Physics 129 - Nuclear and Particle Astrophysics

Winter 2014 - TuTh 2:00-3:45-ISB 231
Instructor: Joel R. Primack, Physics.
Office hours: Wednesdays 2-3:30 or by appointment, Office: ISB 318, Phone: 459-2580 Email: joel@ucsc.edu
The standard model of particle physics, general relativistic cosmology, the early universe and Big Bang nucleosynthesis, dark matter and structure formation, formation of heavy elements in stars and supernovae, neutrino oscillations, high energy astrophysics: cosmic rays and gamma ray astronomy. Note: This course is an upper division astrophysics course, and thus can be one of the three such courses that UCSC Astrophysics majors must take.

Tentative syllabus:

week topic

1 Standard Model of particle physics
2 Special and general relativity in the universe
3 Conservtion rules and symmetries
4 The early universe and Big Bang nucleosynthesis
5 Dark matter and structure formation
6 Nuclear astrophysics, formation of elements in stars and supernovae
7 Neutrinos: production, detection, mass, oscillations
8 Nature and sources of high energy particles in the universe
9 Gamma ray astronomy
10 Future prospects and summary
Textbook: Particle Astrophysics, 2nd Edition, by D. H. Perkins (Oxford University Press, 2009) [ordered at Bay Tree Bookstore, available cheaper from Amazon, online at the UCSC Science Library]. I have put a number of relevant books on reserve at the Science Library.

There will be additional material presented in lectures and posted online, at http://physics.ucsc.edu/~joel/Phys129/
There will be regular problem sets, an in-class midterm, and a final exam. Students will be expected to be familiar with special relativity and quantum mechanics. Physics 101A or 102 is a prerequisite, and Physics 101B or more advanced courses will be helpful.
"Natural Units" $=$ High Energy Physics Units $\quad \hbar=c=k_{\mathrm{B}}=1$
These are especially appropriate for the hot early universe.
There is one fundamental dimension, which we can take to be mass or energy $=m c^{2}=m$.

$$
\begin{aligned}
& {[\text { Energy }]=[\text { Mass }]=[\text { Temperature }]=[\text { Length }]^{-1}=[\text { Time }]^{-1}} \\
& 1 \mathrm{GeV}=1.78 \times 10^{-24} \mathrm{~g}=1.16 \times 10^{13} \mathrm{~K}=1.97 \times 10^{-14} \mathrm{~cm}^{-1}=6.58 \times 10^{-25} \mathrm{~s}^{-1} \\
& =1.78 \times 10^{-27} \mathrm{~kg}=1.602 \times 10^{-3} \mathrm{erg}=1.602 \times 10^{-10} \mathrm{~J} \\
& 1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}=1.16 \times 10^{4} \mathrm{~K} \quad\left(k_{\mathrm{B}}=1.38 \times 10^{-16} \mathrm{erg} \mathrm{~K}^{-1}\right) \\
& 1 \mathrm{pc}=3.26 \mathrm{lyr}=3.09 \times 10^{18} \mathrm{~cm}
\end{aligned}
$$

To add gravity to this scheme, we usually express it in terms of the Planck mass $M_{\mathrm{Pl}}=(\hbar c / G)^{1 / 2}=1.2 \times 10^{19} \mathrm{GeV} / c^{2}$

For more conversion factors, see Appendix A of Kolb \& Turner, The Early Universe, and Table 1.1 of Perkins, Particle Astrophysics.

The Wedge of Material Reality

The Planck Length $l_{P l}=\sqrt{\frac{h G}{2 \pi c^{3}}}=1.6 \times 10^{-33} \mathrm{~cm}$ is the smallest possible length. Here h is Planck's constant $h=6.626068 \times 10^{-34} \mathrm{~m}^{2} \mathrm{~kg} / \mathrm{s}$

The Planck Mass is $m_{P l}=\sqrt{\frac{h c}{2 \pi G}}=2.2 \times 10^{-5} \mathrm{~g}$
The Compton (i.e. quantum) wavelength $\quad l_{C}=\frac{h}{2 \pi m c}$ equals the Schwarzschild radius

$$
l_{S} \approx \frac{G m}{c^{2}}
$$

when $m=m_{P l}=1.2 \times 10^{19}$
$\mathrm{GeV} / \mathrm{c}^{2}$

SIZE MATTERS!

No animal could be 3 times its normal height and stay the same shape, simply scaled up.

If height increases 3 times, strength of bones increases $3 \times 3=9$ times.
But weight increases $3 \times 3 \times 3=27$ times.
Its weight would crush its bones!
That is why an elephant does not look like a large gazelle.
Bone of small animal

Bone of animal 3 times longer

http://pdg.lbl.gov/

News

The "Reviews, Tables, Plots" section has been updated. The next book edition is due in early summer 2014, and the booklet in late summer 2014.

