Instrumentation for Proton Computed Tomography Robert Johnson

> Physics 205 February 10, 2014

February 10, 2014

Proton Radiation Therapy

The proton beam is tuned such that the protons stop in the tumor, depositing most of their energy there.

Compared with photon radiation (X-ray or γ -ray), a higher does can be delivered to the tumor while minimizing exposure to surrounding tissue.

> Energy deposition vs. depth for several beam energies.

February 10, 2014

Interaction of Protons with Matter

dE/dx is the amount of energy lost per unit length by ionization as the particle passes through the material.

Here the values read from the vertical scale need to be multiplied by the density of the material in g/cm³ to get the energy loss rate in MeV/cm.

For non-relativistic protons (p < GeV/c) the energy loss rate increases rapidly $(\sim 1/v^2)$ as the particle slows down.

Therefore, most of the energy islost in the last several mm of travel.February 10, 2014Proton CT Project

History of Proton Therapy

- First proposed by Robert Wilson in 1946
- The first treatments were performed at particle physics labs, such as LBL and Los Alamos, starting in 1954.
- The Massachusetts General Hospital used the Harvard Cyclotron to treat 9,116 patients between 1961 and 2002.
- In 1990 a dedicated proton accelerator was installed in a hospital (Loma Linda Medical Center) for the first time.

The Loma Linda accelerator being built at Fermilab in the late 1980s.

Today 11 hadron (p + heavy ion) therapy centers operate in the USA, with 39 worldwide.

Based on synchrotrons or cyclotrons.February 10, 2014Proton CT Project

Where Proton Therapy is Well Suited

- Delivery of high, localized doses of radiation to tumors that respond well to such doses (i.e. are destroyed).
- Delivery of radiation doses to tumors while minimizing exposure to surrounding tissue
 - This has shown especially good results in pediatric treatments, with significant reduction in long-term damage to the child's developing organs.
 - The single most common target, however, has been prostate cancer (about 26% of all treatments worldwide). Here the improvements with respect to other treatments have been less clear.
 - Treatment of ocular tumors by protons is very important (e.g. UC Davis), but is a somewhat special case, as beams of only 70 MeV are required (the LLUMC beam goes as high as 250 MeV).

Example Facility

This facility at the University of Florida cost \$125 Million to build and can serve up to 150 patients per day.

The high cost of such a facility is the main point of criticism of this type of treatment.

- Costs are offset by reduction in collateral damage and the ability to succeed in few treatments.
- New facilities no longer need to be custom designed.

New, compact (cheaper), accelerator technologies are being developed for proton therapy.

Small superconducting cyclotrons.Dielectric Wall Accelerator.

February 10, 2014

Proton CT Project

The brass aperture and the Lucite compensator are designed to squeeze the proton beam to the size and shape of the area being treated. By adjusting the speed of the protons, a physician can control how deep their penetration will be. The protons then release their energy at the tumor and cause less damage to the surrounding tissue. Because conventional radiation doesn't release its energy at a specified depth, it can cause more damage to the tissue surrounding the tumor.

LLUMC Proton Treatment Center

40-250 MeV Synchrotron

Fixed beam line

Views from the business end of p therapy

February 10, 2014

Radiography: X-rays vs Protons

Attenuation of Photons, Z N(x) = $N_0 e^{-\mu x}$ Energy Loss of Protons, ρ $\Delta E = \int \frac{dE}{dx} dx \approx \sum \rho \frac{dE}{dx} \Delta l$

Proton Beam Computed Tomography

Proton CT for diagnosis

- First suggested by Alan Cormack (1963), who shared the Nobel prize for his work on X-ray CT image reconstruction.
- First studied during the 1970s with experimental results published in the early 1980s.
- A dose advantage over x rays was observed.
- But it was not further developed after the advent of X-ray Computed Tomography

Proton CT for treatment planning and delivery

- Renewed interest during the 1990s (2 Ph.D. theses)
- Preliminary results are promising
- But further R&D is needed

Why proton CT for treatment planning?

- Image in the same facility where the treatment will take place, immediately prior to treatment.
 - Alleviate issues with ensuring the same patient positioning between the X-ray CT scan and the proton treatment.
- Possibly a lower radiation dose than X-ray CT.
- Most important: in principle, proton CT images measure much more directly (than X-ray) the quantities relevant to tuning the accelerator to create a proton beam that stops in the tumor.

