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Big Bang Nucleosynthesis
BBN was conceived by Gamow in 1946 as an explanation for the formation of all the elements, but the 
absence of any stable nuclei with A=5,8 makes it impossible for BBN to proceed past Li.  The 
formation of carbon and heavier elements occurs instead through the triple-α process in the centers of 
red giants (Burbidge2, Fowler, & Hoyle 57).  At the BBN baryon density of 2×10-29 Ωb h2 (T/T0)3 g cm-3 
≈ 2 ×10-5 g cm-3, the probability of the triple-α process is negligible even though T ≈ 109K.  

Thermal equilibrium between n and p is maintained by weak interactions, which keeps n/p = exp(-Q/T) 
(where Q = mn–mp = 1.293 MeV) until about t ≈ 1 s.  But because the neutrino mean free time 
tν-1

 ≈ σν ne±
 
 ≈ (GFT)2(T3) is increasing as tν ∝T-5 (here the Fermi constant GF ≈10-5 GeV-2), while the 

horizon size is increasing only as tH ≈ (Gρ)-½ ≈ MPl T-2 , these interactions freeze out when T drops below 
about 0.8 MeV.  This leaves n/(p+n) ≈ 0.14.  The neutrons then decay with a mean lifetime 887 ± 2 s 
until they are mostly fused into D and then 4He.  The higher the baryon density, the higher the final 
abundance of 4He and the lower the abundance of D that survives this fusion process.  Since D/H is so 
sensitive to baryon density, David Schramm called deuterium the “baryometer.” He and his colleagues 
also pointed out that since the horizon size increases more slowly with T-1 the larger the number of light 
neutrino species Nν contributing to the energy density ρ, BBN predicted that Nν ≈ 3 before Nν was 
measured at accelerators by measuring the width of the Z0 (Particle Data Group: Nν = 2.984±0.008). 
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The Friedmann equation says that   H2 = (8πG/3) ρ  in the early universe, where the Λ term is 
negligible and ρ ∝ g*T4, so 
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Fig. 5.9 Plot of the quantity g* in (5.58)—
here termed geff —measuring the number of
degrees of freedom, against the temperature
kT (after Kolb and Turner 1990).

the early universe. Since in this era, ρ ∝ R−4, it follows from (5.47) that

H (t) = Ṙ
R

= − ρ̇

4ρ
= 1

(2t)

and from (5.49)

H (t) =
[

4g∗π3G

45h̄3c5

]1/2

(kT )2

=
(

4π3 g∗/

45
)1/2

MPLh̄c2 × (kT )2 (5.59)

= 1.66g∗1/2 (kT )2

MPLh̄c2

where in the second line the Newtonian constant is expressed in terms of the
Planck mass, that is G = h̄c/M 2

PL (see Table 1.5).

Example 5.5 Estimate the time required for the universe to increase its
size by 10% during the radiation era, for values of kT = 100 MeV and
g∗ = 20.

Since H = (1/R) dR/dt, the time required (assuming that H is constant
over a short period) is found on integration to be t = (ln 1.1)/H . From
(5.59), with MPL = 1.22 × 1019 GeV/c2 and kT expressed in GeV:

H (t) = 2.07 × 105g∗1/2
(kT )2 s−1

Substituting for kT and g* we find H = 9.25 × 103 s−1 and t = 10.3 µs.

Here G was replaced by the Planck !
mass 
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mass Mc2 = 1 GeV, then

GM 2

4πh̄c
= 5.3 × 10−40 (1.11a)

to be compared with

e2

4πh̄c
= 1

137.036
(1.11b)

Thus, for the energy or mass scales of GeV or TeV common in high-energy
physics experiments at accelerators, the gravitational coupling is absolutely
negligible. Of course, on a macroscopic scale, gravity is important and
indeed dominant, because it is cumulative, since all particles with energy and
momentum are attracted by their mutual gravitation. Thus the gravitational
force on a charged particle on the Earth’s surface is the sum of the attractive
effects of all the matter in the Earth. Since the Earth is electrically neutral
however, the enormously larger electrical force due to all the protons in the
Earth is exactly cancelled by the opposing force due to the electrons.

However, even on sub-atomic scales the gravitational coupling can become
strong for hypothetical elementary particles of mass equal to the Planck mass,
defined as

MPL =
(

h̄c
G

)1/2

= 1.2 × 1019 GeV
c2 (1.12a)

The Planck length is defined as

LPL = h̄
MPLc

= 1.6 × 10−35 m (1.12b)

that is, the Compton wavelength of a particle of the Planck mass. Two pointlike
particles each of the Planck mass and separated by the Planck length would
therefore have a gravitational potential energy equal to their rest-masses, so
quantum gravitational effects can become important at the Planck scale. To
account for the very large value of the Planck mass, or the extreme weakness of
gravity at normal energies, it has been proposed that there are extra dimensions
beyond the familiar four of space/time, but these are ‘curled up’ to lengths of
the order of the Planck length, so that they only become effective, and gravity
becomes strong, at Planck energies.

We should emphasize here that, although we can draw a parallel between the
inverse square law of force between point charges and point masses, there are
quite fundamental differences between the two. First, due to the attractive force
between two masses, the latter can acquire momentum and kinetic energy (at
the cost of potential energy), which is equivalent to an increase in the effective
mass through the Einstein relation E = mc2, and thence in the gravitational
force. For close enough encounters therefore, the force will increase faster
than 1/r2. Indeed, one gets non-linear effects, which is one of the problems
in formulating a quantum field theory of gravity. The effects of gravitational
fields (including the non-linear behaviour) are enshrined in the Einstein field
equations of general relativity, which interpret these effects in terms of the
curvature of space caused by the presence of masses.
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Fig. 5.10 Evolution of the temperature with
time in the Big Bang model, with the various
eras indicated. See also Fig. 8.2.

These different eras have significance for the various stages in the
development of the early universe, as is discussed more fully in Chapter 8.
However, we can note here already that when the matter density exceeds that
of relativistic particles, that is, for z < 3000 as in (5.77c), the gravitational
clustering of matter can begin, although it will be opposed by the free streaming
away of photons and neutrinos unless it is on very large scales. Dark matter
is vitally important here, since the dominance of baryons alone over radiation
would not occur until very much later, at z < 900, as in (5.77a), and after
the decoupling of photons and matter and the formation of atoms. As shown in
Chapter 8, without the dominant role of dark matter, it is difficult to see how the
observed structures—galaxies, clusters, and superclusters—could have formed
so rapidly.

