and Star Formation

In order to quantify the mass accretion and star formation histories of the simulations

with cosmological initial conditions, I construct a simple merger tree. For every simulation
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G3 G2 G1
cos1 3 3
cos2 2 1
cos3 1 4 1
cos5 1 1 2
cos8 1 4 1
cos9 2 1 1
cos1-2 1 1 6
cos2-2 2 4
cos3-2 1 4 2
cos5-2 1 1 2
cos8-2 1 3 4
cos9-2 2 1 1

Table 4.2: Model galaxies used in each realization of the simulations from cosmological initial
conditions.

Figure 4.20: Time evolution of the cos9 simulation up to 1 Gyr. This include the first encounter
with two of three of the model in the simulation along with three lumps of gas that do not
include model galaxies.
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Figure 4.21: The final evolution of the cos9 simulation. The central remnant is developing a
spherical halo of hot gas along with a rotating gas disk.
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snapshot, I use the star particle identity numbers to compute the center of mass and effective

radius of all of the star particles that started out in each of the model galaxies. For each pair

of model galaxies, if the distance between their centers is less than twice the mean effective

radius, then they have either merged or are having a close encounter.

To construct the merger tree, for each group of merged model galaxies I look for the

last snapshot in which they have an independent identity by the definition given above. That

is, they are at least two effective radii away from any other object. This defines the fork in

the merger tree and prevents model galaxies from being considered to have merged by virtue

of a close passage.

I would also like to identify the main progenitor of the final remnant at at each fork

in the merger tree. At each such fork, I denote the main progenitor to be the object that

contains the largest number of model galaxies. If two or more progenitors contain the same

number of model galaxies, then I choose the more massive progenitor.

Choosing the progenitor that contains the largest number of model galaxies is almost

the same as always choosing the most massive progenitor. However, there are times when the

most massive progenitor is not the center of interest of the simulation. Choosing the progenitor

that contains the largest number of model galaxies does a better job of ensuring that the main

progenitor corresponds to the center of interest in the simulation.

Throughout this chapter, “Cold” gas refers to gas that it at least 50% neutral. This

version of Gadget calculates the equilibrium ionized gas fraction as described by Katz et al.

(1996). This makes the cutoff between cold and hot gas ∼25,000 Kelvin.
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Figure 4.22: Baryonic mass of the main progenitor in the cos1 simulation as a function of
time. Stellar mass is represented by red lines, gas mass by blue lines. Old stars (red solid line)
are those stars that were present in the simulation initial conditions. New stars (dashed red
line) are those that were formed during the simulation. Cold gas (solid blue line) is gas below
25,000 degrees Kelvin, other gas is labeled “hot” and represented with a dashed red line.

4.6.1.1 Cos1

The cos1 simulation starts off with 3 G2 galaxies and 3 G1 galaxies. After a flurry of

activity in the first 500 Myr, the remnant passively accretes cold gas for 3 Gyr. This remnant

thus provides an example of the effect of a long period of passive evolution.

Figure 4.22 shows the matter content of the main progenitor of the final remnant in

the cos1 simulation as a function of time. At the start of the simulation, the gas fraction of

the model galaxy at the center of the simulation is 24%. However, nearby cold gas quickly

flows into the galaxy, giving it a gas fraction of ∼ 60% within 100 Myr. This gas is quickly

converted to stars over the next 2 Gyr, building up the mass of stars formed in the simulation

until they dominate the mass of stars that started out in the model galaxies.

Close passes of other model galaxies are visible as “square-wave” patterns in the solid
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Figure 4.23: Accretion rate of the main progenitor in the cos1 simulation as a function of time
by type of matter.

red line representing stars that started out in model galaxies. Another model galaxy passes

by, temporarily increasing the old stellar mass. Mergers are visible in the solid red line as

“step-function” patters, where the old stellar mass increases permanently.

After 1.25 Gyr, this galaxy passively evolves without experiencing additional mergers.

Figure 4.23 shows the accretion rate of different types of matter as a function of

time. This is produced by comparing pairs of simulation snapshots to see which particles have

entered a sphere of 15 kpc around the galaxy and which have left that sphere. Particles that

have entered or exited are split by type and the difference between mass entering and mass

exiting is plotted.

It is quite clear from the animations of the simulations that mass falling into the

galaxy usually makes several passes before finally settling down and entering the galaxy. This

means that the mass flux into and out of a galaxy is quite large compared to the difference. A

net accretion rate of 10M�/yr means that of order 10 particles have been added to the galaxy
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since the last snapshot (spaced every 10 Myr), compared to of order 105 particles already in

the galaxy. Therefore the mass accretion plot is quite noisy and it is necessary to smooth it

with a 100 Myr sliding average.

Nevertheless, the plot is informative. A close pass of a model galaxy falling into the

main progenitor shows up as rapid inflow and then outflow of cold gas and stars together

(blue and green lines). The final merger is the last inflow of the gas and stars, but in this

example the mergers and close-passes overlap until 1.25 Gyr, so it is difficult to identify the

final mergers in this plot. After 1.25 Gyr, cold gas continues to flow into the galaxy at a rate

of a few tens of solar masses per year, while hot gas is blown out of the galaxy at about the

same rate.

Figure 4.24 shows mass conversion rates for material in the galaxy. Gas can be

converted into stars, gas can be heated, or it can be cooled. This plot is produced by looking

at simulation snapshots adjacent in time, finding all particles within a 15 kpc sphere of the

center of mass of the galaxy in both snapshots, and then tallying up which of those particles

have undergone the given change of state. For the first 1.25 Gyr, the dominant process is star

formation. Several tens of solar masses of gas per year cool within the galaxy, and a small

amount is heated within the galaxy.

Comparing Figures 4.23 and 4.24, it is clear that the hot gas outflow is not driven

by gas heating due to star formation feedback, since only ∼ 1M� of gas is heated within the

galaxy per year. Rather, what must be happening is that cold gas is streaming into the galaxy,

shock heated, and then most of it flows out of the galaxy again.

Figure 4.25 shows the star formation rates in a 15 kpc aperture around all of the

model galaxies as well as the total star formation rate in the simulation volume. The main

progenitor has a star formation rate of ∼ 100M�/yr for about 500 Myr at the beginning of the
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Figure 4.24: Conversion between different types of matter within the cos1 main progenitor.

simulation, making it a candidate to be identified as a Luminous InfraRed Galaxy (LIRG).

Figure 4.25 shows star formation rates in spherical apertures around model galaxies,

so when a small galaxy passes by a large galaxy, the aperture around the small galaxy will pick

up the star formation in the large galaxy. The two will appear to have the same star formation

rate until the small galaxy moves away. I chose this way of making the plot in part because

it is simple to understand and in part because it is somewhat ill-posed to try to decide which

gas particles belong to which galaxy when two galaxies are close. When two model galaxies

are determined to have merged, the star formation line for the smaller galaxy ends.

Two of the model galaxies have not made it into the final remnant by the time 3.5

Gyr have elapsed. Their star formation rate simply declines as they consume their gas. It is

also interesting to note that the star formation rate for the whole simulation volume levels off

to 10 M�/yr after 2 Gyr, and the bulk of this star formation is taking place outside of the
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Figure 4.25: Star formation rate in the cos1 simulation. The black line is the total star
formation rate in the simulation volume, and the star formation rate in a 15 kpc aperture
around each model galaxy is one of the colored lines.

model galaxies.

4.6.1.2 Cos2

The cos2 simulation starts out with two G2 galaxies and a G1 galaxy. It is on the

whole much more sedate than the cos1 simulation, and the simulation ends up with a less

massive final galaxy.

Figures 4.26 and 4.27 show the mass content and accretion history of the main progen-

itor. The evolution is on the whole quite similar to the cos1 simulation. The main progenitor

gains a larger fraction of its mass by mergers, but the cold and hot gas accretion rates are

fairly similar.

Figure 4.28 shows the mass conversion rates as a function of time. Again, it is clear

from the comparison of Figures 4.27 and 4.28 that the hot gas outflow is not the result of gas

heating within the galaxy, but rather the result of gas being heated as it passes through the

galaxy as a result of shocking. This is simply because the gas heating rate within the galaxy
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Figure 4.26: Mass content of the cos2 main progenitor. There is a major merger around 1.25
Gyr, followed by a minor merger around 3.4 Gyr.
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Figure 4.27: Mass accretion rates for the cos2 main progenitor. The model galaxy mergers at
1.25 and 3.4 Gyr are visible, along with cold gas inflows and hot gas outflows similar to that
seen in the cos1 simulation.
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Figure 4.28: Mass conversion rates in the cos2 simulation.

is too low to account for the total hot gas outflow rate.

Figure 4.29 shows the star formation rate for the four model galaxies. The peak star

formation rate of ∼ 30M�/yr is similar to that seen in binary merger simulations (Cox et al.,

2008), although the duration of the elevated star formation rate is longer in this simulation.

The fact that the star formation rate is somewhat elevated for a long period of time in this

simulation recalls the Noeske et al. (2007) result that the specific star formation rates of

galaxies at z ∼ 1 are quite uniform, indicating elevated quiescent star formation rates rather

than bursts with short duty cycles.

4.6.1.3 Cos3

The cos3 simulation starts off with one G3 galaxy, four G2 galaxies, and one G1

galaxy. This simulation a character close to the successive mergers depicted in 4.2.

Figure 4.30 shows that the G3 galaxy merges with two of the G2s within 500 Myr
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Figure 4.29: Star formation rates in cos2 for all model galaxies.

and has a close pass with a third at 600 Myr, resulting in a merger at 1.6 Gyr. After that, the

main remnant passively evolves. The other G2 galaxy and the two G1s do not merge with the

main galaxy within 3.5 Gyr.

Figures 4.31 and 4.32 show essentially the same pattern we’ve already seen: lots of

accretion of both stars and gas in the form of model galaxies in the first Gyr, followed by

inflow of cold gas and outflow of hot gas once things settle down.

Figure 4.33 shows the star formation rate for all of the progenitors in the cos3 simu-

lation. The peak star formation rate in one galaxy briefly surpasses 100 M�/yr.

4.6.1.4 Cos5

The cos5 simulation consists of 1 G3 galaxy, 1 G2 galaxy, and 2 G1 galaxies. In

this case the two G1 galaxies merge while the G3 and G2 galaxies merger separately. Finally,

the two combined galaxies merge into the final remnant at 2.8 Gyr. This situation is a nice

combination of the mass build-up scenarios we’ve discussed so far: there’s one equal mass
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Figure 4.30: Mass content of the main progenitor in cos3.
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Figure 4.31: Mass accretion rates in the cos3 simulation.
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Figure 4.32: Mass conversion rates in the cos3 simulation.
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Figure 4.33: Star formation rate for all of the progenitor galaxies in the cos3 simulation.
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Figure 4.34: Mass content of the cos5 main progenitor.

major merger and one unequal mass major, all involving disk galaxies, followed by the minor

merger of the two remnants.

Figures 4.34, 4.35, and 4.36, show the mass content, mass accretion rate, and mass

conversion rates for the main progenitor, respectively. This simulation is quite interesting in

that by far the dominant form of matter accreted is as stars, but the accretion is smooth,

lasting from 0.5 to 2.5 Gyr. This indicates that in this simulation, gas is forming stars before

falling into the remnant and then flowing in in a relatively smooth stream. There is also

significant star formation in the remnant, but the star formation rate is less than the stellar

mass accretion rate.