From our proposal: "One unsolved problem in proton therapy is the current inability to predict the exact range of protons in tissue due to inaccuracy of converting CT Hounsfield Units (*HU*) to proton stopping power and the lack of a low-dose imaging modality in the treatment room predicting the range of protons on a day-to-day basis."

 $HU \equiv \frac{\mu_X - \mu_{\text{water}}}{\mu_{\text{water}} - \mu_{\text{air}}} \cdot 1000$

 μ is the X-ray attenuation coefficient:

 $I = I_0 e^{-\mu x}$

pCT for Proton Therapy Treatment Planning

X-ray CT use in proton cancer therapy can lead to large uncertainties in range determination, which limits its use in the case of some tumors located close to critical healthy tissue.

Schneider U. & Pedroni E. (1995), "Proton radiography as a tool for quality control in proton therapy," Med Phys. 22, 353.

Alderson Head Phantom

Proton CT can measure directly the density distribution needed for range calculation and is less affected by intervening dense structures.

Proton-CT Project Goals and Plans

Goals:

- 1. Overcome challenges of pCT by performing systematic studies based on Monte Carlo simulations with Geant4.
- 2. Build pCT prototypes of increasing sophistication.
- 3. Prove the advantages of pCT compared to x-ray CT;
- 4. Build a clinical head scanner pCT system for applications in proton therapy.

The pCT project phases:

- **Phase 0 (2003-2007):** Conceptual phase, development of design concepts and testing various methods of pCT reconstruction. First experiments with a small laboratory prototype.
- Phase I: (2008-2012): Design and manufacture of a first preclinical pCT prototype (head scanner), utilizing concepts developed during Phase 0. Evaluation of the prototype and documentation of the advantages of pCT in comparison with x-ray CT.
- **Phase II (2012-2014):** Design and manufacture of a clinical pCT head scanner including fast data acquisition and image reconstruction.
- **Phase III (2014-2016):** Development of conceptual and detailed designs as well as business models to transfer pCT technology into the clinical environment.
- **Phase IV (2016 and beyond):** Clinical implementation, including integration of a pCT system into a proton treatment room, preclinical testing on small animals, approval of clinical protocols for pilot studies.

A Proton CT Prototype Concept

- A diffuse, weak (1 at a time) proton beam is extracted from the accelerator.
- Silicon-strip tracking planes before and after the subject measure where each individual proton passed through.
 - Complicated by multiple scattering (X-rays don't have this problem).
 - What we get is an accurate prediction of the "most likely path".
- A calorimeter measures the proton energy after passing through the subject.
 - The energy lost while passing through the subject is the crucial quantity needed to measure the tissue density along the path. The energy is lost by ionization— *exactly the same process that slows down and stops therapeutic protons during treatment*.
 - Note the difference: X-ray CT measures the fraction of X-rays that get stopped in the subject.
- Rotate about the subject to obtain 3-D data for computed tomography

Prototype pCT Scanner (UCSC + LLUMC + NIU)

Prototype pCT Scanner (UCSC + LLUMC + NIU)

Fig. 5. Schematic sketch (left) and view (right) of the Phase I pCT scanner completed in 2010. The system consists of a front and rear module with a total of 4 silicon tracker planes and a crystal-calorimeter with an array of 18 CsI(TI) crystals. The object (here a Rando head phantom) is rotating between the front- and rear-module on a rotational stage.

Proton CT Project

Prototype Pre-Clinical pCT Scanner SSDs

Toward a pCT Scanner for Clinical Use

- A larger size is needed: 9 cm by 36 cm, to cover the entire head height while rotating around the head.
- A much higher rate is needed: about a million protons per second sustained rate
 - The Fermi-LAT based tracking system is limited by a design never intended to exceed 10 kHz—low power was one of the most critical parameters for the space-based application! For pCT it has been operated in a modified mode up to 200 kHz, but for the new system I had to design a completely new ASIC (Application Specific Integrated Circuit)
 - A CsI calorimeter cannot operate at MHz rates—the scintillation signal from the thallium doping takes several microseconds to develop.