Finally, Fig. 5.10 shows the variation of temperature with time through the
radiation and matter eras.

5.14 Summary

• The ‘Standard Model’ of the universe is based on Einstein’s general
relativity and the cosmological principle, implying that at early times
and on large scales, the universe was isotropic and homogeneous. The
‘Big Bang’ expansion of the universe follows from Hubble’s Law. This
expansion is universal and appears the same to all observers, no matter
where they are located.
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These different eras have significance for the various stages in the
development of the early universe, as is discussed more fully in Chapter 8.
However, we can note here already that when the matter density exceeds that
of relativistic particles, that is, for z < 3000 as in (5.77c), the gravitational
clustering of matter can begin, although it will be opposed by the free streaming
away of photons and neutrinos unless it is on very large scales. Dark matter
is vitally important here, since the dominance of baryons alone over radiation
would not occur until very much later, at z < 900, as in (5.77a), and after
the decoupling of photons and matter and the formation of atoms. As shown in
Chapter 8, without the dominant role of dark matter, it is difficult to see how the
observed structures—galaxies, clusters, and superclusters—could have formed
so rapidly.

Finally, Fig. 5.10 shows the variation of temperature with time through the
radiation and matter eras.

5.14 Summary

• The ‘Standard Model’ of the universe is based on Einstein’s general
relativity and the cosmological principle, implying that at early times
and on large scales, the universe was isotropic and homogeneous. The
‘Big Bang’ expansion of the universe follows from Hubble’s Law. This
expansion is universal and appears the same to all observers, no matter
where they are located.

Note that in the radiation-dominated early 
universe,  !
H(t) = 1/2t     or    t = 1/2H(t)



Cosmic Radiation: Photons

Photon energy density vs. time: 

Photon energy density vs. Temperature: 

128 The expanding universe

Fig. 5.7 Data on the spectral distribution
of the cosmic microwave radiation obtained
from the COBE satellite experiment. The
experimental points show the results of the
early experiments in 1990. When recent
satellite data and those from balloon -borne
experiments are combined, a very exact fit
to a black body spectrum is obtained with
T = 2.725 ± 0.001 K and kT = 0.235 meV
(milli-electron volts) as shown by the curve
(Fixen et al. 1996). The present experimental
errors are actually less than the thickness of
this curve.

Cosmic microwave spectrum

In
te

ns
ity

 d
I/

dv
 (

er
gs

m
–2

s–1
sr

–1
cm

)

0
0 10

Frequency v (cm–1)
20

0.5

1.0

to R−1. While the number of photons varies as 1/R3, the energy density of
the radiation will vary as 1/R4, as indicated in Table 5.2. The extra factor of
1/R in the energy density, as compared with non-relativistic matter, simply
arises from the redshift, which in fact will apply to any relativistic particles
and not just to photons, provided of course that those particles are distributed
uniformly on the same cosmological scale as the microwave photons. At the
early times we are discussing here, the vacuum energy, which is assumed
to be independent of R, would have been totally negligible and we can just
forget it.

Thus, while the matter density of the universe dominates over radiation today,
in the olden days and at low values of R, radiation must have been dominant.
In that case, the second term on the right-hand side of (5.11) can be neglected
in comparison with the first, varying as 1/R4. Then

Ṙ2 =
(

8πG
3

)

ρrR2

Furthermore, since ρr ∝ R−4,

ρ̇r

ρr
= −4Ṙ

R
= −4

(

8πGρr

3

)1/2

which on integration gives for the energy density

ρrc2 =
(

3c2/

32πG

t2

)

(5.47)

For a photon gas in thermal equilibrium

ρrc2 = 4σT 4

c
= π4 (kT )4

(

gγ

/

2

15π2h̄3c3

)

(5.48)
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where k is here the Boltzmann constant. (This should not to be confused
with the curvature parameter, also denoted by k; since the Boltzmann constant
will always occur multiplied by the temperature T .) σ is the Stefan–Boltzmann
constant and gγ = 2 is the number of spin substates of the photon. From these
last two equations we obtain a relation between the temperature of the radiation
and the time of expansion:

kT =

[

(

45h̄3c5
/

16π3Ggγ

)1/4
]

t1/2
= 1.307

MeV
t1/2

(5.49)

where t is in seconds. The corresponding value of the temperature itself is

T = 1.52 × 1010 K
t1/2

.

Since T falls as 1/R, R increases as t1/2 while the temperature falls as 1/t1/2.
Hence, the universe started out as a hot Big Bang.

From (5.49) we may roughly estimate the energy of the radiation today, that is
for t0 ∼ 14 Gyr ∼ 1018 s. It is kT ∼ 1 meV (milli-electron volt), corresponding
to a temperature of a few degrees on the Kelvin scale. This will in fact be an
overestimate since the radiation has cooled more quickly, as 1/t2/3, during the
later, matter-dominated era (see Fig. 5.10).

Observation of microwave molecular absorption bands in distant gas clouds
has made it possible to estimate the temperature of the background radiation
at earlier times, when the wavelength would have been reduced, and the
temperature increased, by the redshift factor (1+z). This dependence on redshift
has been experimentally verified up to values of z ≈ 3.

Let us now compare the observed and expected energy densities of radiation.
The spectrum of black body photons of energy E = pc = hν is given by the
Bose–Einstein (BE) distribution, describing the number of photons per unit
volume in the momentum interval p → p + dp. Including gγ = 2 as the
number of spin substates of the photon, this is

N (p)dp = p2dp

π2h̄3 {

exp
(

E
/

kT
)

− 1
}

(gγ

2

)

(5.50)

In discussing the BE distribution, and later, the Fermi–Dirac (FD) distribution,
it will be useful to note the following integrals, from x = 0 to x = ∞:

BE :
∫

x3dx
(ex − 1)

= π4

15
;

∫

x2dx
(ex − 1)

= 2.404

FD :
∫

x3dx
(ex + 1)

= 7
8

× π4

15
;

∫

x2dx
(ex + 1)

= 3
4

× 2.404 (5.51)

The total energy density integrated over the spectrum is then readily calculated
to have the value ρr in (5.48). The number of photons per unit volume is

Nγ =
(

2.404
π2

) (

kT
h̄c

)3

= 411
(

T
2.725

)3

= 411 cm−3 (5.52)
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last two equations we obtain a relation between the temperature of the radiation
and the time of expansion:

kT =

[

(

45h̄3c5
/

16π3Ggγ

)1/4
]

t1/2
= 1.307

MeV
t1/2
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where t is in seconds. The corresponding value of the temperature itself is

T = 1.52 × 1010 K
t1/2

.