Figure 4.37 shows the star formation rate for this simulation, which is relatively

sedate. It is interesting to note that the star formation rate is elevated by about a factor of 2

for 300 Myr when the two remnants merge at 2.8 Gyr. This would perhaps look like at E-E
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Figure 4.35: Mass accretion rate of the cos5 main progenitor.
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Figure 4.36: Mass conversion rates in the cos5 main progenitor.
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Figure 4.37: Star formation rates for the cos5 model galaxies.

merger, but there is enough cold gas in the remnants to trigger a burst of star formation.

4.6.1.5 Cos8

Figure 4.38 shows that the cos8 simulation is nearly quiescent for 2.25 Gyr. It starts

out with one G3 galaxy, three G2 galaxies, and 1 G1 galaxy. There are a few close passes,

but the only merger that eventually happens is between the G3 galaxy and the G1.

Figures 4.39 and 4.40 show the mass accretion and conversion rates. Notably, the cold

gas content only drops by 30% from 3×1010M� to 2×1010M� in spite of forming 5×1011M�

of stars during the simulation. Obviously the gas accretion rate and the star formation rate

are nearly in equilibrium for the duration of the simulation.

Figure 4.41 shows that the star formation rate in the main progenitor is nearly con-

stant at 20 M�/year. No one model galaxy dominates the star formation rate within the

simulation volume, but nearly all of the star formation in the volume is taking place in model

galaxies. That is, the star formation is nearly equally distributed among the many model
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Figure 4.38: The mass content of the main progenitor in the cos8 simulation.
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Figure 4.39: Mass accretion rate for the main progenitor in the cos8 simulation.
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Figure 4.40: Mass conversion rates in the cos8 simulation.

galaxies.

4.6.1.6 Cos9

The cos9 simulation initially has two G3 galaxies, one G2 galaxy, and one G1 galaxy.

The main progenitor is one of the G3 galaxies and it consumes the G2 galaxy around 1.25

Gyr, the G1 galaxy around 1.6 Gyr, and the other G3 galaxy around 2 Gyr. Figure 4.42 shows

the mass content of the cos9 main progenitor. That figure shows that the incoming galaxies

have roughly doubled their stellar mass via star formation during the simulation by the time

the final merger at 2 Gyr happens.

Figures 4.43 and 4.44 show pattern similar to those we’ve already seen: significant

accretion of cold gas accompanied by a hot gas outflow. Most of the mass coming into the

cos9 main progenitor is in the form of model galaxies containing stars and cold gas—the blue
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Figure 4.41: Star formation rate for all of the progenitors in the cos8 simulation.
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Figure 4.42: Mass build-up in the cos9 simulation.
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Figure 4.43: Mass accretion rates in the cos9 simulation.

and green lines in Figure 4.43 are closely correlated.

Figure 4.45 shows the star formation rate for all of the model galaxies.

4.6.1.7 Cos1-2

The initial conditions for this simulation are the same as the cos1 simulation except

for the improved handling of the dark halos of the model galaxies described in Section 4.5.5.1

Figure 4.46 shows the mass content of the main progenitor in the simulation. It looks

quite similar so far except for the fact that it’s evolving with a much longer timescale. This

can be attributed to the more massive halo leading to more efficient gas accretion in the cos1

simulation.

Figures 4.47 and 4.48 show mass accretion and conversion as a function of time. These

also look fairly similar with attenuated values due to the increase in evolution timescale.

Figure 4.49 shows the star formation rate as a function of time for all of the model
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Figure 4.44: Mass conversion rates in the cos9 simulation.
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Figure 4.45: Star formation rates for the cos9 model galaxies.
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Figure 4.46: Mass evolution of the main progenitor in the cos1-2 simulation.
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Figure 4.47: Mass accretion rates in the cos1-2 simulation.
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Figure 4.48: Mass conversion rates in the cos1-2 simulation.

galaxies in cos1-2. The star formation rate has dropped by about a factor of three due to the

decrease in the gas accretion rate compared to cos1.

4.6.1.8 Cos2-2

The cos2-2 simulation is quite similar to the cos2 simulation. Figure 4.50 shows that

the merger activity happens between 1 and 1.5 Gyr in both cases. The main difference is that

the main progenitor in cos2-2 converts less of its gas to stars, maintaining a gas fraction of

about 25%.

Figures 4.51, 4.52, and 4.53 are also similar the corresponding figures 4.27, 4.28, and

4.29. The exception is that star formation takes longer to get going in the cos2-2 simulation.
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Figure 4.49: Star formation rates for model galaxies in the cos1-2 simulation.
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Figure 4.50: Mass evolution of the main progenitor in the cos2-2 simulation.
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Figure 4.51: Mass accretion rates in the cos2-2 simulation.
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Figure 4.52: Mass conversion rates in the cos2-2 simulation.
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Figure 4.53: Star formation rates for model galaxies in the cos2-2 simulation.

4.6.1.9 Cos3-2

The cos3-2 simulation evolves with a timescale similar to cos3. Figures 4.30 and 4.54

both show that there is a burst of merger activity between 0.25 and 1 Gyr. Figure 4.55 shows

the mass accretion history of the main progenitor in the cos3-2 simulation. There is sustained

cold gas accretion of almost 100 M�/yr. The mass conversion rates shown in Figure 4.56

indicate that the vast majority of this inflow is converted to stars. About 10 M�/yr of gas is

heated and blown out of the galaxy.

Figure 4.57 shows the star formation rate as a function of time. The main difference

between the star formation rate in cos3 and in cos3-2 is that cos3-2 has a star formation rate

that is 30-50% lower and takes 500 Myr to get going.

4.6.1.10 Cos5-2

The cos5-2 simulation evolves at a much slower rate compared to cos5. In the cos5

simulation, two of the pairs of galaxies merge almost immediately, and then the two remnants
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Figure 4.54: Mass evolution of the main progenitor in the cos3-2 simulation.
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Figure 4.55: Mass accretion rates in the cos3-2 simulation.
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Figure 4.56: Mass conversion rates in the cos3-2 simulation.
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Figure 4.57: Star formation rates for model galaxies in the cos3-2 simulation.
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Figure 4.58: Mass evolution of the main progenitor in the cos5-2 simulation.

merge after 2 Gyr. However, Figure 4.58 shows that in cos5-2, the first merger happens after

about 2 Gyr and there are still two other model galaxies in the simulation.

Figure 4.59 shows the rather modest cold gas accretion rate of 10 M�/yr. Figure

4.60 shows the star formation rate is much higher, at several tens of solar masses per year.

Hence the cos5-2 main progenitor steadily consumes its gas and the star formation rate drops

for lack of gas.

Figure 4.61 shows rising star formation rates in the two lower-mass progenitor galax-

ies. Their gas content is being replenished by the cosmological environment. This will result in

a relatively gas-rich encounter when these two galaxies finally merge with the main progenitor.

4.6.1.11 Cos8-2

The cos8-2 simulation has not run for very long but is included as an example of

nearly quiescent cold gas accretion onto one of the model galaxies. Figures 4.62 and 4.63 show
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Figure 4.59: Mass accretion rates in the cos5-2 simulation.
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Figure 4.60: Mass conversion rates in the cos5-2 simulation.cos5-2
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Figure 4.61: Star formation rates for model galaxies in the cos5-2 simulation.

the main progenitor in cos8-2 accreting cold gas at many tens of solar masses per year. Figures

4.64 and 4.65 show that the gas is converted to stars at a steady 20 M�/yr. Figure 4.65 also

shows the star formation rates of the multitude of model galaxies in the cos8-2 simulation that

have not yet disturbed the most massive model galaxy.

4.6.1.12 Cos9-2

The cos9-2 simulation is quite similar to cos9 except that everything happens about

500 Myr later. Figure 4.66 shows that there are close passes and mergers at times of 2 and 2.5

Gyr instead of 1.5 and 2 Gyr as in Figure 4.42. Figure 4.67 shows that the cos9-2 simulation

experiences significant cold gas accretion along with several mergers. Figure 4.68 shows spikes

in gas heating rate that coincide with close passes or mergers. Figure 4.69 shows the star

formation rates for cos9-2. These are lower than in cos9, at about 30 M�/yr in the main

progenitor instead of 90 M�/yr.
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Figure 4.62: Mass evolution of the main progenitor in the cos8-2 simulation.
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Figure 4.63: Mass accretion rates in the cos8-2 simulation.
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Figure 4.64: Mass accretion rates in the cos8-2 simulation.
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Figure 4.65: Star formation rates for model galaxies in the cos8-2 simulation.
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Figure 4.66: Mass evolution of the main progenitor in the cos9-2 simulation.
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Figure 4.67: Mass accretion rates in the cos9-2 simulation.

133



1

10

100
dM

/d
t

(M
⊙

/y
r)

0 0.5 1 1.5 2 2.5 3 3.5

Time (Gyr)

Star Formation
Gas Heating
Gas Cooling

Figure 4.68: Mass conversion rates in the cos9-2 simulation.
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Figure 4.69: Star formation rates for model galaxies in the cos9-2 simulation.
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4.6.2 Effect of Feedback Scheme

One of the major uncertainties in hydrodynamic simulations of stellar systems is how

to handle feedback from supernovae. As described in Section 2.2.1, this work makes use if

the Cox et al. (2006b) parameterization of the effects of supernovae feedback, where the free

parameters n, are the effective polytropic index of the equation of state of star forming gas

, and τfb, the timescale over which energy from supernovae is thermalized. The polytropic

index takes the values 0, 1, or 2, and the thermalization timescale takes the values 0.82 Myr

(low), 8.2 Myr (med), and 82 Myr (high). Most of the simulations presented here use the

n2med parameter set.

In order to asses the effect of the different feedback parameter sets on the multiple

merger simulations presented here, I have run simulations for at least 1 Gyr with each of the

nine combinations of parameters. The rather short simulation time is due to the fact that the

simulations are quite expensive for the low value of τfb. Star formation rates for these nine

simulations are shown in Figure 4.70. The initial conditions are those for the cos9-2 simulation.

Low values for the thermalization timescale lead to much higher star formation rates

peaked at earlier times, and therefore faster gas depletion times. Changing the n, also affects

the star formation rates, but not nearly as dramatically as changing τfb.

The star formation rates are the quantity most directly affected by the feedback

scheme. However, the fast star formation timescales will also affect the structure of the rem-

nants by changing the gas fractions of incoming galaxies. I am leaving the effect of the feedback

scheme on the remnants for the future.
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Figure 4.70: Effect of different supernova feedback parameters in the cos9-2 simulation. The
most dramatic difference occurs when changing τfb (low, med, and high). Low feedback
leads to higher star formation rates, peaked at earlier times. Changing the value of n has a
comparatively small effect.
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Figure 4.71: Kinematic data for the simulations from cosmological initial conditions. From
the left, cos1, cos2, cos3, cos5, and cos9.

4.6.3 Kinematic Data

Figures 4.71 and 4.72 show simulated integral field data for simulates starting from

cosmological initial conditions. All of the remnants are clearly fast rotators.

