Cosmology and Culture

Physics 80C Co-sponsored by Crown College Spring 2007

Practice Problems on Numbers

Express all your answers in scientific notation, for example 3×10^8 . One digit of accuracy is adequate. (ANSWERS are on the next page.)

1. Work out how many meters there are in a light year.

(a) What is the speed of light, in meters per second?

- (b) How many seconds are there in a year?
- (c) Multiply to get the answer: ______ meters

(d) Convert your answer above to miles, using 1.61 km = 1 mile.

 $\underline{\qquad meters \times 10^{-3} - \dots \times \qquad mile}_{meter} = \underline{\qquad miles}_{1.61 \text{ km}}$

2. Ratios of big numbers. To find out how much bigger the cosmic horizon (10^{28} cm) is than the earth (10^7 cm) , divide: $10^{28} \text{ cm} / 10^7 \text{ cm} = 10^{28-7} = 10^{21}$ times bigger.

(a) How much bigger is a galaxy (10^{23} cm) than a person (1 m)?

(b) How much bigger is a person than an atom $(10^{-8} \text{ cm})?$

- 3. (a) Multiply 5×10^{28} times 2×10^7 _____
 - (b) Divide 6×10^8 by 10^7 _____
- 4. The amount of energy E in a kilogram of matter is given by Einstein's famous formula $E = mc^2$, where m is the mass in kilograms and $c = 3 \times 10^8$ m/s is the speed of light (in meters per second) and E is the energy in Joules.
 - (a) How much energy is in a kilogram of matter?
 - (b) You are billed for electric power at around 10 cents per kilowatt-hour (kwh), and $1 \text{ kwh} = 3.6 \times 10^6 \text{ Joules}$. How much is the energy in a kilogram of matter worth at that rate?

ANSWERS

- 1. Work out how many meters there are in a light year.
 - (a) What is the speed of light, in meters per second? 3×10^8 (b) How many seconds are there in a year? 3×10^7 (c) Multiply to get the answer: 9×10^{15} meters
 - (d) Convert your answer above to miles, using 1.61 km = 1 mile.

 $\underbrace{9 \times 10^{15}}_{\text{meters}} \text{ meters} \times 10^{-3} \xrightarrow{\text{mile}}_{\text{meter}} \times \underbrace{------}_{\text{meter}} = \underbrace{-6 \times 10^{12}}_{\text{meter}} \text{ miles}$

- 2. Ratios of big numbers. To find out how much bigger the cosmic horizon (10^{28} cm) is than the earth (10^7 cm) , divide: $10^{28} \text{ cm} / 10^7 \text{ cm} = 10^{28-7} = 10^{21}$ times bigger.
 - (a) How much bigger is a galaxy (10^{23} cm) than a person (1 m)? <u> 10^{21} </u>
 - (b) How much bigger is a person than an atom $(10^{-8} \text{ cm})?$ ____10^{10}___
- 3. (a) Multiply 5×10^{28} times 2×10^7 _____10^{36}
 - (b) Divide 6×10^8 by $10^7 6 \times 10^1 = 60$
- 4. The amount of energy E in a kilogram of matter is given by Einstein's famous formula $E = mc^2$, where m is the mass in kilograms and $c = 3 \times 10^8$ m/s is the speed of light (in meters per second) and E is the energy in Joules.
 - (a) How much energy is in a kilogram of matter? 9×10^{16} Joules
 - (b) You are billed for electric power at around 10 cents per kilowatt-hour (kwh), and 1 kwh = 3.6×10^6 Joules. How much is the energy in a kilogram of matter worth at that rate? <u> $$3 \times 10^9 = 3$$ billion dollars</u>

In more detail, using the same approach as for problem 1,

1 kg = $(9 \times 10^{16} \text{ Joules}) (\underline{1 \text{ kwh}}_{3.6 \times 10^6 \text{ Joules}}) (\underline{\$0.10}) = \$2.5 \times 10^9$

and I rounded up 2.5 to 3.