About PDC

Downloads

Resources
Non-PDC Databases \quad Contact Us

The Review of Particle Physics
J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012) and 2013 partial update for the 2014 edition.

pdgLive - Interactive Listings
Summary Tables
Reviews, Tables, Plots
Particle Listings

SEARCM

Mirrors:
USA (LBNL)
Brazil
CERN
Indonesia
Italy
Japan (KEK)
Russia (Novosibirsk)
Russia (Protvino)
UK (Durham)

http://pdg.lbl.gov/

HOME: \quad pdoLive \quad Summary Tables \quad Reviews, Tables, Plots $\begin{aligned} & \text { Particle Listings }\end{aligned}$

Order PDG products

- Particle Physics Booklet (320 pages)
- Review of Particle Physics (1526 pages; if you need more detailed information)
- Pocket Diary for Physicists

ORDER

For special requests only, please contact:

In North or South America, Australia, and the Far East:

Via E-mail: pdg@lbl.gov
Via postal mail:
Particle Data Group, MS 50R6008
Lawrence Berkeley National Lab
One Cyclotron Road
Berkeley, CA 94720-8166 USA

In Europe, Africa, Middle East, India, Pakistan, Russia and all other countries:

Via Email: pdg-products@cern.ch
Via postal mail:
CERN Scientific Information Service
CH-1211 Geneva 23
Switzerland
At CERN: contact Library (bldg 52-1-52)

Order PDG Products	Figures in reviews	Downloads	Disclaimers	Funding	Contact Us
Atomic Nuclear Prop.	Encoder tools	Errata	PDG Archives	PDG citation	

Table 1.1. Reviewed 2013 by P.J. Mohr (NIST). Mainly from the "CODATA Recommended Values of the Fundamental Physical Constants: 2010 " by P.J. Mohr, B.N. Taylor, and D.B. Newell in Rev. Mod. Phys. 84, 1527 (2012). The last group of constants (beginning with the Fermi coupling constant) comes from the Particle Data Group. The figures in parentheses after the values give the 1 -standard-deviation uncertainties in the last digits; the corresponding fractional uncertainties in parts per $10^{9}(\mathrm{ppb})$ are given in the last column. This set of constants (aside from the last group) is recommended for international use by CODATA (the Committee on Data for Science and Technology). The full 2010 CODATA set of constants may be found at http://physics.nist.gov/constants. See also P.J. Mohr and D.B. Newell, "Resource Letter FC-1: The Physics of Fundamental Constants," Am. J. Phys. 78, 338 (2010).