In section 4.4 I showed that the merger history of a galaxy has an effect on its final

kinematics: Galaxies that are built up by sequential mergers have less rotation than those

that experience an equal mass major merger. The cosmological simulations have a variety of

merger histories, with the mass growth of some dominated by mergers, and the mass growth

of others dominated by quiescent accretion. The cosmological simulations do not display the

same relationship between merger history and kinematic structure as the idealized simulations.

The most obvious difference between the idealized and the cosmological simulations is

that the cosmological ones include gas replenishment from the intergalactic medium. Therefore,

it seems likely that continued infall of cold gas is the most important factor in the kinematics
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Figure 4.72: Kinematic data from the second series of simulations from cosmological initial
conditions. From the left, cos1-2, cos2-2, cos3-2, cos5-2, and cos9-2.

of the remnants and results in fast rotators.

If the reason for the rotation is in fact cold gas infall, then the fact that all of

the cosmological simulations display robust rotation, while essentially all of the most massive

elliptical galaxies are slow rotators indicates that gas infall must be shut off in the real universe.

A few possible processes that might shut off cold gas accretion are strong supernova feedback,

feedback from active galactic nuclei, or shock heating of gas as it passes through a virial shock.

Strong supernova feedback is not a good candidate because it requires ongoing star

formation, which is inconsistent with the observed old stellar populations in massive elliptical

galaxies. Gas heating due to “radio-mode” feedback from low-luminosity active galactic nuclei

(Croton et al., 2006) is a reasonable possibility. The simulations presented here do not include

central black hole feedback in any form. Gadget includes shock heating via artificial viscosity,

and the simulated galaxies are above the transition mass where the virial shock is thought to

be stable (Birnboim & Dekel, 2003; Dekel & Birnboim, 2006). However, shock heating does
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not seem to be effectively shutting off cold gas accretion in these simulations.

4.7 Conclusions

We saw in Chapter 3 that hydrodynamics simulated binary galaxy merger remnants

nearly always produce fast-rotating early-type remnants by virtue of their large orbital angular

momentum. In this chapter, I have shown that if mass is built up via successive binary equal

mass major mergers, then the remnant is also a fast-rotator. This is because the orbital angular

momentum in the last encounter has a dominant effect on the kinematics of the remnant.

Starting with the same progenitors and varying only the order in which galaxies

merge, the opposite end of the spectrum of possibilities is to let the galaxies merge one after

another, one at a time. This is a series of sequential mergers of decreasing mass ratio as the

mass of the central galaxy is built up.

This sequential merger case robustly produces non-rotating remnants. The orbital

angular momentum of the incoming galaxies averages to zero and the remnant is left with no

net rotation. This is a plausible formation mechanism for the SAURON slow-rotators.

I have also run a series of simulations starting from a large, lower-resolution cosmo-

logical simulation. I selected compact groups and re-simulated them at higher resolution in

order to explore the kinematics of the remnants after the members of the groups have merged.

I found uniformly high rotation in these cosmological cases.

The cosmological initial conditions have a variety of merger histories, so it would

seem that the constant inflow of gas from the intergalactic medium is the decisive factor in

making the remnants rotate.

I have not yet run the simulations down to low redshift. The observational constraint

from the SAURON survey is that there exists a population of galaxies that do not rotate
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today, not at z = 1. It is possible that continued harassment and mergers will average away

the significant rotation that the simulated remnants display at z = 1. If the rotation goes

away by z = 0, then these simulated galaxies could still be identified as the SAURON slow

rotators.

Even if these simulated galaxies are not identified as the source of the SAURON

slow rotators, they were produced from reasonable cosmological initial conditions, and the

simulation was done with a code that can be expected to reasonably represent the actual

evolution of the system. Shouldn’t these galaxies exist?

This constitutes a prediction that early-type galaxies at z = 1 should rotate. van der

Marel & van Dokkum (2007) presents tantalizing evidence that this may indeed be the case.

However, van der Wel & van der Marel (2008) indicates that this result may not be robust.

Either way, the question will be decided observationally very soon.

4.7.1 Future Work

Simulating multiple galaxy mergers is a natural next step in the progression of study

of numerical simulations of galaxy formation, and several groups have recently done or are

currently doing similar work Naab et al. (2007); Martig et al. (2008). Each group has only

simulated a small number of cases and has made different decisions about how to simulate

gas physics and how to handle star formation and supernova feedback. These studies are

quite complementary to each other and it will be interesting to analyze the similarities and

differences between the simulations of different groups in more detail.

The primary question that needs to be decisively addressed in immediate future

work is: Is the late infall of cold gas the primary reason that the cosmological simulations

are rotating? If so, why does this make such a big difference? Is radiative gas cooling the
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important physical process? Is it the fact that the matter is coming in as a stream rather than

as lumps?

The idealized simulations were informative and the results are fairly well-understood.

Nevertheless, the conclusion would be more convincing if I run a few additional random realiza-

tions of each case. I could bias the orientations of the merger planes so that the galaxies tend

to be co-linear. This is to simulate the accretion along filaments that occurs in cosmological

simulations.

Starting from the same progenitors, the “binary tree” method of mass build-up fin-

ishes faster than the “sequential mergers” method. Therefore sequential mergers have con-

sumed more of their gas by the time the final merger takes place. Does the fact that the

sequential mergers produced slow rotators due to their merger history or due to their lower

gas fractions when the final few mergers took place? This could be answered by changing the

orbits of the progenitors to adjust the time when the final events happen.

The realization that most of our simulated galaxies are rotating led to the question

of whether they would continue to rotate at lower redshift. I have started a version of cos9-2

that has a high-resolution region twice as large cos9-2. The cos9-2 simulation runs for 4 Gyr

(z = 0.7) before the low-resolution region starts to enter the central part of the high resolution

region. The larger high-resolution region will allow the simulation to run to at least a redshift

of 0.4, and hopefully as low as 0.2 before the low-resolution region begins to interfere.

Two extreme cases of initial conditions that will build intuition are to simulate the

same cosmological halos, but with all gas turned into stars, and then again with all stars turned

into gas. Finally, it would be useful to run a third simulation intermediate between these two

where the gas fraction of each density peak does not change. I have run such a realization

of the cos9 halo where I have not replaced the baryonic density peaks with model galaxies.
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This last simulation is finished, but not yet analyzed. Taken together, these three simulations

should provide guidance in determining what physical processes are important to include in

simulations that are supposed to come close to the real universe.

It would be interesting to vary the properties of the model galaxies both in the ide-

alized simulation and in the cosmological cases. I add angular momentum to the cosmological

cases when I insert model galaxies because the model galaxies have much higher specific angu-

lar momenta than the galaxies they replace. The simulation without model galaxy replacement

will provide some insight into whether or not this makes a difference, but it will not provide

a definitive answer because other things are changing as well (such as the gas fraction of the

galaxies). One way to test whether or not this makes a difference would be to use model

galaxies with lower specific angular momenta instead of the G-series galaxies.

Other items for immediate future work are:

• Ensure that the cosmological and idealized simulations follow the observed global trends

obeyed by early-type galaxies such as the Fundamental Plane.

• I need a more well-digested understanding of the mass accretion history of the cosmo-

logical simulations.

• Certain cosmological simulations experience a prolonged period of gas starvation. Is this

because of a virial shock?

• Look at the λ parameter defined by Emsellem et al. (2007) to quantify the rotational

state of the remnants.

• Organize the cosmological cases according to their characteristics rather than according

to their names. This will help readers follow the different cases.

• Draw merger trees for each of the simulations.
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• The discussion of the setup of the cosmological initial conditions would benefit from a

more precise, quantitative discussion of how it is done, along with plots of density profiles

of the the halos in the WMAP80 simulation before and after model galaxy replacement.

• Look at time evolution of structure and kinematics during bouts of undisturbed cold gas

accretion and mergers.

Some items for future work on an intermediate timescale are:

• Choose halos to simulate more carefully based on their merger history and environment.

• Explore a greater range of halo masses.

• Start the sub-region simulations at progressively higher redshifts in order to see how the

remnants change. This will also be useful to eventually make contact with the Naab

et al. (2007) simulations for comparison.

• Naab (2008) claims to find that slow rotators form in 1013M� halos, which are 10 times

more massive than the galaxies I have simulated in this chapter. However, the physical

reason that 1012M� halos are different from 1013M� is not clear. It could be the dy-

namical effect of the massive halo itself (for example, merging galaxies would approach

each other at much higher velocities), or it could be that the surrounding matter behaves

in a systematically different way (for example, higher mass halos may experience more

minor mergers).

• The mass build-up of several of the cosmological simulations are dominated by in-situ star

formation. These remnants rotate but they are not thin stellar disks. Is the thickening of

the stellar disk due to bombardment by infalling clumps? Or is it because the filaments

feeding the gas disk change over time, the orientation of the gas disk changes in turn,
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and the stellar disk is thick because it is the “time integral” of the past positions of the

thin gas disk?

• The galaxies formed in the cosmological simulations have halos of hot gas that would emit

x-rays. It may be possible to compare their x-ray temperatures and surface-brightness

profiles to observed galaxies.

• What are the masses and Toomre Q parameters in the gas disks that formed in some of

the cosmological simulations?

• It seems increasingly relevant to produce simulated integral-field data for in-progress

mergers Genzel et al. (motivated by 2006, for example). It will be difficult to provide

information that is useful to observers because merging systems have complex geometries

and look very different from different viewing angles.

• Increasing evidence seems to point to early-type galaxies at high redshift having very

small sizes (e.g. van Dokkum et al., 2008). The galaxies formed from cosmological initial

conditions have half mass radii of 2-3 kpc, while van Dokkum et al. sees half mass radii

of 1 kpc. This raises two interesting questions: Do the galaxies formed in my simulations

have anything to do with the van Dokkum et al. galaxies? Is there a physical process

that will “puff up” the van Dokkum et al. galaxies so that they look more like ellipticals

at low redshift?

• One is a comparison of the star forming disks in several of the cosmological simulations

to the galaxies seen by Genzel et al. (2006) at z = 2.

• What is the effect of different star formation feedback parameters on the final structure

of the remnants? I have started these simulations, but they are not yet finished.
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• What is the effect of feedback from black hole accretion on the gas inflow rates and

resulting structure of the remnants?

• High resolution SPH simulations from several groups presented at the Santa Cruz Galaxy

Formation Workshop in 2008 seem to robustly show very thin, pressure-confined filaments

of cold gas feeding halos (Keres, 2008; Brooks, 2008). After the first pass through the

center of the forming galaxy, these streams break up into clumps that persist for a long

time. Grid codes do not seem to display this behavior (Dekel, 2008). Is this because grid

codes are too diffusive or because SPH codes suppress instabilities that would dissolve

these clumps? Why is there a difference in filaments sizes between the two types of

codes?

• Filaments of cold gas often seem to be remarkably straight over long distances and seem

to hit the very center of the forming galaxy. How can this be?
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Chapter 5

Homology

“I shall not today attempt further to define the kinds of material I understand to
be embraced within that shorthand description [of pornography] ... But I know it
when I see it[.]”

— United States Supreme Court Justice Potter Stewart

“Saying that initial conditions are non-Gaussian is like saying that an animal is a
non-dog.”

