Cosmology and Culture
 Physics 80C Co-sponsored by Crown College Spring 2007

 Practice Problems on Numbers

 Practice Problems on Numbers}

Express all your answers in scientific notation, for example $3 \times 10^{\mathbf{8}}$. One digit of accuracy is adequate. (ANSWERS are on the next page.)

1. Work out how many meters there are in a light year.
(a) What is the speed of light, in meters per second? \qquad
(b) How many seconds are there in a year?
(c) Multiply to get the answer: \qquad meters
(d) Convert your answer above to miles, using $1.61 \mathrm{~km}=1 \mathrm{mile}$.

2. Ratios of big numbers. To find out how much bigger the cosmic horizon $\left(10^{28} \mathrm{~cm}\right)$ is than the earth ($10^{7} \mathrm{~cm}$), divide: $10^{28} \mathrm{~cm} / 10^{7} \mathrm{~cm}=10^{28-7}=10^{21}$ times bigger.
(a) How much bigger is a galaxy $\left(10^{23} \mathrm{~cm}\right)$ than a person $(1 \mathrm{~m})$? \qquad
(b) How much bigger is a person than an atom $\left(10^{-8} \mathrm{~cm}\right)$? \qquad
3. (a) Multiply 5×10^{28} times 2×10^{7} \qquad
(b) Divide 6×10^{8} by 10^{7} \qquad
4. The amount of energy E in a kilogram of matter is given by Einstein's famous formula $E=\mathrm{mc}^{2}$, where m is the mass in kilograms and $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ is the speed of light (in meters per second) and E is the energy in Joules.
(a) How much energy is in a kilogram of matter?
(b) You are billed for electric power at around 10 cents per kilowatt-hour (kwh), and $1 \mathrm{kwh}=3.6 \times 10^{6}$ Joules. How much is the energy in a kilogram of matter worth at that rate?

ANSWERS

1. Work out how many meters there are in a light year.
(a) What is the speed of light, in meters per second? \qquad 3×10^{8}
(b) How many seconds are there in a year? \qquad
$\underline{9 \times 10^{15}}$ meters
(c) Multiply to get the answer:
(d) Convert your answer above to miles, using $1.61 \mathrm{~km}=1 \mathrm{mile}$.

2. Ratios of big numbers. To find out how much bigger the cosmic horizon $\left(10^{28} \mathrm{~cm}\right)$ is than the earth $\left(10^{7} \mathrm{~cm}\right)$, divide: $10^{28} \mathrm{~cm} / 10^{7} \mathrm{~cm}=10^{28-7}=10^{21}$ times bigger.
(a) How much bigger is a galaxy $\left(10^{23} \mathrm{~cm}\right)$ than a person $(1 \mathrm{~m})$? \qquad
(b) How much bigger is a person than an atom $\left(10^{-8} \mathrm{~cm}\right)$? \qquad
3. (a) Multiply 5×10^{28} times 2×10^{7} \qquad
(b) Divide 6×10^{8} by $10^{7} \underline{-6 \times 10^{1}=60}$
4. The amount of energy E in a kilogram of matter is given by Einstein's famous formula $\mathrm{E}=\mathrm{mc}^{2}$, where m is the mass in kilograms and $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ is the speed of light (in meters per second) and E is the energy in Joules.
(a) How much energy is in a kilogram of matter? 9×10^{16} Joules
(b) You are billed for electric power at around 10 cents per kilowatt-hour (kwh), and $1 \mathrm{kwh}=3.6 \times 10^{6}$ Joules. How much is the energy in a kilogram of matter worth at that rate? $\$ 3 \times 10^{9}=3$ billion dollars

In more detail, using the same approach as for problem 1,

$$
1 \mathrm{~kg}=\left(9 \times 10^{16} \text { Joules }\right)\left(\frac{1 \mathrm{kwh}}{3.6 \times 10^{6} \text { Joules }}\right)\left(\frac{\$ 0.10}{1 \mathrm{kwh}}\right)=\$ 2.5 \times 10^{9}
$$

and I rounded up 2.5 to 3.

