1

Very High-Energy GammaRay Astrophysics

David A. Williams
daw@ucsc.edu

Natural Sciences 2, 319 459-3032

February 3, 2014

Main Research Interests

- How are high energy particles accelerated in the jets of AGN? Are they primarily electrons or protons?
- Do gamma-ray bursts produce very high-energy gamma-rays, either in the prompt or afterglow phase? What does that tell us about GRBs if they do/don't?
-What can we learn about the evolution of the Universe from the extragalactic background light?
- How can we build more sensitive instruments to address these - and other - questions?
-CTA, the Cherenkov Telescope Array

VERITAS: Imaging Atmospheric Cherenkov Telescope

Very Energetic Radiation Imaging Telescope Array System

Whipple Observatory Basecamp (el. 1275 m) at foot of Mt. Hopkins

Atmospheric Imaging Technique

Area $=10^{4}-10^{5} \mathrm{~m}^{2}$
~ 60 optical photons $/ \mathrm{m}^{2} / \mathrm{TeV}$
γ-rays above $\sim 100 \mathrm{GeV}$

12 m Mirror

Cherenkov image

499-PMT camera

500-MHz FADC electronics

Radio Galaxy: M 87

- Giant radio galaxy (class of AGN)
- Distance ~16 Mpc, redshift 0.004
- Central black hole $\sim 6 \times 10^{9} \mathrm{M}_{\text {sun }}$
- Jet angle $15^{\circ}-30^{\circ}$
- Knots resolved in the jet
- Jet is variable in all wavebands

M 87 - Radio and TeV flares

- Rapid TeV flares coincident with the core brightening
- TeV particles accelerated within $\sim 100 \mathrm{R}_{\mathrm{s}}$ of BH
- Best determination so far of location of particle acceleration
V. Acciari et al. 2009, Science 325, 444

GRB 090902B

Simulated VERITAS light curves for different redshifts

A. Abdo et al. 2009, ApJL 706, L138

Extragalactic Background Light

$\gamma_{\text {High Energy }}+\gamma_{\text {EBL }} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$

Test of cosmology
Attenuation by $1 / \mathrm{e}$ (i.e. $\mathrm{e}^{-\tau}$ with $\tau=1$) for $z \sim 1.2$ at 100 GeV z~0.1 at 1 TeV

Recent modeling consistent with the published experimental results

Understanding the EBL

- Search for new, more distant blazars (e.g. 4C +55.17)
- More precise spectral measurements of known blazars (e.g. Mrk 421, PKS 1424+240)
- Obtain data at other wavelengths to help model intrinsic spectra (Fermi, Swift)
- Obtain redshifts for detected blazars (w/ Prochaska, Fumagalli)
- Theoretical modeling of the EBL (w/ Primack, Madau, Gilmore)

Primack et al. 2008, AIPC 1075, 71 (arXiv:0811.3230)

First VHE blazar found using Fermi-LAT observations

- No redshift information
- Used MWL data to show likely z<0.67
- On the ISP/HSP cusp
- Soft X-ray spectrum
- Used SSC SED modeling to show likely z<0.2

Redshift Lower Limit of PKS |424+240 from Far UV Observations

- Bright, featureless blazars are also used as background sources to study the intergalactic medium
- Lower limit of blazar distance can be derived from observation of intervening Lyman absorption with HST/COS
- Observations of PKS 1424+240 on April I9, 20 I2 show higher-order Lyman absorption at $z=0.6035$

Absorption-corrected Gamma-ray Emission A First Look...

Cosmic-ray Contribution?

IGMF bends proton/lepton path
credit: Amy Furniss

The EBL and Intergalactic B Fields

- Electrons produced by
$\gamma_{\text {High Energy }}+\gamma_{\text {EBL }} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$
Compton scatter off EBL to produce more photons
- Amount that the cascade fans out depends on intergalactic magnetic field (IGMF) strength
- Observable effects:
- Pair halo
- Spectral distortion
- Time delays between prompt and reprocessed photons

Figures from Taylor et al. 2011, arXiv: 1101.0932

The CTA Concept

Arrays in northern and southern hemispheres for full sky coverage 4 large telescopes in the center (LSTs)

Threshold of $\sim 30 \mathrm{GeV}$
≥ 25 medium telescopes (MSTs) covering $\sim 1 \mathrm{~km}^{2}$
Order of magnitude improvement in $100 \mathrm{GeV}-10 \mathrm{TeV}$ range
Small telescopes (SSTs) covering $>3 \mathrm{~km}^{2}$ in south
$>10 \mathrm{TeV}$ observations of Galactic sources
Construction begins in ~2015

Simulated Galactic Plane surveys

H.E.S.S.

CTA, for same exposure

Expect ~ 1000 detected sources over the whole sky

Unique Dark Matter Results with CTA

Constraints:
$\Omega_{D M} h^{2}>0.1$, XENON100 (2011), CMS+ATLAS (2012)

CTA results include U.S. contribution

M. Cahill-Rowley et al. - Snowmass white paper, arXiv:1305.6921

DM interacting with quarks

D. Bauer et al. - Snowmass complementarity report, arXiv:1305.1605

A Novel Telescope for CTA

Camera using silicon photomultipliers with integrated electronics

Schwarzschild-Couder optics

Adding Two-mirror Telescopes: More Showers, Measured Better

Signal:
v-ray Shower Energy: 1 TeV

Baseline
Single-Mirror
Telescope Images
8° field of view
0.18° pixels
1,570 channels
U.S. Design

Two-Mirror
Telescope Images
8° field of view
0.067° pixels
11,328 channels

Opportunities

- Data analysis with VERITAS - unsurpassed in the world $>100 \mathrm{GeV}$
- Synergy with Fermi, X-ray satellites, e.g. Swift
- Optical program for redshifts and source monitoring
- CTA development
- Studies of new, more efficient photosensors
- Design and construction of the prototype telescope
- Optimization of full CTA telescope and array

Postdoc: Jonathan Biteau
Visiting postdoc: Amy Furniss (Stanford)
Graduate student: Caitlin Johnson, your name here!
Undergraduate students: David Chinn, Zach Hughes, Andrey Kuznetsov

Blazar: 3C 66A

V. Acciari et al. 2009, ApJL 693, L104; erratum ApJL 721, L203

- AGN with jet oriented along line of sight - BL Lac object
- redshift 0.44?
- Observed spectral index $\Gamma=4.1 \pm 0.4_{\text {stat }} \pm 0.6_{\text {sys }}$
- Deabsorbed spectrum using Franceschini et al 2008 model gives
$\Gamma=1.5 \pm 0.4$
- At the limit the models can tolerate
- Need firm redshift \& more VERITAS data

Blazar: 3C 66A

- AGN with jet oriented along line of sight - BL Lac object
- redshift 0.44? 0.335-0.41
- Observed spectral index $\Gamma=4.1 \pm 0.4_{\text {stat }} \pm 0.6_{\text {sys }}$
- Deabsorbed spectrum using Franceschini et al 2008 model gives
$\Gamma=1.5 \pm 0.4$
- At the limit the models can tolerate
- Need firm redshift \& more VERITAS data
V. Acciari et al. 2009, ApJL 693, L104;
erratum ApJL 721, L203

3C 66A Spectra — Keck

A. Furniss et al. 2013, submitted to ApJ

3C 66A Spectra - HST

A. Furniss et al. 2013, submitted to ApJ