— Sergei Shandarin (related by Joel Primack)

Are galaxies homologous? The discovery of the Fundamental Plane (FP) of elliptical

galaxies distinctly sharpened this question because galaxies showed a regularity that almost,

but not quite, followed that expected from the Virial Theorem for systems in dynamical equi-

librium. The Virial Theorem holds in any case, but if each galaxy were unique, then the FP

would have a large scatter. If all galaxies were simply scaled copies of one another, then the

FP would follow the virial expectation. In either of these cases, the FP would likely not have

generated the interest that it has because it would either be less useful (in the former case) or

less interesting (in the latter case). Actual galaxies seem to be in between these two possibili-

ties: they are quite regular in structure, but do not quite follow the simple virial expectation.

An understanding of the origin of the FP requires at least one ingredient aside from the Virial
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Theorem, and the search for that missing ingredient has been the focus of many papers.

In this chapter I will develop a precise definition of homology starting from the several

informal definitions that seem to be in common use. My definition will involve choosing a set

of three scaling constants for each galaxy. The best choice for the definition of the scaling

constants is unclear, so I explore a wide range of possibilities, using them to draw dimensionless

density, velocity dispersion, and kinetic energy profiles for a large set of hydrodynamic binary

galaxy merger simulations. The best definition of the scaling constants is the one that makes

the dimensionless profiles of the simulated merger remnants have the least variation from

remnant to remnant. I find that one particularly simple definition does a remarkable job of

making a wide variety of merger remnants look similar.

The next step in this study is to look at a wider set of simulations to see if they,

too, share the same properties as the binary merger remnants analysed here. Finally, the last

step is to consult observations of real galaxies to assess the usefulness of my definitions of the

scaling constants.

5.1 Theoretical preliminaries

Unfortunately the definition of the term homology is unclear. Everyone has the

intuitive sense that it means that galaxies are somehow similar to each other, but precise

definitions seem to vary widely. People feel that they know it when they see it, but not

everyone agrees on what it is.

I will develop precise definitions that I believe capture the common usage, and I will

endeavor to use my precisely defined terms over the bare word itself in order to avoid confusion.

My own intuitive sense is that homology means that galaxies are scaled copies of each other.

For single-component models, it is fairly clear how to express this concept precisely.
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The first obvious point is that the property of homology applies to a set of galaxies,

not to individual galaxies. The statement that a set of galaxies is homologous is a very strong

claim about their structure. The statement that they are non-homologous conveys almost no

information about them. All homologous galaxies are the same, but every non-homologous

galaxy is non-homologous in its own way.

The usual method is to define structure constants relating true values of a galaxy’s

mass and luminosity to “virial estimates” obtained using scaling constants. From Bender et al.

(1992):

L = c1Ier
2
e (5.1)

M = c2σ
2
0re (5.2)

where L is the galaxy’s luminosity, re is the projected half-light radius, Ie is the mean surface

brightness inside re, σ0 is the projected aperture velocity dispersion, and c1 and c2 are structure

constants defined by these two equations. The important point is that M is the true mass of

the galaxy where σ0 and re are scale quantities combined in such a way as to dimensionally

produce a mass (up to physical constants, in this case G−1
N ). Therefore variation of c2 from

galaxy to galaxy indicates that mass profiles of the two galaxies differ to produce a different

relationship between the virial estimator and the actual mass. One definition of homology

holds that these structure constants are the same for all galaxies. I denote this definition

structure-constant homology.

Another definition is that the distribution functions of all galaxies are scaled versions

of some “master” distribution function. That is, there exists a function F such that all galaxies

have distribution functions f obtainable from F via:

f(x, v) =
M

R3V 3
F (x/R, v/V ) (5.3)
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whereR, V , andM are arbitrary scale constants, different for each galaxy. That is, if one knows

the universal distribution function, three numbers suffice to completely describe a galaxy. This

will be called scaling homology.

We shall see that all galaxies that are scaling-homologous are also structure-constant-

homologous, but not vice versa. That is, scaling homology is a stronger concept.

5.1.1 The Virial Theorem

I treat the simple case of a single component galaxy explicitly for clarity of comparison

with the multi-component case.

The scalar virial theorem says:

2K +W = 0 (5.4)

where K is the total kinetic energy of the system and W is the total potential energy of the

system. Putting this into the language of distribution functions,

ρ(x) =
∫
f(x, v) d3x d3v (5.5)

the total kinetic energy is

KE =
1
2

∫
|v|2f(x, v) d3x d3v (5.6)

and the total potential energy is:

PE = −1
2

∫
GNρ(x)ρ(y) d3x d3y

|x− y| = −1
2

∫
GNf(x, v)f(y, w) d3x d3y d3v d3w

|x− y| (5.7)

The virial theorem is then:

∫
|v|2f d3x d3v =

1
2

∫
GNf(x, v)f(y, w) d3x d3y d3v d3w

|x− y| (5.8)
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Define three arbitrary scaling constants R, V , and M , and non-dimensionalized coordinates

x̃ = x/R and ṽ = v/V .

V 2R3V 3

∫
|ṽ|2f(x, v) d3x̃ d3ṽ =

GNR
6V 6

2R

∫
f(x, v)f(y, w) d3x̃ d3ỹ d3ṽ d3w̃

|x̃− ỹ| (5.9)

Finally define the non-dimensionalized distribution function F to be:

F (x̃, ṽ) =
R3V 3

M
f(Rx̃, V ṽ) (5.10)

The virial theorem is now:

MV 2

∫
|ṽ|2F (x̃, ṽ) d3x̃ d3ṽ =

GNM
2

2R

∫
F (x̃, ṽ)F (ỹ, w̃) d3x̃ d3ỹ d3ṽ d3w̃

|x̃− ỹ| (5.11)

Therefore define the structure constants

α :=
∫
|ṽ|2F (x̃, ṽ) d3x̃ d3ṽ =

1
M

∫
|v/V |2f(x, v) d3x d3v (5.12)

and

β :=
∫
F (x, v)F (y, w) d3x̃ d3ỹ d3ṽ d3w̃

|x̃− ỹ| =
1
M

∫
f(x, v)f(y, w) d3x d3y d3v d3w

|x/R− y/R| (5.13)

With these definitions, the Virial Theorem becomes:

αV 2 = β
GNM

2R
(5.14)

and comparing to equation 5.2 reveals that:

c2 =
(

2α
GNβ

)(
M̄

M

)(
R

re

)(
V

σ0

)2

(5.15)

where M̄ refers to the total mass of the galaxy.

Finally, the virial theorem places a constraint on galaxies in equilibrium so that if

they are homologous, then the quantity of numbers required to fully specify a galaxy goes from

three to two.
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5.1.2 Two Component Galaxies

Describing a galaxy that contains both stellar and dark matter requires specifying

two distribution functions, f and g, with corresponding non-dimensionalized functions F and

G.

MV 2

(∫
|ṽ|2F (x̃, ṽ) d3x̃ d3ṽ +

∫
|ṽ|2G(x̃, ṽ) d3x̃ d3ṽ

)
(5.16)

=
GNM

2

2R

∫
(F (x̃, ṽ) +G(x̃, ṽ))(F (ỹ, w̃) +G(ỹ, w̃)) d3x̃ d3ỹ d3ṽ d3w̃

|x̃− ỹ|

MV 2

(∫
|ṽ|2F (x̃, ṽ) d3x̃ d3ṽ +

∫
|ṽ|2G(x̃, ṽ) d3x̃ d3ṽ

)
(5.17)

=
GNM

2

2R

∫
(F (x̃, ṽ)(F (ỹ, w̃) + 2F (x̃, ṽ)G(ỹ, w̃) +G(x̃, ṽ)(G(ỹ, w̃) d3x̃ d3ỹ d3ṽ d3w̃

|x̃− ỹ|

defining

γ := 2
∫
F (x̃, ṽ)G(ỹ, w̃) d3x̃ d3ỹ d3ṽ d3w̃

|x̃− ỹ| =
2
M

∫
f(x, v)g(y, w) d3x d3y d3v d3w

|x/R− y/R| (5.18)

we at last have the virial theorem in the form:

(αf + αg)V 2 = (βf + βg + γ)
GNM

2R
(5.19)

From this expression it is clear that for multi-component galaxies:

• Scaling homology implies structure-constant homology.

• Structure-constant homology does not imply scaling-homology because structure-constant

homology only requires a small number of constraints on the definite integrals defining

α, β, and γ.

• A galaxy being structure-constant homologous does not imply that each component is

separately structure-constant homologous. Structure-constant-homologous galaxies can

be built from non-homologous components if the change in αf compensates for the change

in αg and similarly for β.
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• The components of galaxies being structure-constant-homologous does not imply that

the galaxies are structure-constant-homologous.

• The structure constants for multi-component galaxies are not simply the sum of the

structure constants of the individual components owing to the cross term γ.

Finally, similar considerations for scaling-homology yield:

• Scaling-homology of galaxies implies scaling-homology of the components.

• Scaling-homology of the components does not imply scaling-homology of galaxies. The

whole galaxy is scaling-homologous only if the ratios of the scaling constants for each

component are the same for all galaxies. That is, Rf/Rg is the same for all of the

galaxies.

One may wonder whether the dark and luminous components should be allowed their

own scaling constants. The problem is that scaling the components separately disturbs the

dynamical equilibrium of the galaxy. Consider a galaxy in dynamical equilibrium where the

baryonic scale radius is allowed to shrink to zero, making the baryons into a point mass. The

dark matter far outside the original baryonic scale radius will not be significantly affected, but

the dark matter inside the original baryonic scale radius will not have more mass enclosed.

This will obviously disturb equilibrium. Therefore the question of whether each component of

a set of galaxies is separately homologous is of little practical importance.

The discussion of scaling constants makes it clear that scaling-homology is closely

related to systems of units. It means that all galaxies are the same if one works with the

correct system of units, where the units are allowed to change from galaxy to galaxy.
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5.1.3 Observational Complications

The only observationally accessible quantities are projected ones. Therefore for ex-

ample, the measured mean surface brightness within the effective radius involves an integral

along the light of sight and therefore implicitly mixes information about the entire mass/light

profile at all radii.

A second complication involves mass-to-light ratios, where much confusion has re-

sulted from imprecision in the use of terminology. There are two contributions to the observed

mass-to-light ratio—one is the stellar population and the other is the dark matter fraction.

The problem is that these two contributions are generally observationally degenerate. There-

fore there is a tendency to simply refer to the mass-to-light ratio without specifying whether

to quantity under consideration is due to stars or dark matter fraction.

5.1.4 Three ways to tilt the FP

There are three independent ways to generate the tilt in the fundamental plane. Any

or all of them may be at work.

The first is a systematic change in the stellar mass-to-light ratio with the mass of the

host galaxy via trends in the age and/or metallicity of the stellar population. In this case the

stellar and dark matter distribution functions are scaling (and therefore structure-constant)

homologous because the masses of stars and dark matter components are unaffected.