Since T falls as 1/R, R increases as t1/2 while the temperature falls as 1/t1/2.
Hence, the universe started out as a hot Big Bang.

From (5.49) we may roughly estimate the energy of the radiation today, that is
for t0 ∼ 14 Gyr ∼ 1018 s. It is kT ∼ 1 meV (milli-electron volt), corresponding
to a temperature of a few degrees on the Kelvin scale. This will in fact be an
overestimate since the radiation has cooled more quickly, as 1/t2/3, during the
later, matter-dominated era (see Fig. 5.10).

Observation of microwave molecular absorption bands in distant gas clouds
has made it possible to estimate the temperature of the background radiation
at earlier times, when the wavelength would have been reduced, and the
temperature increased, by the redshift factor (1+z). This dependence on redshift
has been experimentally verified up to values of z ≈ 3.

Let us now compare the observed and expected energy densities of radiation.
The spectrum of black body photons of energy E = pc = hν is given by the
Bose–Einstein (BE) distribution, describing the number of photons per unit
volume in the momentum interval p → p + dp. Including gγ = 2 as the
number of spin substates of the photon, this is
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/
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In discussing the BE distribution, and later, the Fermi–Dirac (FD) distribution,
it will be useful to note the following integrals, from x = 0 to x = ∞:

BE :
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∫
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∫
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The total energy density integrated over the spectrum is then readily calculated
to have the value ρr in (5.48). The number of photons per unit volume is
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while the energy density from (5.48) is

ρrc2 = 0.261 MeV m−3 (5.53)

the equivalent mass density being

ρr = 4.65 × 10−31 kg m−3

and from (5.26)
"r(0) = 4.84 × 10−5 (5.54)

some four orders of magnitude less than the present estimated matter density
in (5.33).

5.9 Anisotropies in the microwave radiation

The temperature of the microwave radiation shows a small anisotropy, of order
10−3, attributed to the ‘peculiar velocity’ v = 370 km s−1 of the Solar System
(towards the Virgo cluster) with respect to the (isotropic) radiation. It is given
by the Doppler formula (2.36):

T (θ) = T (0)
[

1 +
(v

c

)

cos θ
]

(5.55)

where θ is the direction of observation with respect to the velocity v. Figure 5.8
shows (magnified in contrast by 400 times) the ‘hot’ (θ = 0) and ‘cold’ (θ =
π) features of the dipole, as well as the (infrared) emission from the galaxy,
showing as a broad central band. After the dipole contribution and the galactic
emission are removed, a polynomial analysis of the distribution shows that there
are quadrupole (l = 2) and higher terms, up to at least l = 1000, involving
tiny but highly significant anisotropies at the 10−5 level. These turn out to be
of fundamental importance, reflecting fluctuations in density and temperature
in the early universe which seeded the large-scale structures observed today.
These matters are discussed in detail in Sections 8.13 to 8.16.

As indicated in Section 5.12, the microwave radiation, previously in
equilibrium with atomic and ionized hydrogen, decoupled from baryonic matter
at z ∼ 1100, when the universe was about 400,000 years old. That would have

Fig. 5.8 Plot of the angular distribution of the
microwave background radiation, showing
the dipole dependence of (5.55) due to the
velocity of the Earth relative to the isotropic
radiation, plus the infrared emission from
the Milky Way, showing as a broad central
band. The angular dependence shown has
been enhanced some 400 times from the actual
value, of order 10−3.
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12 21. Big-Bang cosmology

21.3. The Hot Thermal Universe

21.3.1. Thermodynamics of the early Universe :

As alluded to above, we expect that much of the early Universe can be described by
a radiation-dominated equation of state. In addition, through much of the radiation-
dominated period, thermal equilibrium is established by the rapid rate of particle
interactions relative to the expansion rate of the Universe (see Sec. 21.3.3 below). In
equilibrium, it is straightforward to compute the thermodynamic quantities, ρ, p, and
the entropy density, s. In general, the energy density for a given particle type i can be
written as

ρi =

∫

Ei dnqi
, (21.34)

with the density of states given by

dnqi
=

gi

2π2

(

exp[(Eqi
− µi)/Ti] ± 1

)−1
q2
i dqi , (21.35)

where gi counts the number of degrees of freedom for particle type i, E2
qi

= m2
i + q2

i ,
µi is the chemical potential, and the ± corresponds to either Fermi or Bose statistics.
Similarly, we can define the pressure of a perfect gas as

pi =
1

3

∫

q2
i

Ei
dnqi

. (21.36)

The number density of species i is simply

ni =

∫

dnqi
, (21.37)

and the entropy density is

si =
ρi + pi − µini

Ti
. (21.38)

In the Standard Model, a chemical potential is often associated with baryon number,
and since the net baryon density relative to the photon density is known to be very
small (of order 10−10), we can neglect any such chemical potential when computing total
thermodynamic quantities.

For photons, we can compute all of the thermodynamic quantities rather easily. Taking
gi = 2 for the 2 photon polarization states, we have (in units where ! = kB = 1)

ργ =
π2

15
T 4 ; pγ =

1

3
ργ ; sγ =

4ργ

3T
; nγ =

2ζ(3)

π2 T 3 , (21.39)

with 2ζ(3)/π2 ≃ 0.2436. Note that Eq. (21.10) can be converted into an equation for
entropy conservation. Recognizing that ṗ = sṪ , Eq. (21.10) becomes

d(sR3)/dt = 0 . (21.40)

For radiation, this corresponds to the relationship between expansion and cooling,
T ∝ R−1 in an adiabatically expanding universe. Note also that both s and nγ scale as
T 3.
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Neutrinos in the Early Universe
time

As we discussed, neutrino decoupling occurs at T ~ 
1 MeV.  After decoupling, the neutrino phase space 
distribution is !
fν = [1+exp(pνc/Tν)]-1   (note: ≠ [1+exp(Eν/Tν)] 

             for NR neutrinos) 
After e+e- annihilation, Tν=(4/11)1/3Tγ = 1.9K.  Proof :

Number densities of primordial particles
nγ(T) = 2 ζ(3) π-2 T3 = 400 cm-3 (T/2.7K)3 ,  nν(T) = (3/4) nγ(T) including antineutrinos 