Quantity	Symbol, equation	Value Uncertain	Uncertainty (ppb)
speed of light in vacuum	c	$299792458 \mathrm{~m} \mathrm{~s}^{-1}$	exact*
Planck constant	h	$6.62606957(29) \times 10^{-34} \mathrm{~J} \mathrm{~s}$	
Planck constant, reduced	$\hbar \equiv h / 2 \pi$	$\begin{aligned} & 1.054571726(47) \times 10^{-34} \mathrm{~J} \mathrm{~s} \\ & =6.58211928(15) \times 10^{-22} \mathrm{MeV} \mathrm{~s} \end{aligned}$	44 22
electron charge magnitude conversion constant conversion constant	e	$1.602176565(35) \times 10^{-19} \mathrm{C}=4.80320450(11) \times 10^{-10}$ esu	$\times 10^{-10}$ esu 22,22
	ћc	$197.3269718(44) \mathrm{MeV} \mathrm{fm}$	22
	$(\hbar c)^{2}$	$0.389379338(17) \mathrm{GeV}^{2}$ mbarn	44
electron mass proton mass	$\begin{aligned} & m_{e} \\ & m_{p} \end{aligned}$	$0.510998928(11) \mathrm{MeV} / c^{2}=9.10938291(40) \times 10^{-31} \mathrm{~kg}$	10 ${ }^{-31} \mathrm{~kg} \quad 22,44$
		$938.272046(21) \mathrm{MeV} / c^{2}=1.672621777(74) \times 10^{-27} \mathrm{~kg}$	10-27 kg 22,44
		$=1.007276466812(90) \mathrm{u}=1836.15267245(75) m_{e}$	(75) $m_{e} \quad 0.089,0.41$
deuteron mass unified atomic mass unit (u)	$\begin{aligned} & m_{d} \\ & \left(\text { mass }{ }^{12} \mathrm{C} \text { atom }\right) / 12=(1 \mathrm{~g}) /\left(N_{A} \mathrm{~mol}\right) \end{aligned}$	$1875.612859(41) \mathrm{MeV} / c^{2}$	22
		$931.494061(21) \mathrm{MeV} / c^{2}=1.660538921(73) \times 10^{-27} \mathrm{~kg}$	$0^{-27} \mathrm{~kg} \quad 22,44$
permittivity of free space permeability of free space	$\epsilon_{0}=1 / \mu_{0} c^{2}$	$8.854187817 \ldots \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1}$	exac
	μ_{0}	$4 \pi \times 10^{-7} \mathrm{~N} \mathrm{~A}^{-2}=12.566370614 \ldots \times 10^{-7} \mathrm{~N} \mathrm{~A}^{-2}$	$\mathrm{N} \mathrm{A}^{-2} \quad$ exact
fine-structure constant classical electron radius (e^{-}Compton wavelength) $/ 2 \pi$ Bohr radius ($m_{\text {nucleus }}=\infty$) wavelength of $1 \mathrm{eV} / c$ particle Rydberg energy Thomson cross section	$\alpha=e^{2} / 4 \pi \epsilon_{0} \hbar c$	$7.2973525698(24) \times 10^{-3}=1 / 137.035999074(44)^{\dagger}$	
	$r_{e}=e^{2} / 4 \pi \epsilon_{0} m_{e} c^{2}$	$2.8179403267(27) \times 10^{-15} \mathrm{~m}$	0.97
	$\lambda_{e}=\hbar / m_{e} c=r_{e} \alpha^{-1}$	$3.8615926800(25) \times 10^{-13} \mathrm{~m}$	0.65
	$a_{\infty}=4 \pi \epsilon_{0} \hbar^{2} / m_{e} e^{2}=r_{e} \alpha^{-2}$	$0.52917721092(17) \times 10^{-10} \mathrm{~m}$	0.32
	$h c /(1 \mathrm{eV})$	$1.239841930(27) \times 10^{-6} \mathrm{~m}$	22
	$h c R_{\infty}=m_{e} e^{4} / 2\left(4 \pi \epsilon_{0}\right)^{2} \hbar^{2}=m_{e} c^{2} \alpha^{2} / 2$	$13.60569253(30) \mathrm{eV}$	22
	$\sigma_{T}=8 \pi r_{e}^{2} / 3$	0.665245 8734(13) barn	1.9
Bohr magneton nuclear magneton electron cyclotron freq./field proton cyclotron freq./field	$\begin{aligned} & \mu_{B}=e \hbar / 2 m_{e} \\ & \mu_{N}=e \hbar / 2 m_{p} \\ & \omega_{\text {cycl }}^{e} / B=e / m_{e} \\ & \omega_{\text {cycl }}^{p} / B=e / m_{p} \end{aligned}$	$5.7883818066(38) \times 10^{-11} \mathrm{MeV} \mathrm{T}^{-1}$	0.65
		$3.1524512605(22) \times 10^{-14} \mathrm{MeV} \mathrm{T}^{-1}$	0.71
		$1.758820088(39) \times 10^{11} \mathrm{rad} \mathrm{s}^{-1} \mathrm{~T}^{-1}$	22
		$9.57883358(21) \times 10^{7} \mathrm{rad} \mathrm{s}^{-1} \mathrm{~T}^{-1}$	22
gravitational constant ${ }^{\ddagger}$	G_{N}	$6.67384(80) \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$	1.2×10^{5}
		$=6.70837(80) \times 10^{-39} \hbar c\left(\mathrm{GeV} / c^{2}\right)^{-2}$	1.2×10^{5}
$\underline{\text { standard gravitational accel. }}$	g_{N}	$9.80665 \mathrm{~m} \mathrm{~s}^{-2}$	exact
Avogadro constant	N_{A}	$6.02214129(27) \times 10^{23} \mathrm{~mol}^{-1}$	44
Boltzmann constant	${ }_{k}$	$1.3806488(13) \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$	910
		$=8.6173324(78) \times 10^{-5} \mathrm{eV} \mathrm{K}^{-1}$	910
molar volume, ideal gas at STP	$N_{A} k(273.15 \mathrm{~K}) /(101325 \mathrm{~Pa})$	$22.413968(20) \times 10^{-3} \mathrm{~m}^{3} \mathrm{~mol}^{-1}$	910
Wien displacement law constant	$b=\lambda_{\max } T$	$2.8977721(26) \times 10^{-3} \mathrm{~m} \mathrm{~K}$	910
Stefan-Boltzmann constant	$\sigma=\pi^{2} k^{4} / 60 \hbar^{3} c^{2}$	$5.670373(21) \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}$	3600
Fermi coupling constant**weak-mixing angle	$G_{F} /(\hbar c)^{3}$	$1.1663787(6) \times 10^{-5} \mathrm{GeV}^{-2}$	500
		$0.23126(5)^{\dagger \dagger}$	2.2×10^{5}
$W^{ \pm}$boson mass	m_{W}	80.385(15) GeV/ c^{2}	1.9×10^{5}
Z^{0} boson mass	m_{Z}	$91.1876(21) \mathrm{GeV} / c^{2}$	2.3×10^{4}
strong coupling constant	$\alpha_{s}\left(m_{Z}\right)$	0.1185(6)	5.1×10^{6}