The second is a systematic change in the dark matter fraction near the center of the

galaxy. This is a mild form of non-homology which is achieved by changing the ratio of the

mass scaling constants Msm/MDM with galaxy mass. Overall scaling- and structure-constant

homology are violated, but the baryonic components by themselves may be nearly scaling- and

structure-constant-homologous. Furthermore, as long as the stellar and dark matter remain
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nearly decoupled by the very different half mass radii, then changing the dark matter fraction

should not greatly disturb the dynamical equilibrium of the stellar material. In this case the

stellar population mass-to-light ratio is identical for all galaxies, but the total mass-to-light

(both for the entire galaxy and within any radius) ratio changes systematically with mass.

The third possibility is that homology is flagrantly violated and the baryonic com-

ponents of galaxies are neither scaling nor structure-constant homologous. Even if the stellar

population mass-to-light ratio is always the same, there is still total freedom in the total mass-

to-light ratio owing to the total freedom in the choice of dark matter profile for each galaxy.

It may change or be constant as a function of radius, and the total mass-to-light ratio may

change or be constant for the entire set of galaxies.

As a concrete example, this is the case if more massive galaxies are more centrally

concentrated than lower mass galaxies. One has the choice to give all galaxies the cosmological

baryon fraction or change the baryon fraction from galaxy to galaxy, determining the overall

mass-to-light ratio. Even if all galaxies have the same baryon fraction, changing the radial

structure of the dark matter halo can change the mass-to-light ratio as a function of radius.

A great source of confusion is that the first and second possibilities are very different

theoretically but nearly degenerate observationally. Everyone agrees that the first possibility

involves homology and the third possibility involves non-homology. However, the second pos-

sibility is observationally very similar to the first possibility but theoretically very similar to

the third possibility. This unfortunate circumstance makes it difficult to decide this issue.

5.1.5 Variable dark matter fraction and equilibrium

There are two contributions to a total mass-to-light ratio—one from the character-

istics of the stellar population and one due to the accompanying dark matter. This allows
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researchers, through the sloppy use of terminology, to labor under the false impression that

they agree with one another.

If the mass-to-light ratio changes with galaxy mass because of a changing stellar

population, then the FP will be tilted but the mass distribution may still be homologous.

However, if the mass-to-light ratio changes due to changing dark matter fraction, then the

galaxies must be non-homologous.

Consider the spherically symmetric Jeans equation (e.g. Binney & Tremaine, 1987):

ln ν
ln r

+
lnσ2

r

ln r
+ 2β +

1
σ2
r

dΦ
ln r

= 0 (5.20)

where ν is the number density of tracer particles, σr is the radial component of the velocity

dispersion, Φ is the total gravitational potential, and β = 1−σθ/σr is the anisotropy parameter.

The matter density is provided by two components, ρb and ρd. The Poisson equation

is linear so if we find two potential functions Φb and Φd that separately satisfy it, then the

potential for the sum of the mass densities is the sum of the potentials. So:

∇2Φb = 4πGNρb and∇2Φd = 4πGNρd (5.21)

implies

∇2(aΦb + bΦd) = 4πGN (aρb + bρd) (5.22)

is also a solution to the Poisson equation. Changing the dark matter fraction, then corresponds

to setting a = 1 and allowing b to change. Putting this into the Jeans equation results in:

ln ν
ln r

+
lnσ2

r

ln r
+ 2β +

1
σ2
r

(
dΦb
ln r

+ b
dΦd
ln r

)
= 0 (5.23)

That is, if a galaxy is in equilibrium with b=1, then any change to b must be compensated by

a change in the anisotropy β or a change in the radial fall-off of density or velocity dispersion.

The dark matter and baryons separately satisfy their own Jeans equations, so there

is no possibility of compensating changes that will preserve equilibrium. A final hope would be
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to carefully define the scale constants in equation 5.3 to depend on b so that homology would

be preserved. However, we are working with the Jeans equation in dimensionless form, so any

changes to units or scale constants cancel out and have no effect on the equation.

We are left with the conclusion that varying dark matter fraction and non-homology

are the same concept. If the tilt in the FP is not due to systematic changes in the stellar

population mass-to-light ratio, then it must be due to non-homology. There is no separate

case where “only” the dark matter fraction and therefore the observed mass-to-light ratios are

changing.

5.2 Previous Work

This subject has a long history and this section only covers the recent notable obser-

vational and theoretical developments.

5.2.1 Observational Studies

Cappellari et al. (2006) used Schwarzschild modeling of SAURON early-type galaxies

to show that the so-called virial mass estimator (5reσ2/G) is an excellent estimator of the

dynamical mass within one effective radius. The SAURON survey also has stellar spectra over

the whole galaxy image out to ∼ re, and is thus excellently placed to use stellar population

synthesis to finally break the degeneracy between dark matter fraction and stellar population

mass-to-light ratio. The key plot is their Figure 17, reproduced here as Figure 5.1 and it is

unfortunately completely ambiguous. For dynamical mass-to-light ratios below 2.8, there is

basically a linear relationship between the stellar mass-to-light ratio and the dynamical mass-

to-light ratio. For larger mass-to-light ratios, there is essentially a single stellar mass-to-light

ratio, independent of the dynamical mass-to-light ratio.
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Figure 5.1: Dynamical mass-to-light ratio versus stellar mass-to-light ratio from Cappellari
et al. (2006). The red points are slow-rotators, the blue points are fast-rotators, and the pink
arrows indicate the uncertainty due to modeling the stellar population with a single age or
multiple ages.

It seems that the easiest conclusion to draw is that for mass-to-light ratios below 2.8,

stellar populations are solely responsible for variations, whereas for mass-to-light ratios above

2.5, dark matter fraction is solely responsible for variations. An unfortunate state of affairs,

but the universe is under no obligation to be simple.

Bolton et al. (2008) used strong gravitational lenses to argue that if one replaces

the luminosity surface density in the FP with the mass surface density, one gets an untilted

fundamental mass plane that is in full agreement with the virial expectation. Therefore the

tilt in the FP must be due to variations in mass-to-light ratio, but this study is unfortunately
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mute on whether the variations are due to dark matter fraction or stellar populations.

Graves is using Sloan data on nearby galaxies to look at dynamical and stellar mass-

to-light ratios (personal communication, 2008). She finds large variation in dynamical mass-

to-light ratios with little variation in stellar population mass-to-light ratios. This indicates a

changing dark matter fraction/non-homology.

5.2.2 Theoretical Studies

González-Garćıa & van Albada (2003) and Boylan-Kolchin et al. (2005) studied dis-

sipationless merger simulations to determine whether mergers leave the FP intact. González-

Garćıa & van Albada (2003) started with structure-constant homologous systems and found

that their remnants did not share the property. The merger remnants do lie on the FP, ev-

idently because the two structure are able to undergo compensating changes since they only

appear in a multiplicative combination in the FP relation (their Equation 6). Boylan-Kolchin

et al. (2005) studied a smaller number of much higher resolution simulations and found that

both structure-constant homology and the FP were preserved by the merger process at the

10% level. They did, however, find a significant violation of homology for radial-orbit mergers.

Dekel et al. (2005) showed that simulated hydrodynamics merger share many of the

observed properties of elliptical galaxies, with special emphasis on the large-radius (∼ 2−5re)

kinematics.

Dekel & Cox (2006) studied dissipation as the potential origin of the FP tilt. They

assumed that all observable galaxy properties are power-law functions of the mass of the galaxy

and the gas fraction, and then used several merger simulations with different gas fractions and

masses in order to fix the power-law exponents and constants in their model. They were left

with a set of constraints on the power-law exponents such that for any observed FP tilt, one
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could solve for the properties of the progenitor galaxies (e.g., gas fraction) as a function of

mass. This of course depends on their merger simulations being good representatives of all

mergers of that mass and gas fraction.

Robertson et al. (2006) assumed a constant stellar mass-to-light ratio and concluded

that with a sufficient amount of gaseous dissipation, merger remnants naturally produce a

tilted FP. Since they assumed a constant stellar mass-to-light ratio, this tilt must have been

caused by structural non-homology/varying dark matter fraction.

Hopkins et al. (2008a) performed an extensive study of dissipation and the origin of

the fundamental plane. They seem to be concerned with structure-constant homology, but

dismiss non-homology as the source of the FP tilt. They assert that gas dissipation causes

a varying dark-matter fraction inside the effective radius, which in turn tilts the FP. They

note that a varying dark matter fraction implies non-homology, but somewhat confusingly still

claim that the varying dark matter fraction is the overriding consideration.

5.3 Results

In this section I search for the definitions of the scaling constants that result in the

least variation among the remnants produced by gas-rich binary major mergers.

5.3.1 Choice of Units

As we’ve seen, deciding whether a set of galaxies is scaling-homologous boils down

to finding a system of units in which all galaxies look the same. The different density profile

slopes and central dark matter fractions mean that the present set of simulated remnants

cannot be perfectly homologous. However, the question continues to be interesting because of

the remarkably consistent total mass density profile shown in Figure 2.2.
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We seek mass, radius, and velocity (hence time) scales that can be used to non-

dimensonalize the remnant density and velocity profiles. Typically, the projected stellar half

mass radius and central velocity dispersion are used. The nearly power-law total mass density

profile is scale-free, but other possibilities for a scale radius include the dark matter half-mass

radius, the radius where dark matter and baryonic densities are equal, or the radius where

the enclosed dark matter and enclosed baryonic matter masses are equal. Candidate scale

masses are the total baryonic mass or total dark matter mass. Finally, for scale velocities

it may be advantageous to include the velocity anisotropy in the definition. For now we are

obviously leaving aside the issue of observationally determining the scale quantities once we

have determined our favorites by analyzing simulated remnants.

5.3.1.1 Density Profiles

Figure 5.2 shows the non-dimensionalized density profiles for the usual choice of the

stellar effective radius for the length scale and the total stellar mass for the mass scale. To avoid

complications due to viewing angles, we use the 3D half mass radius, not the observationally

accessible projected half mass radius.

Figure 5.3 shows a different choice of length and mass scales. The length scale is req,

the radius at which the enclosed stellar and dark masses are equal, and the mass scale is the

stellar mass enclosed within req. In comparing to the mass profiles shown in Figure 5.2, we

must ensure that the same physical radial range of the galaxies are probed. Multiplying the

chosen units by a factor common to all galaxies does not change the result, so we normalize

to the Sbc201a-u4 simulation. For this simulation, re = 0.437req and Mstars = 1.54M(< req).

We arrived at after looking at eight possible radius scales including stellar, dark, and

total effective radii and projected effective radii, the radius where stellar mass density and dark
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Figure 5.2: The total non-dimensionalized mass density profiles for all G and Sbc series simu-
lations. Above, the total mass density, on the bottom left, the stellar mass density, and on the
bottom right the dark matter mass density. All mass profiles have been multiplied by r2 to
flatten them out. The length and mass scales are the typical observationally motivated choices
of stellar half mass radius and stellar mass. The stellar components of all of the simulations
are strikingly similar. However, the chosen mass and length scales have nothing to do with the
dark matter, so there is significant variation among the dark matter profiles of the different
simulations. There is also a systematic change in the slope of the dark matter profiles between
Sbc and G series simulations. No change of units will remove this difference.
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Figure 5.3: The same as Figure 5.2 except for a different choice of radius and mass scales.
Here, the radius scale is 0.437 ∗ req, where req is the 3D radius where the enclosed stellar
mass and dark mass are equal, and the mass scale is the 1.54 times the stellar mass enclosed
within req. The factors of 0.437 and 1.54 are chosen to ensure that these plots cover nearly the
same physical region of the galaxy as Figure 5.2. With this choice of length and mass scale,
the merger remnants show truly remarkable regularity. The dark matter mass profiles show
∼ 10% variation and the baryonic mass profiles show ∼ 40% variation in spite of a wide range
of masses, gas fractions, orbits, and feedback recipes employed in these simulations.

mass density are equal, and finally the radius where the enclosed stellar mass and enclosed

dark mass are equal. We evaluated thirty mass scales including total stellar, dark, and total

mass, the total of each type of mass within each of four radii (stellar effective radius, dark

effective radius, radius where stellar and dark densities are equal, and req), and the mass scale

that sets each of the three types of mass density to one at each of the four radii.