Conservation of entropy sI of interacting particles per comoving volume

sI = gI(T) Nγ(T) = constant, where Nγ = nγV; we only include neutrinos for T>1 MeV. !
Thus for T>1 MeV, gI = 2 + 4(7/8) + 6(7/8) = 43/4 for γ, e+e-, and the three ν species, 
while for T< 1 MeV, gI = 2 + 4(7/8) = 11/2.  At e+e- annihilation, below about T=0.5 Mev,  
gI drops to 2, so that  2Nγ0 = gI(T<1 MeV) Nγ(T<1 MeV) = (11/2) Nγ(T<1 MeV) = 
(11/2)(4/3) Nν(T<1 MeV).  Thus nν0 = (3/4)(4/11) nγ0 = 109 cm-3 (T/2.7K)3  for each of the 
three neutrino species, and Tν = (4/11)1/3 T = 0.714 T

FermiDirac/BoseEinstein factor



Particles and Radiation in the Early Universe
Fermi-Dirac energy distribution:
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been the epoch of ‘last scattering’, if the interstellar gas (mostly hydrogen and
helium) remained unionized. However, it appears that when z fell below about
12 (the end of the so-called dark ages), the first stars had formed and commenced
re-ionization of the intergalactic medium, by the ultraviolet radiation they
emitted. Thus the microwave radiation, on its passage through the interstellar
medium to the observer, would then undergo Thomson scattering from electrons
in the plasma. It is, however, a small effect (see Section 8.14 et seq).

Example 5.4 Calculate the mean quantum energy and the corresponding
wavelength of the cosmic microwave photons for a temperature of
T = 2.725 K.

The original discovery of cosmic microwave radiation was made with
receivers tuned to 7.3 cm wavelength. What fraction of the photons would
have wavelengths in excess of 7.3 cm?

From (5.50) and (5.51) the mean photon energy is π4kT/(15 × 2.404) =
2.701 kT = 6.34 × 10−4 eV. The corresponding wavelength is λ =
hc/hv = 0.195 cm.

At large wavelengths the curly bracket in (5.50) can be approximated by
E/kT if E/kT ≪ 1. The fraction of photons with quantum energies below
ε = E/kT is then easily shown to be F =

(

ε
/

kT
)2

/(2 × 2.404), which for
wavelengths above 7.3 cm is equal to 1.06 × 10−3.

5.10 Particles and radiations in the early universe

The relation (5.49) for the temperature of the early universe as a function of time
applies for radiation consisting of photons (with gγ = 2). Relativistic fermions,
that is, quarks and leptons, assuming that they are stable enough, would also
contribute to the energy density. For a fermion gas, the FD distribution for the
number density analogous to (5.50) is

N (p)dp = p2dp

π2h̄3 {

exp
(

E
/

kT
)

+ 1
}

(gf

2

)

(5.56)

where E2 = p2c2 + m2c4, m is the fermion mass and gf is the number of spin
substates. In the relativistic limit, kT ≫ mc2 and E = pc, the total energy
density, in comparison with (5.48), is given by (see (5.51)):

ρf c2 =
(

7
8

)

π4 (kT )4

(

gf
/

2
)

15π2h̄3c3
(5.57)

Thus, for a mixture of extreme relativistic bosons b and fermions f , the energy
density in (5.48) is found by replacing gγ by a factor g∗ where

g∗ =
∑

gb +
(

7
8

)

∑

gf (5.58)

and the summation is over all types of relativistic particles and antiparticles
which contribute to the energy density of radiation in the early universe.

Here E2=p2+m2, and  
gf = number of spin states 

Using these integrals one can find 
the energy and entropy densities 
for B-E and F-D distributions:
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where k is here the Boltzmann constant. (This should not to be confused
with the curvature parameter, also denoted by k; since the Boltzmann constant
will always occur multiplied by the temperature T .) σ is the Stefan–Boltzmann
constant and gγ = 2 is the number of spin substates of the photon. From these
last two equations we obtain a relation between the temperature of the radiation
and the time of expansion:

kT =

[

(

45h̄3c5
/

16π3Ggγ

)1/4
]

t1/2
= 1.307

MeV
t1/2

(5.49)

where t is in seconds. The corresponding value of the temperature itself is

T = 1.52 × 1010 K
t1/2

.

Since T falls as 1/R, R increases as t1/2 while the temperature falls as 1/t1/2.
Hence, the universe started out as a hot Big Bang.

From (5.49) we may roughly estimate the energy of the radiation today, that is
for t0 ∼ 14 Gyr ∼ 1018 s. It is kT ∼ 1 meV (milli-electron volt), corresponding
to a temperature of a few degrees on the Kelvin scale. This will in fact be an
overestimate since the radiation has cooled more quickly, as 1/t2/3, during the
later, matter-dominated era (see Fig. 5.10).

Observation of microwave molecular absorption bands in distant gas clouds
has made it possible to estimate the temperature of the background radiation
at earlier times, when the wavelength would have been reduced, and the
temperature increased, by the redshift factor (1+z). This dependence on redshift
has been experimentally verified up to values of z ≈ 3.

Let us now compare the observed and expected energy densities of radiation.
The spectrum of black body photons of energy E = pc = hν is given by the
Bose–Einstein (BE) distribution, describing the number of photons per unit
volume in the momentum interval p → p + dp. Including gγ = 2 as the
number of spin substates of the photon, this is

N (p)dp = p2dp

π2h̄3 {

exp
(

E
/

kT
)

− 1
}

(gγ

2

)

(5.50)

In discussing the BE distribution, and later, the Fermi–Dirac (FD) distribution,
it will be useful to note the following integrals, from x = 0 to x = ∞:

BE :
∫

x3dx
(ex − 1)

= π4

15
;

∫

x2dx
(ex − 1)

= 2.404

FD :
∫

x3dx
(ex + 1)

= 7
8

× π4

15
;

∫

x2dx
(ex + 1)

= 3
4

× 2.404 (5.51)

The total energy density integrated over the spectrum is then readily calculated
to have the value ρr in (5.48). The number of photons per unit volume is

Nγ =
(

2.404
π2

) (

kT
h̄c

)3

= 411
(

T
2.725

)3

= 411 cm−3 (5.52)

For the F-D distribution, the result 
for highly relativistic particles      (kT 
>> m) is
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5.10 Particles and radiations in the early universe

The relation (5.49) for the temperature of the early universe as a function of time
applies for radiation consisting of photons (with gγ = 2). Relativistic fermions,
that is, quarks and leptons, assuming that they are stable enough, would also
contribute to the energy density. For a fermion gas, the FD distribution for the
number density analogous to (5.50) is

N (p)dp = p2dp

π2h̄3 {

exp
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E
/

kT
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}
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(5.56)

where E2 = p2c2 + m2c4, m is the fermion mass and gf is the number of spin
substates. In the relativistic limit, kT ≫ mc2 and E = pc, the total energy
density, in comparison with (5.48), is given by (see (5.51)):

ρf c2 =
(

7
8

)

π4 (kT )4

(

gf
/

2
)

15π2h̄3c3
(5.57)

Thus, for a mixture of extreme relativistic bosons b and fermions f , the energy
density in (5.48) is found by replacing gγ by a factor g∗ where

g∗ =
∑

gb +
(

7
8

)

∑

gf (5.58)

and the summation is over all types of relativistic particles and antiparticles
which contribute to the energy density of radiation in the early universe.