1. PHYSICAL CONSTANTS

Table 1.1. Reviewed 2013 by P.J. Mohr (NIST). Mainly from the "CODATA Recommended Values of the Fundamental Physical Constants: 2010 " by P.J. Mohr, B.N. Taylor, and D.B. Newell in Rev. Mod. Phys. 84, 1527 (2012). The last group of constants (beginning with the Fermi coupling constant) comes from the Particle Data Group. The figures in parentheses after the values give the 1 -standard-deviation uncertainties in the last digits; the corresponding fractional uncertainties in parts per $10^{9}(\mathrm{ppb})$ are given in the last column. This set of constants (aside from the last group) is recommended for international use by CODATA (the Committee on Data for Science and Technology). The full 2010 CODATA set of constants may be found at http://physics.nist.gov/constants. See also P.J. Mohr and D.B. Newell, "Resource Letter FC-1: The Physics of Fundamental Constants," Am. J. Phys. 78, 338 (2010).
(Bottom of Table 1)
$\pi=3.141592653589793238$
e = 2.718281828459045235
$\gamma=0.577215664901532861$

* The meter is the length of the path traveled by light in vacuum during a time interval of $1 / 299792458$ of a second.
${ }^{\dagger}$ At $Q^{2}=0$. At $Q^{2} \approx m_{W}^{2}$ the value is $\sim 1 / 128$.
\ddagger Absolute lab measurements of G_{N} have been made only on scales of about 1 cm to 1 m .
** See the discussion in Sec. 10, "Electroweak model and constraints on new physics."
$\dagger \dagger$ The corresponding $\sin ^{2} \theta$ for the effective angle is $0.23155(5)$.

2. ASTROPHYSICAL CONSTANTS AND PARAMETERS

Table 2.1. Revised November 2013 by D.E. Groom (LBNL). The figures in parentheses after some values give the $1-\sigma$ uncertainties in the last digit(s). Physical constants are from Ref. 1. While every effort has been made to obtain the most accurate current values of the listed quantities, the table does not represent a critical review or adjustment of the constants, and is not intended as a primary reference.

The values and uncertainties for the cosmological parameters depend on the exact data sets, priors, and basis parameters used in the fit. Many of the derived parameters reported in this table have non-Gaussian likelihoods. Parameters may be highly correlated, so care must be taken in propagating errors. (But in multiplications by h^{-2} etc. in the table below, independent errors were assumed.) Unless otherwise specified, cosmological parameters are from six-parameter fits to a flat Λ CDM cosmology using CMB data alone: Planck temperature + WMAP polarization data + high-resolution data from ACT and SPT [2]. For more information see Ref. 3 and the original papers.

(Bottom of Table 2)

baryon density of the Universe
cold dark matter density of the universe
$100 \times$ approx to r_{*} / D_{A}
reionization optical depth
scalar spectral index
ln pwr primordial curvature pert. $\left(k_{0}=0.05 \mathrm{Mpc}^{-1}\right)$

$\Omega_{\mathrm{b}}=\rho_{\mathrm{b}} / \rho_{\text {crit }}$	$\ddagger 0.02207(27) h^{-2}={ }^{\dagger} 0.0499(22)$	$[2,3]$
$\Omega_{\mathrm{cdm}}=\rho_{\text {cdm }} / \rho_{\text {crit }}$	$\ddagger 0.1198(26) h^{-2}={ }^{\dagger} 0.265(11)$	$[2,3]$
$100 \times \theta_{\mathrm{MC}}$	$\ddagger 1.0413(6)$	$[2,3]$
τ	$\ddagger 0.091_{-0.013}^{+0.013}$	$[2,3]$
n_{S}	$\ddagger 0.958(7)$	$[2,3]$
$\ln \left(10^{10} \Delta_{\mathcal{R}}^{2}\right)$	$\ddagger 3.090(25)$	$[2,3]$

$\Omega_{\mathrm{cdm}}=\rho_{\mathrm{cdm}} / \rho_{\text {crit }} \quad{ }^{\ddagger} 0.1198(26) h^{-2}={ }^{\dagger} 0.265(11) \quad[2,3]$
$\begin{array}{lll}100 \times \theta_{\mathrm{MC}} & \ddagger 1.0413(6) & {[2,3]} \\ \tau & \ddagger 0.091^{+0.013} & {[2,3]}\end{array}$
${ }^{\ddagger} 0.958(7) \quad[2,3]$
\ln pwr primordial curvature pert. $\left(k_{0}=0.05 \mathrm{Mpc}^{-1}\right) \quad \ln \left(10^{10} \Delta_{\mathcal{R}}^{2}\right) \quad{ }^{\ddagger} 3.090(25) \quad[2,3]$

[^0]1. Physical Constants

Tuesday, January 7, 14

Tuesday, January 7, 14

Standard Model of FUNDAMENTAL PARTICLES AND INTERACTIONS

The Standard Model summarizes the current knowledge in Particicl Physics. It is the quantum theory that includes the theory of strong interactions (quantum chromodynamics or QCD) and the unified
theory of weak and electromagnetic interactions (electroweak). Gravity is included on this chart because it is one of the fundamental interactions even though not part of the "Standard Model."