The simulated galaxy merger remnants analysed here are not perfectly scaling-homologous.

This is clear as soon as one realizes that the central slopes of the dark matter profiles are dif-

ferent between the G and Sbc series of simulations. Changing the scale radius can only shift

curves from side-to-side in Figures 5.2 and 5.3—it cannot change the slopes.
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Even so, the radius and mass scale choice made in Figure 5.3 represents essentially

the maximum regularity among galaxy merger remnants that one can hope for by judiciously

choosing a system of units for each galaxy.

It is also surprising that the dark matter mass profiles for Sbc-series simulations is

extremely close to an isothermal ρ ∝ r−2 profile (indicated that the relevant curves in Figure

5.3 are nearly flat). The dark matter profiles of G-series remnants are somewhat shallower, and

the stellar remnants in both cases are somewhat steeper. In the case of the G-series remnants,

the balance between the dark and stellar profiles leads to a total mass density very close to an

isothermal profile. The Sbc series remnants have steeper total mass density profiles, but only

slightly so.

This is in contrast with the widely known result from dissipationless cosmological dark

matter simulations that the inner density slope of dark matter halos is between 1 (Navarro

et al., 1996) and 1.5 (Moore et al., 1998). In these binary galaxy merger simulations, dark

halos end up with even steeper profiles in spite of starting with shallower, NFW profiles.

5.3.1.2 Velocity Profiles

Having seen that the density profiles of simulated galaxy merger remnants are very

consistent when scaled by a particular choice of constants, the next question is whether such

behavior is also seen in the velocity profiles.

Figure 5.4 shows remnant stellar velocity profiles for the typical choice of scaling

constants: the stellar half-mass radius and the central projected velocity dispersion. The 1σ

variation near the half-mass radius is ∼ 20%.

Figure 5.5 shows the results of using the dynamical time at the half mass radius

as the relevant timescale. Note that does not introduce a new galaxy-dependent quantity in
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Figure 5.4: Non-dimensionalized stellar velocity profiles for G and Sbc series simulated merger
remnants. The choice of scale radius and time here are the usual observationally motivated
ones: r0 is the is the stellar half-mass radius and t0 is r0/σp where σp is the projected velocity
dispersion within an aperture of re/8. Top left: 3D radial velocity dispersion; top right: 3D
velocity dispersion in the θ direction; bottom left projected velocity dispersion in the azimuthal
direction; bottom right: mean streaming velocity in the azimuthal direction. This figure shows
significant diversity in the velocity structure of simulated galaxy merger remnants.
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Figure 5.5: Same as Figure 5.4, except that the time scale is the dynamical time at the 3D
stellar half-mass radius. This is the best choice for the timescale of the possibilities explored
herein. The velocity profiles are significantly more similar than those shown in Figure 5.4, but
the similarity is nowhere near as striking as that of the density profiles shown in Figure 5.2

.

addition to the radius and mass scales already defined. This choice simply uses the gravitational

constant to turn the radius and mass scales into a timescale. This makes the velocity dispersion

profiles of the various remnants significantly more similar, reducing the 1σ scatter to ∼ 10%.

There remains significant variation in the rotation velocities of the remnants. The dynamical

time at the half mass radius is the best choice of possibilities analysed here for the purpose

of bringing the scaled stellar velocity profiles of merger remnants into agreement with one

another.

However, the stellar/dark-matter equality radius req has significant advantages over

the stellar half-mass radius with respect to remnant density profiles. It would be advantages

to avoid introducing a separate length scale for use with velocity profiles, so Figure 5.6 shows
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Figure 5.6: Same as Figure 5.4, except that the time scale is the dynamical time at the mass-
equality radius req. The velocity profiles shown here are significantly more similar than those
in Figure 5.4, but not as similar as those shown in Figure 5.5. This set of velocity profiles is
presented because this choice of timescale is only slightly worse than the dynamical time at
the stellar half-mass radius (shown in Figure 5.5), and making this choice has the advantage
that it no additional measurements must be made for each galaxy if one has already decided
to use req because if its dramatic advantage with regard to mass density profiles.

stellar velocity profiles when scaled by the dynamical time at req. The results are only slightly

worse than the velocity profiles shown in Figure 5.5.

Figure 5.7 shows dark matter velocity profiles for the three choices of radius and

timescales under discussion. This is of marginal observational utility since the dark matter

velocity dispersion as a function of radius is nearly impossible to observe, but is interesting

from a theoretical perspective. This figure shows that using the dynamical times at either the

stellar half-mass or mass-equality radius results in a significant reduction in the variation in

velocity profiles of the dark matter halos. The velocity profile using the dynamical time at req

shows as little as 5% variation among Sbcor G series simulations, although there is an offset
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Figure 5.7: Dark matter velocity profiles for three choices of length and time scales. Top: r0 is
the stellar half mass radius and t0 is r0/σp; bottom left: r0 is the same and t0 is the dynamical
time at the stellar half mass radius; bottom right: r0 = req and t0 is the dynamical time at req.
The lower panels are a significant improvement over the top panel, and the lower right panel is
somewhat improved over the lower left panel. We only show the radial dark matter dispersion
profiles because the dark matter anisotropy is small and nearly independent of radius.

between the two sets of simulations.

Analyzing anisotropy profiles is a convenient way to put a limit on the extent to which

the velocity structure of the simulated remnants can be brought into a common system. This

is because the anisotropy is unitless, hence the only choice to be made is the length scaling

constant.

The anisotropy β is usually defined for a spherically symmetric object. In that case,

σθ = σφ and vr = vθ = vφ = 0 so

βθ = 1− σ2
θ/σ

2
r = βφ = 1− σ2

φ/σ
2
r (5.24)

The merger remnants presented here are not spherically symmetric so Figure 5.8 shows both
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Figure 5.8: Stellar Anisotropy profiles for two choices of scale radius. In the top two panels, r0

is the stellar half-mass radius. In the bottom two panels, r0 is the stellar-dark mass equality
radius req. The left two panels show the azimuthal anisotropy and the right two panels show
the anisotropy associated with the polar angle. This plot shows part of the reason why there
is diversity in the velocity profiles of galaxy remnants in spite of the striking regularity in the
density profiles. The Virial Theorem constrains the total kinetic energy of the system, but
does not determine the direction of the velocities of the stars. Therefore it is impossible to
choose scaling constants so that, for example, the σr profile looks the same for all remnants.

βθ and βφ.

Virtually all of the remnants show stellar anisotropy profiles that rise with radius, in

some cases to values near 1 (completely radial velocity dispersion). This is easily understood

in terms of the dynamical origin of the stars at large radius (Dekel et al., 2005). Stars that

end up at large radius are stars that were flung out from near the center be gravitational

slingshot in interaction with the merging nuclei. They have low angular momentum because

they started out within ∼ 1re, so the orbits of those stars must pass close to the center of the

remnant. The large aspect ratio of the orbits of these stars manifests itself as highly radial

anisotropy.
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In spite of the similar slopes of the anisotropy profiles, there is significant variation in

the zero-point. The slopes of the anisotropy profiles are similar from galaxy to galaxy, but they

are shallow. Changing the scale radius slides the curves horizontally, so any scale radius that

would bring all the curves into agreement would be forced to vary dramatically from galaxy

to galaxy. The lower two panels of the figure show that going from the stellar half-mass radius

to the mass-equality radius makes hardly any difference.

We have seen that the density profiles of simulated remnants are remarkably consis-

tent, but the velocity profiles show significant variation. Figure 5.8 suggests that the reason

for the variation in the velocity profiles is the direction of the velocities of the stars. That is,

there is a common kinetic energy profile, but the velocity profiles are different because some

remnants are radially anisotropic, some are tangentially anisotropic, and some are rotating.

The specific kinetic energy is:

Ek/m =
1
2

(v2
φ + σ2

r + σ2
θ + σ2

φ) (5.25)

where we have assumed Gaussian velocity distributions and neglected vr and vθ because the

remnants are in steady-state.

Figure 5.9 shows kinetic energy profiles using the stellar half-mass radius and cen-

tral projected velocity dispersion as scale constants. A common kinetic energy profile is not

apparent with this choice of scale constants.

Figures 5.10 and 5.11 show kinetic energy using effective radius and dynamical time

at the effective radius, or the mass-equality radius and the dynamical time there, respectively.

Now the common energy structure of the merger remnants comes dramatically into focus.

In the case of the Sbcsimulations there is as little as 3% 1σ variation in the Sbcseries of

simulations. There is again, an offset between the two sets of simulations but nevertheless the

lack of variation between simulations of a given set is remarkable.
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Figure 5.9: Specific kinetic energy profiles with scale constants r0 equal to the stellar half mass
radius and t0 = r0/σp. There appears to be great diversity in the kinetic energy profiles of
galaxy remnants.
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Figure 5.10: Specific kinetic energy profiles with r0 being the stellar half-mass radius and t0
being the dynamical time at that radius. Compared to Figure 5.9 there is very little diversity
in the kinetic energy profiles of different remnants. This confirms the idea that the source
of diversity in the dimensional velocity profiles is the diversity in the directions of the stellar
velocities in the different remnants.
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Figure 5.11: Same as Figure 5.10, but the scale radius is req and the scale time is the dynamical
time at req. These kinetic energy profiles also show extremely consistent behavior given the
great diversity of the origins of the remnants.

170



5.4 Conclusions

In this chapter I developed precise definitions of the various informal concepts of

homology that seem to be in common use. I explored the precise meaning of the definitions in

terms of the distribution functions that describe galaxies.

I have shown that simulated gas-rich binary galaxy merger remnants show remarkably

regular structure when the correct scale constants are used to plot non-dimensional density

and kinetic energy profiles. The direction of the motion of stars is essentially the sole source

of the variation in the kinematic structure of these simulated merger remnants.

The scaling constants that result in the least variation among this population of

merger remnants are req, meq, and τeq, where req is the the radius at which the enclosed dark

and luminous matter are equal, meq is the mass within req, and τeq is the dynamical time at

req.

Dark halo concentration, and progenitor gas fraction contribute to a systematic differ-

ence between the Sbc and G series simulations, but within each set of simulations the structure

is remarkably consistent.