For a mixture of highly relativistic 
fermions and bosons, replace gγ by g* 
including bosons and fermions

For the B-E distribution, the result 
for photons (gγ = 2) is

128 The expanding universe

Fig. 5.7 Data on the spectral distribution
of the cosmic microwave radiation obtained
from the COBE satellite experiment. The
experimental points show the results of the
early experiments in 1990. When recent
satellite data and those from balloon -borne
experiments are combined, a very exact fit
to a black body spectrum is obtained with
T = 2.725 ± 0.001 K and kT = 0.235 meV
(milli-electron volts) as shown by the curve
(Fixen et al. 1996). The present experimental
errors are actually less than the thickness of
this curve.
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to R−1. While the number of photons varies as 1/R3, the energy density of
the radiation will vary as 1/R4, as indicated in Table 5.2. The extra factor of
1/R in the energy density, as compared with non-relativistic matter, simply
arises from the redshift, which in fact will apply to any relativistic particles
and not just to photons, provided of course that those particles are distributed
uniformly on the same cosmological scale as the microwave photons. At the
early times we are discussing here, the vacuum energy, which is assumed
to be independent of R, would have been totally negligible and we can just
forget it.

Thus, while the matter density of the universe dominates over radiation today,
in the olden days and at low values of R, radiation must have been dominant.
In that case, the second term on the right-hand side of (5.11) can be neglected
in comparison with the first, varying as 1/R4. Then

Ṙ2 =
(

8πG
3

)

ρrR2

Furthermore, since ρr ∝ R−4,

ρ̇r

ρr
= −4Ṙ

R
= −4

(

8πGρr

3

)1/2

which on integration gives for the energy density

ρrc2 =
(

3c2/

32πG

t2

)

(5.47)

For a photon gas in thermal equilibrium

ρrc2 = 4σT 4

c
= π4 (kT )4

(

gγ

/

2

15π2h̄3c3

)

(5.48)
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been the epoch of ‘last scattering’, if the interstellar gas (mostly hydrogen and
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emitted. Thus the microwave radiation, on its passage through the interstellar
medium to the observer, would then undergo Thomson scattering from electrons
in the plasma. It is, however, a small effect (see Section 8.14 et seq).
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receivers tuned to 7.3 cm wavelength. What fraction of the photons would
have wavelengths in excess of 7.3 cm?

From (5.50) and (5.51) the mean photon energy is π4kT/(15 × 2.404) =
2.701 kT = 6.34 × 10−4 eV. The corresponding wavelength is λ =
hc/hv = 0.195 cm.

At large wavelengths the curly bracket in (5.50) can be approximated by
E/kT if E/kT ≪ 1. The fraction of photons with quantum energies below
ε = E/kT is then easily shown to be F =
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/(2 × 2.404), which for
wavelengths above 7.3 cm is equal to 1.06 × 10−3.
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The relation (5.49) for the temperature of the early universe as a function of time
applies for radiation consisting of photons (with gγ = 2). Relativistic fermions,
that is, quarks and leptons, assuming that they are stable enough, would also
contribute to the energy density. For a fermion gas, the FD distribution for the
number density analogous to (5.50) is
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where E2 = p2c2 + m2c4, m is the fermion mass and gf is the number of spin
substates. In the relativistic limit, kT ≫ mc2 and E = pc, the total energy
density, in comparison with (5.48), is given by (see (5.51)):

ρf c2 =
(

7
8

)

π4 (kT )4

(

gf
/

2
)

15π2h̄3c3
(5.57)

Thus, for a mixture of extreme relativistic bosons b and fermions f , the energy
density in (5.48) is found by replacing gγ by a factor g∗ where

g∗ =
∑

gb +
(

7
8

)

∑

gf (5.58)

and the summation is over all types of relativistic particles and antiparticles
which contribute to the energy density of radiation in the early universe.
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Fig. 5.9 Plot of the quantity g* in (5.58)—
here termed geff —measuring the number of
degrees of freedom, against the temperature
kT (after Kolb and Turner 1990).

the early universe. Since in this era, ρ ∝ R−4, it follows from (5.47) that

H (t) = Ṙ
R

= − ρ̇

4ρ
= 1

(2t)

and from (5.49)

H (t) =
[

4g∗π3G

45h̄3c5

]1/2

(kT )2

=
(

4π3 g∗/

45
)1/2

MPLh̄c2 × (kT )2 (5.59)

= 1.66g∗1/2 (kT )2

MPLh̄c2

where in the second line the Newtonian constant is expressed in terms of the
Planck mass, that is G = h̄c/M 2

PL (see Table 1.5).

Example 5.5 Estimate the time required for the universe to increase its
size by 10% during the radiation era, for values of kT = 100 MeV and
g∗ = 20.

Since H = (1/R) dR/dt, the time required (assuming that H is constant
over a short period) is found on integration to be t = (ln 1.1)/H . From
(5.59), with MPL = 1.22 × 1019 GeV/c2 and kT expressed in GeV:

H (t) = 2.07 × 105g∗1/2
(kT )2 s−1

Substituting for kT and g* we find H = 9.25 × 103 s−1 and t = 10.3 µs.

quark-hadron	

transition



Boltzmann Equation

In the absence of 
interactions (rhs=0) 
n1 falls as a-3 + bosons 

- fermions

Dodelson (3.1)

We will typically be interested in T>> E-µ (where µ is the chemical potential).  In this limit, the exponential 
in the Fermi-Dirac or Bose-Einstein distributions is much larger than the ±1 in the denominator,  so that

and the last line of the Boltzmann equation above simplifies to

The number densities are given by .   For our applications, i’s are



If the reaction rate                is much smaller than the expansion rate (~ H), then the {} on the rhs must 
vanish.  This is called chemical equilibrium in the context of the early universe, nuclear statistical 
equilibrium (NSE) in the context of Big Bang nucleosynthesis, and the Saha equation when discussing 
recombination of electrons and protons to form neutral hydrogen.