The LLUMC beam has a structure with 110 ns separation between bunches. We need to localize our tracks in time to better than 100 ns in order to distinguish between protons in separate bunches.

February 10, 2014

Proton CT Project

We have an NIH grant to support work on the advanced pCT scanner

Loma-Linda University Medical Center

U.C. Santa Cruz

California State University San Bernardino

SCIPP researchers apply particle physics expertise to cancer therapy

NIH grant supports work on proton computed tomography to guide proton therapy for cancer treatment

May 12, 2011 By Tim Stephens

http://news.ucsc.edu/2011/05/proton-ct.html

Physicists at the University of California, Santa Cruz, are working with medical researchers at Loma Linda University Medical Center to develop a new imaging technology to guide proton therapy for cancer treatment.

Proton therapy is a type of radiation therapy that allows powerful doses of radiation to be delivered directly to a tumor with little damage to the surrounding healthy tissues. Currently, images and data for planning and guidance of proton therapy are obtained from x-ray computed tomography (commonly known as a CT scan or CAT scan). But using information from x-rays to guide proton beams results in uncertainties that limit the accuracy with which the tumor can be targeted.

To overcome these limitations, researchers at the Santa Cruz Institute for Particle Physics (SCIPP) at UC Santa Cruz and their collaborators have been working since 2003

This prototype proton CT scanner was developed in the SCIPP laboratories by a team of physicists led by Hartmut Sadrozinski (below).

Proton CT Project

UCSC pCT Group

- Faculty:
 - Robert Johnson
 - Hartmut Sadrozinski
- Postdoc: Andriy Zatserklyaniy
- Graduate Student: Tia Plautz
- Undergraduates: many are involved, and numerous senior theses have been done on this subject over the past decade.

Layout of the New pCT Scanner

X, Y, Z coordinates are measured with respect to the phantom. The xyz system rotates around the v-axis following the right-hand-rule. (pictured) T, U, V coordinates are measured with respect to the detector. The tuv system rotates around the z-axis following the left-hand-rule. U points along the beam.

U

Strip detectors are double sided and oriented such that T-detectors are on the side closest to the phantom.

V|T, V|T, phantom, T|V, T|V

There will be 5 of these plastic scintillators, each read out by a photomultiplier tube.

T- strip detectors have strips that run vertically

V- strip detectors have strips that run horizontally

The protons stop in the plastic scintillator. The pulse height from the last scintillator with a signal tells us how far the proton traveled.

February 10, 2014

Proton CT Project

pCT Tracker Plane Layouts

Measures V Coordinates

February 10, 2014

One tracker "cassette", V side.

$\leftarrow horizontal \ strips \rightarrow$

One tracker "cassette", T side.

The T side has twice and many amplifier channels as the V side, and two FPGAs, each with a dedicated data line to the event builder.

February 10, 2014

Proton CT Project

pCT Tracker Front-End Readout Concept

Six 64-channel amplifier chips per SSD.

Readout trigger is based on a coincidence of multiple layers, each layer contributing a logical-OR of all of its strips.

The data stream is purely digital, indicating only which SSD strips had signals above threshold.

ASIC Design

February 10, 2014

28

ASIC Layout

Hit location for single proton events 9 V coordinate (cm) Image of the Loma Linda accelerator beam spot, from a test of the tracking system last autumn. 5 З 1 1 1 2 3 5 8 9 6

T coordinate (cm)

Energy Detector Digitizer Board FPGA

Energy Detector Signals

February 10, 2014

Pulses digitized by the 14-bit ADC

February 10, 2014

Proton CT Project

Some example energy detector measurements from a beam test last autumn. Each histogram represents a different absorber thickness used to slow down the

34

Data Acquisition

Event Builder

February 10, 2014

Conclusions

- The existing pCT system, using Fermi-LAT detectors and electronics, has already told us a lot about the performance of pCT. Images of head "phantoms" have been acquired and reconstructed.
- Fabrication of the hardware of the new system is nearly complete, and it will tested in the proton beam at Loma Linda next month to produce some first trial images.
- Work is also in progress to improve the image reconstruction algorithms, and also to make them run faster, using an array of GPUs.
- Hopefully this effort eventually will improve the effectiveness of proton therapy!