FERMIONS

Leptons $\operatorname{spin}=1 / 2$		
Flavor	Mass $\mathrm{GeV} / \mathrm{c}^{2}$	Electric charge
$\nu_{\mathrm{e}}^{\text {electron }}$ neutrino e electron	$\begin{gathered} <1 \times 10^{-8} \\ 0.000511 \end{gathered}$	-1
$\begin{aligned} & \boldsymbol{v}_{\boldsymbol{\mu}}^{\text {muon }} \begin{array}{l} \text { neutrino } \\ \boldsymbol{\mu} \text { muon } \end{array} \\ & \hline \end{aligned}$	$\begin{array}{r} <0.0002 \\ 0.106 \end{array}$	-1
$\begin{aligned} & \boldsymbol{\nu}_{\tau}^{\mathrm{tau}} \mathrm{neutrino} \\ & \boldsymbol{\tau} \text { tau } \end{aligned}$	<0.02 1.7771	-1

matter constituents
$\operatorname{spin}=1 / 2,3 / 2,5 / 2, \ldots$

Quarks spin $=1 / 2$		
Flavor	Approx. Mass GeV/c	Electric charge
U up	0.003	$2 / 3$
d down	0.006	$-1 / 3$
C charm	1.3	$2 / 3$
S strange	0.1	$-1 / 3$
\mathbf{t} top	175	$2 / 3$
b bottom	4.3	$-1 / 3$

Spin is the intrinsic angular momentum of particles. Spin is given in units of \hbar, which is the quantum unit of angular momentum, where $\hbar=h / 2 \pi=6.58 \times 10^{-25} \mathrm{GeV}=1.05 \times 10^{-34} \mathrm{~J} \mathrm{~s}$. Electric charges are given in units of the proton's charge. In SI units the electric charge of the proton is 1.60×10^{-19} coulombs.
The energy unit of particle physics is the electronvolt (eV), the energy gained by one electron in crossing a potential difference of one volt. Masses are given in $\mathrm{GeV} / \mathrm{c}^{2}$ (remember
$E=m c^{2}$), where $1 \mathrm{GeV}=10^{9} \mathrm{eV}=1.60 \times 10^{-10}$ joule. The mass of the proton is $0.938 \mathrm{GeV} / \mathrm{c}^{2}$ $\left.E=m c^{2}\right)$, where
$=1.67 \times 10^{-27} \mathrm{~kg}$.

BOSONS
force carriers
spin = 0, 1, 2,

Unified Electroweak		
spin $=1$		
Name	Mass $\mathrm{GeV} / \mathrm{c}^{2}$	Electric charge
γ photon	0	0
\mathbf{W}^{-}	80.4	-1
\mathbf{W}^{+}	80.4	+1
\mathbf{Z}^{0}	$\mathbf{9 1 . 1 8 7}$	0

Strong (color) spin = 1

$$
\begin{aligned}
& \text { cally-charged particles interact by exchanging photons, in strong interactions color-charged par- } \\
& \text { ticles interact by exchancing aluons. Letons, photons and } \boldsymbol{W} \text { and } \boldsymbol{Z} \text { bosons have no strong }
\end{aligned}
$$

$$
\begin{aligned}
& \text { titles interact by exchanging gluons. Leptons, photons, and } \boldsymbol{W} \text { and } \boldsymbol{Z} \text { bosons have no strong } \\
& \text { interactions and hence no color charge. }
\end{aligned}
$$

Quarks Confined in Mesons and Baryons
One cannot isolate quarks and gluons; they are confined in color-neutral particles called hadrons. This confinement (binding) results from multiple exchanges of gluons among the color-charged constituents. As color-charged particles (quarks and gluons) move apart, the ener-
gy in the color-force field between them increases. This energy eventually is converted into adddgy in the color-force field between them increases. This energy eventually is converted into addi-
tional quark-antiquark pairs (see figure below). The quarks and antiquarks then combine into hadrons; these are the particles seen to emerge. Two types of hadrons have been observed in nature: mesons $q \bar{q}$ and baryons $q q q$.
Residual Strong Interaction
The strong binding of color-neutral protons and neutrons to form nuclei is due to residual strong interactions between their color-charged constituents. It is similar to the residual elec-
trical interaction that binds electrically neutral atoms to form molecules. It can also be trical interaction that binds electrically neutral atoms to
viewed as the exchange of mesons between the hadrons.