The equilibrium number densities are given by

Dodelson



Fe

Dodelson



Deuterium nuclei (2H) were produced by collisions between protons and neutrons, and further 
nuclear collisions led to every neutron grabbing a proton to form the most tightly bound type of light 
nucleus: 4He. This process was complete after about five minutes, when the universe became too 
cold for nuclear reactions to continue. Tiny amounts of deuterium, 3He, 7Li, and 7Be were produced 
as by-products, with the 7Be undergoing beta decay to form 7Li. Almost all of the protons that were 
not incorporated into 4He nuclei remained as free particles, and this is why the universe is close to 
25% 4He and 75% H by mass. The other nuclei are less abundant by several orders of magnitude.





Ken Kawano’s (1992) BBN code is available at 
http://www-thphys.physics.ox.ac.uk/users/SubirSarkar/bbn.html



         Relative 
Height

Deuterium Abundance 
+ Big Bang Nucleosynthesis

WMAP 
Cosmic  

Microwave 
Background

Angular Power Spectrum

Galaxy Cluster in X-rays

Absorption of Quasar Light

5 INDEPENDENT MEASURES 
AGREE: ATOMS ARE ONLY 
4% OF THE COSMIC DENSITY

 & WIGGLES IN GALAXY P(k)



BAO WIGGLES IN GALAXY P(k)
Sound waves that propagate in the opaque early universe imprint a characteristic 
scale in the clustering of matter, providing a “standard ruler” whose length can be 
computed using straightforward physics and parameters that are tightly 
constrained by CMB observations.  Measuring the angle subtended by this scale 
determines a distance to that redshift and constrains the expansion rate.!!
The detection of the acoustic oscillation scale is one of the key accomplishments 
of the SDSS, and even this moderate signal-to-noise measurement substantially 
tightens constraints on cosmological parameters.  Observing the evolution of the 
BAO standard ruler provides one of the best ways to measure whether the dark 
energy parameters changed in the past.

M. White lectures 08



BAO WIGGLES 
IN GALAXY P(k)
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Anderson+13
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SDSS-III  BOSS
Anderson+13

Anderson+13BOSS
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BBN 
Predicted 

vs. 
Measured 

Abundance
s of D, 3He, 
4He, and 7Li 

BBN predictions are 
from Burles, Nollett, 
& Turner 2001

Olive, Steigman, Skillman 1997

Izotov & Thuan 1998

Bania, Rood, Balser 2002

Ryan et al 2000

WMAP       

 7Li IS NOW 
DISCORDANT 
unless stellar 

diffusion 
destroys 7Li

Izotov & Thuan 2004: 
Ωbh2=0.012±0.0025

Olive & Skillman 2004: big uncertainties

D/H is from 
Kirkman, Tytler, 
Suzuki, O’Meara, & 
Lubin 2004, giving 
Ωbh2=0.0214±0.0020

D/H from Ryan 
Cooke+2014, 
which implies 
Ωbh2=0.0220±0.0005 



Kirkman, Tytler, Suzuki, O’Meara, & Lubin 2004

Deuterium absorption at redshift 2.525659 towards Q1243+3047

The detection of Deuterium and the 
modeling of this system seem 
convincing.  This is just a portion of the 
evidence that the Tytler group 
presented in this paper.  They have 
similarly convincing evidence for several 
other Lyman alpha clouds in quasar 
spectra.







Izotov & Thuan 2004

Determination of primordial He4 abundance Yp by linear regression

Y = M(4He)/M(baryons), Primordial Y ≡ Yp = zero intercept 
Note: BBN plus D/H ⇒ Yp = 0.247± 0.001



Phys.Rev. D70 (2004) 063524 

See also “Supergravity with a Gravitino LSP” by Jonathan L. Feng, 
Shufang Su, Fumihiro Takayama Phys.Rev. D70 (2004) 075019 
!
“Gravitino Dark Matter and the Cosmic Lithium Abundances” by 
Sean Bailly, Karsten Jedamzik, Gilbert Moultaka, arXiv:0812.0788

The Li abundance disagreement with BBN  
may indicate new physics



The Li abundance disagreement with BBN  
may be caused by stellar diffusion

Lithium abundances, [Li] ≡ 12+ log(Li/H), versus metallicity !
(on a log scale relative to solar) from (red) S. Ryan et al. 2000, ApJ, 530, L57;  (blue) M. 
Asplund et al.2006, ApJ, 644, 229.  Figure from G. Steigman 2007, ARAA 57,  463.  
Korn et al. 2006 find that both lithium and iron have settled out 
of the atmospheres of these old stars, and they infer for the 
unevolved abundances, [Fe/H] = –2.1 and [Li] = 2.54 ± 0.10, in 
excellent agreement with SBBN.

Lithium abundance in very old stars that formed from 
nearly primordial gas. The amount of 7Li in these "Spite-
plateau" stars (green) is much less than has been inferred 
by combining BBN with measurements of the cosmic 
microwave background made using WMAP (yellow band). 
Our understanding of stellar astrophysics may be at fault. 
Those Spite-plateau stars that have surface temperatures 
between 5700 and 6400 K have uniform abundances of 7Li 
because the shallow convective envelopes of these warm 
stars do not penetrate to depths where the temperature 
exceeds that for 7Li to be destroyed (Tdestruct =2.5 × 106 K). 
The envelopes of cooler stars (data points towards the left of 
the graph) do extend to such depths, so their surfaces have 
lost 7Li to nuclear reactions. If the warm stars gradually 
circulate 7Li from the convective envelope to depths where 
T > Tdestruct, then their surfaces may also slowly lose their 
7Li.  From http://physicsworld.com/cws/article/print/30680

http://physicsworld.com/cws/article/print/30680


The most stringent constraint on a mixing model is that it must maintain the observed tight 
bunching of plateau stars that have the same average 7Li abundance.  In a series of papers 
that was published between 2002 and 2004, Olivier Richard and collaborators at the 
Université de Montréal in Canada proposed such a mixing model that has since gained 
observational support. It suggests that all nuclei heavier than hydrogen settle very slowly out 
of the convective envelope under the action of gravity. In particular, the model makes specific 
predictions for settling as a star evolves, which are revealed as variations of surface 
composition as a function of mass in stars that formed at the same time.