The fact that req plays such a prominent role in these scaling constants immediately

recalls the disk-halo conspiracy arising from the study of spiral galaxy rotation curves (Bahcall

& Casertano, 1985; Burstein & Rubin, 1985; Kent, 1987). Blumenthal et al. (1986) argued that

such a conspiracy will arise naturally if the dissipational collapse of baryons is limited by their

initial angular momentum and if the baryon fraction is roughly equal to the spin parameter

λ = JE1/2G−1M−5/2. This result appears to be another manifestation of this phenomenon.
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5.4.1 Future Work

Issues that should be addressed in immediate future work in order to publish this

chapter include:

• Why do simulated merger remnants look so similar when scaled by req, meq, and τeq?

Is this related to the Blumenthal et al. (1986) result that provided an explanation for

the featureless rotation curves of spiral galaxies? A few additional simulations of galaxy

mergers with different merger orbits should resolve this question.

• Why are the G-series and Sbc-series simulations different from each other, but so similar

within each series? The two most obvious possible explanations are the difference in gas

fractions and the difference in dark halo concentrations. A few additional binary merger

simulations with different progenitors should answer this question.

• This chapter analyzes only binary merger remnants. Do multiple merger remnants have

the same dimensionless density and kinetic energy profiles as binary mergers?

• It would be useful to develop a set of rules that

• It would be informative to analyze the remnants in terms of the Jeans equations in order

to see exactly which terms of the equations are important.
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Chapter 6

Implications of the Mass Plane

for Galaxy Structure

I compare a large suite of numerical simulations to gravitational lensing data from

Bolton et al. (2007). This has the virtue that essentially no ad-hoc assumptions are needed

to directly compare simulated galaxies to the observed ones. I find that for velocity disper-

sions below 200 km/s, simulated binary merger remnants and observed galaxies are compatible.

When the velocity dispersion reaches 250 km/s, simulated binary merger remnants are system-

atically less concentrated than observed galaxies. Merger remnants produced by simulations

starting from cosmological initial conditions have velocity dispersions 250 to 350 km/s, and

they have enough mass enclosed within the Einstein radius to bring them into agreement with

observations. Galaxies with velocity dispersions of 250 km/s or above do not seem to have

been produced by binary mergers of gas-rich spiral galaxies, but they may have been produced

by more complicated merger histories and continued gas accretion that occur in simulations

starting from cosmological initial conditions.
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6.1 Introduction

The fundamental plane (FP) of elliptical galaxies (Djorgovski & Davis, 1987; Dressler

et al., 1987) has long been of interest to astronomers, who have debated whether the so-called

tilt of the plane arises due to a systematic change of the mass-to-light ratio (either stellar

or dynamical) with galaxy mass, or due to structural non-homology of galaxies with mass.

Recently Bolton et al. (2007) (henceforth B07) obtained mass surface density estimates of

elliptical galaxies from gravitational lenses that allowed the construction of a separate plane in

terms of mass surface density rather than luminosity surface density. This indicates that the

tilt in the FP is solely as mass-to-light effect. These observations are unfortunately mute on

the question of whether the changing mass-to-light ratio is attributable to systematic changes

in the stellar populations of galaxies or to systematic changes in the dark matter fractions. As

we saw in Chapter 5, the first possibility would mean that galaxies are homologous, while the

second possibility would mean that galaxies are not homologous.

The result from B07 agrees with Cappellari et al. (2007), who used integral-field

spectroscopy and Schwarzschild dynamical modeling of nearby elliptical galaxies to conclude

that the dynamical mass of galaxies is given accurately by the so-called virial mass estimator,

M ∝ Reσ2/G where M is the mass of the galaxy, Re is the half-light radius, σ is the velocity

dispersion, and G is the gravitational constant. Cappellari et al. also analyzes the stellar

populations of the SAURON galaxies and it seems that for at galaxies with large mass-to-

light ratios, the stellar population mass-to-light ratio is nearly constant while the dynamical

mass-to-light ratio changes significantly. This indicates that galaxies these have changing dark

matter fractions and hence are not homologous.

When analyzing the remnants produced in hydrodynamic merger simulations, the

most common course of action is to assume a constant stellar mass-to-light ratio. In that case
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a tilted FP will only arise if galaxies are non-homologous, and studies of simulated gas-rich

merger remnants indeed robustly predict tilted FPs (Dekel & Cox, 2006; Robertson et al.,

2006).

A pleasant fact about gravitational lensing measurements is that the observationally

accessible quantities are also the theoretically accessible quantities. I construct Bolton et al.’s

mass plane from simulations and show that, in agreement with previous studies, hydrodynamic

galaxy merger simulations show non-homology that reproduces the FP given constant mass-

to-light ratio. This implies that they disagree with Bolton et al.’s mass plane measurements.

6.2 Methods

The quantity well-constrained by B07’s measurements is the projected mass contained

within the Einstein radius of the lens. Thus from the raw lensing measurements one does not

learn anything about homology because one is probing different radii depending on the redshifts

of the lens and source as well as the properties of the lens. For example, if all galaxies are

homologous and at the same redshift, then the Einstein radius in units of the half-light radius

will be smaller if the mean surface mass density of the galaxy (M/R2
e) is smaller.

In order to learn anything about homology it is necessary to measure length in units

of a scale radius which is usually taken to be the projected half-light radius. B07 adopted

an isothermal density profile in order find masses and velocity dispersions within a common

aperture, Re/2. Although the authors carefully point out that their conclusions are indepen-

dent of the specific mass model, it is necessary to adopt some mass model in order to measure

quantities at a common radius.

Therefore I consider two aspects of the relationship between the simulations and the

data. First, I simply extract the observationally accessible quantities from the simulations and
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plot them without regard for learning anything about homology. Second, I construct Bolton

et al.’s mass plane from the simulated galaxies in order to learn about homology.

In order to find the Einstein radii associated with the simulations, I find the root of

the equation:

4GM(< r)dLSdL
c2dS

− r2 = 0 (6.1)

where r is the projected radius, M(< r) is the projected mass within projected radius r,

and dLS , dL, dS are angular diameter distances from the lens to source, observer to lens, and

observer to source, respectively. I assume that zS = 2zL, where zL and zS are the redshifts of

the lens and source, respectively. close to the “ideal” lensing geometry. The value of r that

solves this question is the Einstein radius, REin.

6.3 Results

One of the great complications of comparisons between simulated galaxies and ob-

served ones is that observers measure fluxes and linewidths of light processed by dust, while

simulators measure masses and velocities from models that often do not account for dust.

Gravitational lensing data make the situation much simpler because the observationally ac-

cessible quantities are also theoretically accessible.

Figures 6.1 and 6.2 show the basic observed quantities from B07 and the same quan-

tities extracted from simulations. Each simulated galaxy actually describes a line through each

of the plots since the Einstein radius and the mass enclosed within the Einstein radius both

depend on the redshift of the lens and the redshift of the source. The velocity dispersion is

the aperture dispersion within Re/2, so it does not depend on the lensing geometry and hence

the line for each simulation would be vertical if Figure 6.2.

The lenses in B07 have redshifts between 0.2 and 0.4, and most of them are close to
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Figure 6.1: Einstein radius versus mass enclosed within the Einstein Radius. Black Xs are
data from B07. Each line shows the mass profiles of one simulation. Blue lines indicate binary
merger simulations and red lines indicate simulations with cosmological initial conditions.
Given a lensing geometry, each simulation will produce a point somewhere along its line. The
small (large) dots correspond to a particular lensing geometry for each simulation where zL =
0.2 (0.4) and zS = 0.4 (0.8). There is little information in this panel and it is primarily reflects
redshift distribution of lenses.
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Figure 6.2: Gravitational lensing observables versus velocity dispersion. Top: Mass enclosed
within the Einstein radius versus the velocity dispersion within reff/2. Again, black Xs
are observed galaxies, blue points are simulated binary galaxy mergers, and red points are
simulated merger remnants from cosmological initial conditions. The green grid shows a set of
homologous Hernquist + NFW models described in the text. Near 200 km/s, observations and
simulated binary merger remnants occupy the same region of the plot. Near 250 km/s, the
binary merger simulations have systematically less mass enclosed within the Einstein radius
when compared to observations. The merger remnants from cosmological initial conditions,
however, have both larger velocity dispersion and higher values of Mein when compared to
the binary merger remnants. The cosmological merger remnants are in tentative agreement
with the lensing observations. Changing the redshift of the lens makes very little difference.
Bottom: Mass enclosed within the Einstein radius versus the velocity dispersion within reff/2.
The information conveyed in this panel is essentially the same as in the top panel, except that
this panel is more sensitive to the redshift distribution of the lenses.
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Figure 6.3: Left: The luminosity plane for simulated galaxies. A combination of velocity
dispersion and surface brightness designed to give a virial estimate of effective radius versus
measured effective radius. The exponents come from the fit in (B07). Blue points are simulated
remnants assuming a constant stellar mass-to-light ratio. Blue points are simulated remnants
from cosmological initial conditions with the same assumption of constant stellar mass-to-light
ratio. The solid line is the 1:1 relation and the dotted lines show the approximate spread in
the data points shown in B07. In agreement with previous studies, I find that the simulated
galaxies closely resemble the observations, in particular reproducing the tilt of the FP. Since
simulated galaxies reproduce the tilted FP with a constant stellar mass-to-light ratio, they
are not homologous (recalling from Chapter 5 that a changing central dark-matter fraction
implies non-homology). One is led to infer from this panel that simulated galaxies reproduce
the observations, that real galaxies are not homologous, and that non-homology is the source of
the tilt in the FP of real galaxies. Right: The mass plane of B07. As above, except that mass
surface density replaces luminosity density for the observed galaxies. For simulated galaxies,
our assumption of constant stellar mass-to-light ratio means that the only difference between
the luminosity surface density and the mass surface-density is the fact that the mass surface-
density includes the dark matter. Simulated galaxies are clearly not reproducing the mass
plane, but they are not far off. The combination of exponents is again from B07 and is only
∼ 1.5σ away from that expected from the virial theorem. The axes of both panels are chosen
to be exactly the same as the corresponding plots in B07.
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the “ideal” lensing geometry where the lens is approximately halfway between the observer and

the source. When placing simulated remnants at a particular redshift, I assume the standard

cosmology (Ωm = 0.3,ΩΛ = 0.7, h = 0.7) and that zS = 2zL. This is not quite the ideal

geometry when the effects of cosmology are included but it is not far off for these relatively

low redshift lenses.

Figures 6.1 and 6.2 provide the most unadulterated comparison between simulations

and observations, but one cannot draw conclusions about homology from it because quantities

are not measured as at a consistent radius. Homology is here understood to mean that there

is a universal distribution function F for all galaxies such that:

f(r, v) = M0F (r/R0, v/V0) (6.2)

where f is the distribution function for a particular galaxy while R0, V0, and M0 are scaling

constants that are different for each galaxy. For a given galaxy, the scaling constants are related

through the virial theorem so that it is only necessary to specify two of the three. Thus if a

population of galaxies is homologous and one knows the universal distribution function, two

numbers suffice to completely specify the galaxy. In practice these two numbers are often taken

to be the effective radius and the velocity dispersion measured within some fixed fraction of

the effective radius such as σe2, measured within Re/2.

I include a grid of homologous model galaxies motivated by the structure of real

galaxies. The models consist of a spherical, isotropic Hernquist model (Hernquist, 1990) rep-

resenting the baryons and a spherical, isotropic NFW profile (Navarro et al., 1996) representing

the dark matter. The fundamental parameters are the virial radius and mass, Rvir and Mvir.