PROPERTIES OF THE INTERACTIONS

Baryons q9q and Antibaryons $\overline{\mathrm{q}} \overline{\mathrm{q}} \overline{\mathrm{q}}$ Baryons are fermionic hadrons. There are about 120 types of baryons.					
Symbol	Name	Quark content	Electric charge	Mass $\mathrm{GeV} / \mathrm{c}^{2}$	Spin
p	proton	uud	1	0.938	1/2
$\overline{\mathbf{p}}$	anti- proton	$\bar{u} \bar{u} \bar{d}$	-1	0.938	1/2
n	neutron	ud	0	0.940	1/2
Λ	lambda	uds	0	1.116	1/2
Ω^{-}	omega	SSS	-1	1.672	3/2

Matter and Antimatter
For every particle type there is a corresponding antiparticle type, denotFor every particle type there is a corresponding antiparticle type, d
ed by a bar over the particle symbol (unless + or - charge is shown
Particle and antiparticle have identical mass and spin but opposite charges. Some electrically neutral bosons (e.g., z^{0}, γ, and $\eta_{c}=\bar{c} \bar{c}$, but not

```
Figures
```

These diagrams are an artist's conception of physical processes. They are not exact and have no meaningful scale. Green shaded areas represent
the cloud of gluons or the gluon field, and red lines the quark paths.

Mesons $\mathbf{q} \bar{q}$

Mesons are bosonic hadrons. There are about 140 types of mesons.					
Symbol	Name	Quark content	Electric charge	$\begin{aligned} & \text { Mass } \\ & \mathrm{GeV} / \mathrm{c}^{2} \end{aligned}$	Spin
π^{+}	pion	u \bar{d}	+1	0.140	0
\mathbf{K}^{-}	kaon	sū	-1	0.494	0
ρ^{+}	rho	u \bar{d}	+1	0.770	1
B^{0}	B-zero	d \bar{b}	0	5.279	0
$\boldsymbol{\eta}_{\mathbf{c}}$	eta-c	c $\overline{\mathbf{C}}$	0	2.980	0

The Particle Adventure

Visit the award-winning web feature The Particle Adventure at http://ParticleAdventure.org
This chart has been made possible by the generous support of:
U.S. Department of Energy
U.S. National Science Foundation
L.s. Natetion Berkeley National Laboratory
Stanford Linear Accelerator Center

Stanford Linear Accelerator Center
American Physical Society, Division of Particles and Field
BURLLE INDUSTRIES, INC
©2000 Contemporar!, Pyysics Education Project. CPEP is a non-profit organization of teachers, physicists, ard educators. Send mail to: CPEP, MS $50-308$, Lawrence
Berkeley National Laboratory, Berkeley, CA, 94720 . For information on charts, text materials, hands-on classroom activities, and workshops, see.
http://CPEPweb.org
matter constituents spin = 1/2, 3/2, 5/2, ...

Leptons spin = 1/2		
Flavor	$\begin{aligned} & \text { Mass } \\ & \mathrm{GeV} / \mathrm{c}^{2} \end{aligned}$	Electric charge
ν_{e} electron neutrino e electron	$\begin{aligned} & <1 \times 10^{-8} \\ & 0.000511 \end{aligned}$	$\begin{array}{r} 0 \\ -1 \end{array}$
$\boldsymbol{v}_{\boldsymbol{\mu}} \begin{gathered}\text { muon } \\ \text { neutrino }\end{gathered}$ $\boldsymbol{\mu}$ muon	<0.0002 0.106	-1
$\boldsymbol{\nu}_{\tau}{ }_{\text {neutrino }}^{\text {tau }}$ $\tau \text { tau }$	$\begin{aligned} & <0.02 \\ & 1.7771 \end{aligned}$	-1

Quarks spin = 1/2		
Flavor	Approx Mass $\mathrm{GeV} / \mathrm{c}^{2}$	Electric charge
U up	0.003	$2 / 3$
d down	0.006	$-1 / 3$
C charm	1.3	$2 / 3$
S strange	0.1	$-1 / 3$
t top	175	$2 / 3$
b bottom	4.3	$-1 / 3$

Spin is the intrinsic angular momentum of particles. Spin is given in units of \hbar, which is the quantum unit of angular momentum, where $\hbar=h / 2 \pi=6.58 \times 10^{-25} \mathrm{GeV} \mathrm{s}=1.05 \times 10^{-34} \mathrm{~J} \mathrm{~s}$.

Electric charges are given in units of the proton's charge. In SI units the electric charge of the proton is 1.60×10^{-19} coulombs.

BOSONS
 force carriers
 spin = 0, 1, 2, ...

Unified Electroweak		
spin $=1$		
Name	Mass $\mathrm{GeV} / \mathrm{c}^{2}$	Electric charge
$\boldsymbol{\gamma}$ photon	$\mathbf{0}$	$\mathbf{0}$
\mathbf{W}^{-}	$\mathbf{8 0 . 4}$	$\mathbf{- 1}$
\mathbf{W}^{+}	$\mathbf{8 0 . 4}$	$+\mathbf{1}$
\mathbf{Z}^{0}	$\mathbf{9 1 . 1 8 7}$	$\mathbf{0}$

Strong (color) spin = 1		
Name	Mass $\mathrm{GeV} / \mathrm{c}^{2}$	Electric charge
\mathbf{g} gluon	$\mathbf{0}$	$\mathbf{0}$

Color Charge

Each quark carries one of three types of "strong charge," also called "color charge." These charges have nothing to do with the colors of visible light. There are eight possible types of color charge for gluons. Just as electri-cally-charged particles interact by exchanging photons, in strong interactions color-charged particles interact by exchanging gluons. Leptons, photons, and \boldsymbol{W} and \mathbf{Z} bosons have no strong interactions and hence no color charge.