By spring 2006, Andreas Korn of Uppsala University 
in Sweden and colleagues had used the European 
Southern Observatory's Very Large Telescope (VLT) 
in Chile to study 18 chemically primitive stars in a 
distant globular cluster called NGC 6397 that were 
known to have the same age and initial composition. 
From this Korn et al. showed that the iron and lithium 
abundances in these stars both varied according to 
stellar mass as predicted by Richard's model. In fact, 
the model indicated that the observed stars started 
out with a 7Li abundance that agrees with the WMAP 
data. Corroboration of these results is vital because  
if the result stands up to scrutiny based on a wide 
range of data, then we have solved the lithium 
problem.Korn et al. The Messenger 125 (Sept 2006); 

Korn et al. 2006, Nature 442, 657. 



A Korn et al.



!
Another way to determine the amount of 7Li destroyed in stars is to observe the element's 
other, less stable, isotope: 6Li. 6Li is not made in detectable quantities by BBN but instead 
comes from spallation: collisions between nuclei in cosmic rays and in the interstellar gas. 
Since 6Li is even more easily destroyed than 7Li, detecting it allows us to place limits on the 
destruction of 7Li. 
!
In 2006 Martin Asplund and co-workers at the Mount Stromlo Observatory in Australia made 
extensive observations of 6Li in plateau stars using the VLT. In each of the nine stars where 
they found 6Li, roughly 5% of the lithium consisted of this isotope – which was larger than 
expected although at the limit of what was detectable with the equipment. This has huge 
implications not only for BBN but also for the history of cosmic rays in the galaxy and for 
stellar astrophysics. For example, the production of such large amounts of 6Li must have 
required an enormous flux of cosmic rays early in the history of our galaxy, possibly more 
than could have been provided by known acceleration mechanisms. Moreover, if the plateau 
stars have truly destroyed enough 7Li to bring the WMAP prediction of the mean baryon 
density into agreement with that obtained with the observed Spite plateau, the greater fragility 
of 6Li implies that the stars initially contained 6Li in quantities comparable to the observed 7Li 
plateau. 
!
All of these facts make the 6Li observations an uncomfortable fit for BBN, stellar physics and 
models of cosmic-ray nucleosynthesis – particularly since the production of large amounts of 
6Li via cosmic rays has to be accompanied by a similar production of 7Li. Although 6Li can be 
produced in some exotic particle-physics scenarios, it is vital that we independently confirm 
Asplund's results. Indeed, the hunt for primordial lithium (of both isotopes) is currently 
ongoing at the VLT, as well as at the Keck Observatory and the Japanese Subaru Telescope, 
although such observations are right at the limit of what can be achieved. 





Recent references on BBN and Lithium



Dodelson, Modern Cosmology, p. 72

BBN is a Prototype for Hydrogen Recombination and DM Annihilation

Recombination

thermal  
equilibrium



Dodelson, Modern Cosmology, p. 76

GeV/c2

DM Annihilation

thermal  
equilibrium



(Re)combination: e- + p à H

As long as e- + p ó H remains in equilibrium, the condition

=  0     with 1 = e-, 2 = p, 3 = H, ensures that 

Neutrality ensures np = ne.  Defining the free electron fraction

the equation above becomes , which

is known as the Saha equation.  When T ~ ε, the rhs ~ 1015, so Xe is very close to 1 and very little recombination has yet occurred.  As T drops, the 
free electron fraction also drops, and as it approaches 0 equilibrium cannot be maintained.  To follow the freezeout of the electron fraction, it is 
necessary to use the Boltzmann equation

ε = 13.6 eV



Dodelson, Modern Cosmology, p. 72

photon decoupling

out of equilibrium

freezeout electron fraction

thermal  
equilibrium



Dodelson, Modern Cosmology, p. 76

Dark Matter Annihilation

The weak shall inherit the 
universe!

The weaker the cross 
section,  
the earlier  
freezeout occurs, and 
the larger  
the resulting  
dark matter density.

thermal  
equilibrium



Dark Matter Annihilation
The abundance today of dark matter particles X of the WIMP variety is determined by their 
survival of annihilation in the early universe.   Supersymmetric (“susy”) neutralinos can 
annihilate with each other (and sometimes with other particles: “co-annihilation”). !
Dark matter annihilation follows the same pattern as the previous discussions: initially the 
abundance of dark matter particles X is given by the equilibrium Boltzmann exponential 
exp(-mX/T), but as they start to disappear they have trouble finding each other and 
eventually their number density freezes out.  The freezeout process can be followed using 
the Boltzmann equation, as discussed in Kolb and Turner, Dodelson, Mukhanov, and other 
textbooks.  For a detailed discussion of Susy WIMPs, see the review article by Jungman, 
Kamionkowski, and Griest (1996).  The result is that the abundance today of WIMPs X is 
given in most cases by (Dodelson’s Eqs. 3.59-60)

Here xf ≈ 10 is the ratio of mX to the freezeout temperature Tf, and g*(mX) ≈ 100 is the density 
of states factor in the expression for the energy density of the universe when the temperature 
equals mX

The sum is over relativistic species i (see the graph of g(T) on the next slide).  Note that more 
X’s survive, the weaker the cross section σ.  For Susy WIMPs the natural values are σ ~ 10-39 
cm2, so ΩX ≈ 1 naturally.



This 2x increase corresponds to minimal 
supersymmetry with a  

~1 TeV threshold



Supersymmetry is the basis of most attempts, such as 
superstring theory, to go beyond the current “Standard Model” 
of particle physics.  Heinz Pagels and Joel Primack pointed 
out in a 1982 paper that the lightest supersymmetric partner 
particle is stable because of R-parity, and is thus a good 
candidate for the dark matter particles – weakly interacting 
massive particles (WIMPs). 
 
Michael Dine and others pointed out that the axion, a particle 
needed to save the strong interactions from violating CP 
symmetry, could also be the dark matter particle.  Searches 
for both are underway.



Supersymmetric WIMPs

When the British physicist Paul Dirac first combined Special Relativity with quantum 
mechanics, he found that this predicted that for every ordinary particle like the electron, there 
must be another particle with the opposite electric charge – the anti-electron (positron).  
Similarly, corresponding to the proton there must be an anti-proton.  Supersymmetry appears 
to be required to combine General Relativity (our modern theory of space, time, and gravity) 
with the other forces of nature (the electromagnetic, weak, and strong interactions).  The 
consequence is another doubling of the number of particles, since supersymmetry predicts that 
for every particle that we now know, including the antiparticles, there must be another, thus far 
undiscovered particle with the same electric charge but with spin differing by half a unit.  