For the halo I assume that rs = Rvir/10 and set central density so that the total mass (dark

matter and baryons) within Rvir is Mvir. For the Hernquist profile, I assume that the total

mass is 0.1Mvir and that the 3D half mass radius is Rvir/50. There is no adiabatic contraction.
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I numerically integrate the Jeans equation to find the radial velocity dispersion, the projected

velocity dispersion, and the aperture velocity dispersion, all as a function of radius.

Figure 6.2 shows a grid of these models for Mvir = 1, 3, 10, 30, 100 × 1011M� and

Rvir = 25, 50, 100, 200, 400, 800 kpc. The grid of models is nearly, but not quite, degenerate

in the parameters Rvir and Mvir. This confirms that raw gravitational lensing data does

indeed probe the mass profile at different points and thus does not by itself permit conclusions

regarding homology. It is worth noting that both the Hernquist component and the NFW

component are necessary to come reasonably close to the data because the NFW component

by itself does not have a high enough central mass density, while the Hernquist component

by itself does not have enough total mass to give reasonable agreement with the data and

simulations.

The tilt of the FP is the deviation of the exponents relating the scaling variables of a

galaxy from the virial expectation. From the virial theorem, one expects that Re ∝ σ2/Σ, but

the observed FP is closer to Re ∝ σ1.5/I0.75 (Bernardi et al., 2003). The difference between

the exponents is the tilt in the FP

Figure 6.3 shows the traditional FP (based on luminosity) and the mass plane from

B07. In the absence of observational data to construct the mass plane, Robertson et al. (2006),

Dekel & Cox (2006) and others made the reasonable decision to assume a constant stellar mass-

to-light ratio to see if simulated galaxies reproduced the observed tilt in the FP. The satisfying

result at the time was that, indeed, simulated galaxies did reproduce the tilted plane without

the need for a systematically varying mass-to-light ratio.

It is important to realize that although the simulations are not reproducing this

aspect of the data, they are not dramatically wrong. It is interesting and important to identify

where the simulations and data disagree wherever possible, but this result does not indicate
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Figure 6.4: Virial mass versus observed mass within half of the effective radius. Blue dots
are simulated binary merger remnants and red dots are simulated merger remnants from
cosmological initial conditions. The solid line shows a fit to the data from B07 and the dotted
lines show 1σ errors in the fit. Clearly the simulated galaxies have a slope different from
observed galaxies and different from unity. Homologous galaxies must have a slope of unity in
a plot like this because the mass within a fixed fraction of the half-mass radius must also be
a fixed fraction of the total mass of the system. The axes of the plot are chosen to be exactly
the same as the corresponding plot in B07.
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that the simulations are completely incorrect. I have simply learned something unexpected

and important about how real galaxies must have been put together.

Figure 6.4 is a second representation of the mass plane. Simulated galaxies clearly

have a slope that is different from the observations. The slope of the observational fit is 1,

indicating homology, while the simulated galaxies have a slope lower than 1.

6.4 Conclusions

I have compared a large suite of numerical simulations to gravitational lensing data

from B07. This has the virtue that no ad-hoc assumptions are needed to directly compare

simulated galaxies to the observed ones. I find that at a velocity dispersion of 200 km/s,

simulated binary merger remnants and observed galaxies are compatible. When σ reaches

250 km/s, simulated binary merger remnants have systematically less mass enclosed within

the Einstein radius compared to observations. However, simulated remnants starting from

cosmological initial conditions tentatively agree with the observations for velocity dispersion

between 250 and 350 km/s.

I also find, in agreement with previous studies, that simulated galaxies reproduce a

tilted FP with the assumption of a constant stellar mass-to-light ratio.

6.4.1 Future Work

Issues that must be addressed in immediate future work in order to publish this

chapter include:

• I need to think more carefully about what Bolton et al. actually found. Under what

circumstances would they have found anything other than the virial mass plane? What

role does the assumption of an isothermal ellipsoid play?
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• This chapter does not make firm contact with Chapter 5 even though the Bolton et al.

lensing data was the motivation for thinking about homology.
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Chapter 7

Conclusions

In this thesis, I have explored how a galaxy’s merger history influences its structure

and kinematics. Using first binary merger remnants, then multiple merger remnants, and

finally galaxies formed by taking initial conditions from a larger scale cosmological simulation,

I have determined that gas-rich binary mergers nearly always form fast rotating remnants

and that multiple mergers can form slow rotators. The simulations with cosmological initial

conditions are all fast rotators at z = 1, and it remains to be seen if they lose their rotation

by z = 0.

In Chapter 2, I characterized the three-dimensional shapes and density profiles of

remnants produced by hydrodynamic simulations of binary galaxy mergers. Stellar remnants

are nearly all oblate, with a few examples of triaxiality in the most gas-poor mergers. Dark

matter halos are either prolate or triaxial, and the short axis of the baryons is perpendicular

to the long axis of the dark matter. All of these facts can be understood in terms of the effects

of angular momentum and dissipation during the merger.

Real galaxies in a ΛCDM universe are thought to have experienced many mergers
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over the course of their history, and these multiple mergers can be expected to weaken the

relationship between the shapes of galaxies and their halos described here. The extent to which

the effects of large-scale structure, such as mass accretion along filaments, tend to preserve the

relationship between galaxies and their halos is an open question.

The density profiles of remnants are quite regular in their structure. The slopes of

the baryonic and total density profiles are confined to a small range near -2. The dark matter

density profiles of the Sbc simulations are significantly different from the G series, attributable

to the initial configuration of the halos of the progenitors.

In Chapter 3, I showed that the current sample of gas-rich hydrodynamic merger

remnant simulations plausibly correspond to the SAURON fast-rotators by virtue of their

large orbital angular momentum, in agreement with Cox et al. (2006a). However, there are

very few galaxies in the sample with little rotation, and none at the upper end of the mass

range. The origin of massive, non-rotating early-type galaxies remains mysterious.

Chapter 4 explored the properties of galaxies that result from multiple mergers. I

have showed that if mass is built up via successive binary equal mass major mergers, then

the remnant is also a fast-rotator. This is because the orbital angular momentum in the

last encounter has a dominant effect on the kinematics of the remnant. Starting with the

same progenitors and varying only the order in which galaxies merge, the opposite end of the

spectrum of possibilities is to let the galaxies merge one after another, one at a time. This is a

series of sequential mergers of decreasing mass ratio as the mass of the central galaxy is built

up.

This sequential merger case robustly produces non-rotating remnants. The orbital

angular momentum of the incoming galaxies averages to zero and the remnant is left with no

net rotation. This is a plausible formation mechanism for the SAURON slow-rotators.
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The second part of Chapter 4 was devoted to running a set of “realistic” simulations

where the initial conditions were taken from a larger-scale, lower-resolution cosmological sim-

ulation. I found uniformly high rotation in these cosmological cases. The cosmological initial

conditions have a variety of merger histories, so it would seem that the constant inflow of gas

from the intergalactic medium is the decisive factor in making the remnants rotate.

I have not yet run the simulations down to low redshift to see if they stop rotating by

the present day. It is possible that continued harassment and mergers will average away the

significant rotation that the simulated remnants display at z = 1. If the rotation goes away

by z = 0, then these simulated galaxies could still be identified as the SAURON slow rotators.

Even if these simulated galaxies are not identified as the source of the SAURON

slow rotators, they were produced from reasonable cosmological initial conditions, and the

simulation was done with a code that can be expected to reasonably represent the actual

evolution of the system. Shouldn’t these galaxies exist?

This constitutes a prediction that early-type galaxies at z = 1 should rotate. van der

Marel & van Dokkum (2007) presents tantalizing evidence that this may indeed be the case.

However, van der Wel & van der Marel (2008) indicates that this result may not be robust.

Either way, the question will be decided observationally very soon.

In Chapter 5 I developed precise definitions of the various informal concepts of ho-

mology that seem to be in common use. I explored the precise meaning of the definitions in

terms of the distribution functions that describe galaxies. I then showed that simulated gas-

rich binary galaxy merger remnants show remarkably regular structure when the correct scale

constants are used to plot non-dimensional density and kinetic energy profiles. The direction

of the motion of stars is essentially the sole source of the variation in the kinematic structure

of these simulated merger remnants.
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The scaling constants that result in the least variation among this population of

merger remnants are req, meq, and τeq, where req is the the radius at which the enclosed dark

and luminous matter are equal, meq is the mass within req, and τeq is the dynamical time at

req.

Dark halo concentration, and progenitor gas fraction contribute to a systematic differ-

ence between the Sbc and G series simulations, but within each set of simulations the structure

is remarkably consistent.

In the last chapter, I compared a large suite of numerical simulations to gravitational

lensing data from B07. This has the virtue that no ad-hoc assumptions are needed to di-

rectly compare simulated galaxies to the observed ones. I find that at a velocity dispersion of

200 km/s, simulated binary merger remnants and observed galaxies are compatible. When σ

reaches 250 km/s, simulated binary merger remnants have systematically less mass enclosed

within the Einstein radius compared to observations. However, simulated remnants start-

ing from cosmological initial conditions tentatively agree with the observations for velocity

dispersion between 250 and 350 km/s.

At the closing session of the workshop on galaxy mergers at the Space Telescope

Science Center in 2006, Brad Witmore said “We’re on the verge of understanding it all at once,”

Rather than understanding isolated pieces of the galaxy merger/galaxy formation puzzle in

isolated contexts, it is becoming possible to put together a comprehensive understanding of

how mergers, cosmological environment, and feedback from star formation and AGN influence

galaxies.

188



Bibliography

Alam, S. M. K. & Ryden, B. S. 2002, ApJ, 570, 610

Allgood, B., Flores, R. A., Primack, J. R., Kravtsov, A. V., Wechsler, R. H., Faltenbacher, A.,

& Bullock, J. S. 2006, MNRAS, 367, 1781

Arp, H. 1966, ApJS, 14, 1

Bacon, R., Copin, Y., Monnet, G., Miller, B. W., Allington-Smith, J. R., Bureau, M., Carollo,

C. M., Davies, R. L., Emsellem, E., Kuntschner, H., Peletier, R. F., Verolme, E. K., & de

Zeeuw, P. T. 2001, MNRAS, 326, 23

Bahcall, J. N. & Casertano, S. 1985, ApJ, 293, L7

Bender, R., Burstein, D., & Faber, S. M. 1992, ApJ, 399, 462

Bender, R., Doebereiner, S., & Moellenhoff, C. 1988, A&AS, 74, 385

Bender, R., Saglia, R. P., & Gerhard, O. E. 1994, MNRAS, 269, 785

Bendo, G. J. & Barnes, J. E. 2000, MNRAS, 316, 315

Bernardi, M., Sheth, R. K., Annis, J., Burles, S., Eisenstein, D. J., Finkbeiner, D. P., Hogg,

D. W., Lupton, R. H., Schlegel, D. J., SubbaRao, M., Bahcall, N. A., Blakeslee, J. P.,

189



Brinkmann, J., Castander, F. J., Connolly, A. J., Csabai, I., Doi, M., Fukugita, M., Frieman,
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