Quarks Confined in Mesons and Baryons

One cannot isolate quarks and gluons; they are confined in color-neutral particles called hadrons. This confinement (binding) results from multiple exchanges of gluons among the color-charged constituents. As color-charged particles (quarks and gluons) move apart, the energy in the color-force field between them increases. This energy eventually is converted into additional quark-antiquark pairs (see figure below). The quarks and antiquarks then combine into hadrons; these are the particles seen to emerge. Two types of hadrons have been observed in nature: mesons $q \bar{q}$ and baryons $q q q$.

1.3 Fermions and bosons: the spin-statistics theorem; supersymmetry

As stated above, the fundamental particles consist of half-integer spin fermions, the quarks and leptons, the interactions of which are mediated, as described below, by integer spin bosons. The distinction between the two types is underlined by the spin-statistics theorem. This specifies the behaviour of an ensemble of identical particles, described by some wave function ψ, when any two particles, say 1 and 2, are interchanged. The probability $|\psi|^{2}$ cannot be altered by the interchange, since the particles are indistinguishable, so under the operation, $\psi \rightarrow \pm \psi$. The rule is as follows:

$$
\begin{array}{llll}
\text { Identical bosons: } & \text { under interchange } & \psi \rightarrow+\psi & \text { Symmetric } \\
\text { Identical fermions: } & \text { under interchange } & \psi \rightarrow-\psi & \text { Antisymmetric }
\end{array}
$$

Suppose, for example, that it were possible to put two identical fermions in the same quantum state. Then under interchange, ψ would not change sign, since the particles are indistinguishable. However, according to the above rule ψ must change sign. Hence two identical fermions cannot exist in the same quantum state-the famous Pauli Principle. On the other hand, there are no restrictions on the number of identical bosons in the same quantum state, an example of this being the laser.

One important development in connection with theories unifying the fundamental interactions at very high mass scales, has been the postulate of a fermion-boson symmetry called supersymmetry. For every known fermion state there is assigned a boson partner, and for every boson a fermion partner. The reasons for this postulate are discussed in Chapter 3, and a list of proposed supersymmetric particles given in Table 3.2. At this point we content ourselves with the remark that if they exist, supersymmetric particles created in the early universe could be prime candidates for the mysterious dark matter which, as we shall see in Chapter 7, constitutes the bulk of the material universe. However, at the present time there is no direct experimental evidence for the existence of supersymmetric particles.

From D. Perkins, Particle Astrophysics, 2nd Edition (2008)

Residual Strong Interaction

The strong binding of color-neutral protons and neutrons to form nuclei is due to residual strong interactions between their color-charged constituents. It is similar to the residual electrical interaction that binds electrically neutral atoms to form molecules. It can also be viewed as the exchange of mesons between the hadrons.

Baryons $q 9 q$ and Antibaryons $\overline{\mathrm{q}} \overline{\mathrm{q}}$

Baryons are fermionic hadrons.
There are about 120 types of baryons.

Symbol	Name	Quark content	Electric charge	Mass $\mathrm{GeV} / \mathrm{c}^{2}$	Spin
\mathbf{p}	proton	UUd	1	0.938	$1 / 2$
$\overline{\mathbf{p}}$	anti- proton	$\overline{\mathbf{U}} \overline{\mathbf{U}} \overline{\mathbf{d}}$	-1	0.938	$1 / 2$
\mathbf{n}	neutron	Udd	0	0.940	$1 / 2$
$\mathbf{\Lambda}$	lambda	UdS	0	1.116	$1 / 2$
$\mathbf{\Omega}^{-}$	omega	SSS	-1	1.672	$3 / 2$

Mesons q"

Mesons are bosonic hadrons.
There are about 140 types of mesons.

Symbol	Name	Quark content	Electric charge	Mass $\mathrm{GeV} / \mathrm{c}^{2}$	Spin
$\boldsymbol{\pi}^{+}$	pion	$\mathbf{U} \overline{\mathbf{d}}$	+1	0.140	0
\mathbf{K}^{-}	kaon	$\mathbf{S} \overline{\mathbf{U}}$	-1	0.494	0
$\boldsymbol{\rho}^{+}$	rho	$\mathbf{U} \overline{\mathbf{d}}$	+1	0.770	1
$\mathbf{B}^{\mathbf{0}}$	B-zero	$\mathbf{d} \overline{\mathbf{b}}$	0	5.279	0
$\boldsymbol{\eta}_{\mathbf{C}}$	eta-c	$\mathbf{C} \overline{\mathbf{C}}$	0	2.980	0

Matter and Antimatter

For every particle type there is a corresponding antiparticle type, denoted by a bar over the particle symbol (unless + or - charge is shown).
Particle and antiparticle have identical mass and spin but opposite charges. Some electrically neutral bosons (e.g., Z^{0}, γ, and $\eta_{c}=c \bar{c}$, but not $K^{0}=\mathrm{d}$ s) are their own antiparticles.

PROPERTIES OF THE INTERACTIONS

Interaction Property	Gravitational	Weak	Electromagnetic eak)	Strong	
		(Electir		Fundamental	Residual
Acts on:	Mass - Energy	Flavor	Electric Charge	Color Charge	See Residual Strong Interaction Note
Particles experiencing:	All	Quarks, Leptons	Electrically charged	Quarks, Gluons	Hadrons
Particles mediating:	Graviton (not yet observed)	$\mathbf{W}^{+} \mathbf{W}^{-} \mathbf{Z}^{0}$	γ	Gluons	Mesons
Strength relative to electromag for two u quarks at: $\left\{\begin{array}{l}10^{-18} \mathrm{~m} \\ 3 \times 10^{-17} \mathrm{~m}\end{array}\right.$ for two protons in nucleus	$\begin{aligned} & 10^{-41} \\ & 10^{-41} \\ & 10^{-36} \end{aligned}$	$\begin{gathered} 0.8 \\ 10^{-4} \\ 10^{-7} \end{gathered}$	1 1 1	2560Not applicable to hadrons	Not applicable to quarks 20

$$
\mathrm{n} \rightarrow \mathrm{pe}^{-} \overline{\mathrm{v}}_{\mathrm{e}}
$$

A neutron decays to a proton, an electron, and an antineutrino via a virtual (mediating) W boson. This is neutron β decay.

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{B}^{0} \overline{\mathrm{~B}}^{0}
$$

 (antielectron) colliding at high energy can annihilate to produce B^{0} and $\overline{\mathrm{B}}^{0}$ mesons via a virtual Z boson or a virtual photon.
$\mathbf{p} \mathbf{p} \rightarrow \mathbf{Z}^{0} \mathbf{Z}^{0}+$ assorted hadrons

Two protons colliding at high energy can produce various hadrons plus very high mass particles such as Z bosons. Events such as this one are rare but can yield vital clues to the structure of matter.

(d)

(b)

Fig. 1.3 Diagrams representing examples of single quantum-exchange processes in eleetromagnetic, strong, weak, and gravitational interactions. (a) The eloctromagnetic interaction between a muon μ and proton p, wa photon (y) exchange with coupling e- (b) The strong interaction between quarks Q wia gluon (G) exchange with coupling g_{s}. (c) The weak interaction involving charged W boson exchange, transforming an electronneutrino w_{a} to an electron e, and a ncutron (quark composition ddu) to a proton (dua). (d) The weak interaction involving neutral Z boson exchange, showing a muon-neutrino v_{μ} scattering from an cloctron, e. In both (c) and (d), the couplings have been denoted g_{w}, but there are different numerical coefficients (of order unity) associated with the W and Z exchanges, as described in Chapter 3. (e) Gravitational interaction betwoen two masses M, mediated by graviton (g) exchange. For macroscopic masses, multiple graviton exchanges will be involved.

Fig. 1.9 Feynman diagrams for various elementary two-body to two-body reactions. In these diagrams. Time flows from left to right. The convention is that right-pointing arrows denote particles, while left-pointing arrows denote antiparticles. Diagrams (a) to (d) refer to electromagnetie interactions, and (c) and (f) to weak interactions. (a) $\mathrm{c}^{-} \mu^{+} \rightarrow$ $\mathrm{c}^{-} \mu^{+} ;$(b) $\mathrm{c}^{+} \mathrm{c}^{-} \rightarrow \mu^{+} \mu^{-}$; (c) $\mathrm{c}^{+} \mathrm{e}^{-} \rightarrow$ $\mathrm{QQ} \rightarrow$ hadrons; (d) e $\gamma \rightarrow \mathrm{e} \gamma, \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma \gamma$, $y \gamma \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} ;(\mathrm{e})$ ve \rightarrow w $;(\mathrm{f}) \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow V \bar{v}_{-}$

From D. Perkins, Particle Astrophysics, 2nd Edition (2008)

Feynman Diagrams for Compton Scattering

time

Feynman diagrams always have to include both time orders of the absorption and emission of the photons, since there is no way to tell which order actually happens.

Feynman Diagrams for Compton Scattering
time

Before the interaction (and also after
it) there is one electron (e-) and one photon.

Feynman Diagrams for Compton Scattering

time

At this time, the line going backwards in time must correspond to a positron (e+), since otherwise one e-would have turned into three e-, violating charge conservation.

Quark Feynman Diagrams for Hadronic Reactions

[^0]: Tuesday, January 7, 14