                                             
 
 
 
 
 
 
 

                                                                          



after doubling

When the British physicist Paul Dirac first combined Special Relativity with quantum 
mechanics, he found that this predicted that for every ordinary particle like the electron, there 
must be another particle with the opposite electric charge – the anti-electron (positron).  
Similarly, corresponding to the proton there must be an anti-proton.  Supersymmetry appears 
to be required to combine General Relativity (our modern theory of space, time, and gravity) 
with the other forces of nature (the electromagnetic, weak, and strong interactions).  The 
consequence is another doubling of the number of particles, since supersymmetry predicts that 
for every particle that we now know, including the antiparticles, there must be another, thus far 
undiscovered particle with the same electric charge but with spin differing by half a unit.  

Supersymmetric WIMPs





Supersymmetric WIMPs, continued

Spin is a fundamental property of elementary particles.  Matter 
particles like electrons and quarks (protons and neutrons are each 
made up of three quarks) have spin ½, while force particles like 
photons, W,Z, and gluons have spin 1.  The supersymmetric partners 
of electrons and quarks are called selectrons and squarks, and they 
have spin 0.  The supersymmetric partners of the force particles are 
called the photino, Winos, Zino, and gluinos, and they have spin ½, 
so they might be matter particles.  The lightest of these particles 
might be the photino.  Whichever is lightest should be stable, so it is 
a natural candidate to be the dark matter WIMP.  Supersymmetry 
does not predict its mass, but it must be more than 50 times as 
massive as the proton since it has not yet been produced at 
accelerators.  But it will be produced soon at the LHC, if it exists 
and its mass is not above ~1 TeV!
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(CMS results are similar)

(From PDG Supersymmetry Experiment - Sept 2013)



The only experimental evidence 
for supersymmetry is that running 
of coupling constants in the 
Standard Model (dashed lines in 
figure) does not lead to Grand 
Unification of the weak,  
electromagnetic, and strong 
interactions, while with 
supersymmetry the three 
couplings all do come together at 
a scale just above 1016 GeV. 
The figure assumes the Minimal 
Supersymmetric Standard Model 
(MSSM) with sparticle masses 
between 250 GeV and 1 TeV. !
Other arguments for SUSY 
include: helps unification of 
gravity since it controls the 
vacuum energy and moderates 
loop divergences (fermion and 
boson loop divergences cancel), 
solves the hierarchy problem, and 
naturally leads to DM with Ω ~ 1.

SUPERSYMMETRY

figs from S. P. Martin, A 
Supersymmetry Primer,  
arXiv:hep-ph/9709356v5 



Experiments are Underway for Detection of WIMPs

Primack, Seckel, & Sadoulet (1987)



and also AXIONs 

!
 

The diagram at right shows the 
layout of the axion search 

experiment now underway at the 
Lawrence Livermore National 
Laboratory.  Axions would be 

detected as extra photons in the 
Microwave Cavity.



Joel Primack, Beam Line, Fall 2001



WHAT IS THE DARK MATTER?
Prospects for DIRECT and INDIRECT detection of WIMPs 
are improving. 

 With many ongoing and upcoming experiments  
Production at Large Hadron Collider 
Better CMB data from PLANCK 
Direct Detection 

Spin Independent - CDMS-II, XENON100, LUX 
Spin Dependent - COUPP, PICASSO 

Indirect detection via 
Fermi and larger ACTs 
PAMELA and AMS 

-- there could well be a big discovery in the next few 
years!  



With all 
these 

upcoming  
experiments, 

the next 
few years 

will be very 
exciting!

LHC

Indirect:

Fermi (GLAST) launched  
June 11, 2008

Astronomical:

Planck & Herschel 
launched spring 2009



Supersymmetric 
WIMP (δ) 

annihilation  
is related by 

crossing 
to 

WIMP  
Direct Detection  

by 
Elastic Scattering

Primack, Seckel, & Sadoulet 
Ann Rev Nucl Part Sci 1988













Direct Detection Methods

Direct Detection Methods

●   XENON100

●   LUX

●   XENON 1000

●   PANDA X



Schematic of an individual detector within CDMS. A WIMP scattering from a germanium 
nucleus produces a low-energy nuclear recoil, resulting in both ionization and athermal 
phonons. Charge carriers drift out to one face of the detector under the influence of a small 
electric field, and are detected with a sensitive amplifer [signal shown as Q(t)]. Phonons 
reaching the other face break Cooper pairs in a thin superconducting aluminum layer; the 
resulting quasiparticles heat a transition-edge sensor (TES) bonded to the aluminum layer, 
causing a measurable momentary change in its resistance R(t). In reality, the readout 
elements on both sides are highly segmented, and the relative timing of the ionization and 
phonon signals recorded, to provide good event localization.

Figure from: Perspective by Karl van Bibber 
http://physics.aps.org/viewpoint-for/10.1103/
PhysRevLett.102.011301  on 
Z. Ahmed et al. CDMS Collaboration, “Search for 
Weakly Interacting Massive Particles with the 
First Five-Tower Data from the Cryogenic Dark 
Matter Search at the Soudan Underground 
Laboratory,” Phys. Rev. Lett. 102, 011301 (2009) 
– Published January 05, 2009

 CDMS - Cryogenic DM Search 
Berkeley-Stanford-led experiment  

has been at the forefront

http://physics.aps.org/viewpoint-for/10.1103/PhysRevLett.102.011301














x103 in 	

5 years!

XENON 1000 ’17  "





www.luxdarkmatter.org        

In DUSEL 
(Deep Underground Science 
and Engineering Laboratory) 

Homestake Mine 
Lead, South Dakota, USA 

April 2012 - operation Sept 2012

http://www.luxdarkmatter.org


14 LUX Experiment / Rick Gaitskell / Brown University 

LUX in the Davis Laboratory at the Homestake Mine in South Dakota (4850L) 

!!Construction/excavation design completed 

!!New 300’ access/safety tunnel being excavated 

!!Shared with Majorana facility 

!! Two story, dedicated LUX 55’ x 30’ x 32’ facility 

 being built now 

1964 

Rendering by J. Thomson 

Lab 

Mine shaft 

Majorana 

LUX 

Mechanical 
& Electrical  
Services 

200 m 

!!Beneficial 

occupancy: 

November/

December 2010 

April 2012











XENON100 is a collaboration including Columbia and Rice universities, University of 
Zurich, University of Coimbra, Gran Sasso National Laboratory, and UCLA.
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Spin Dependent  vs.  Spin Indenepdent

SI SI SISI

SD SD



Spin Dependent  vs.  Spin Indenepdent

SI SI

SD SD

LUX LUX
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By ~2015 Direct Detection could probe most of the CMSSM 
(constrained minimal supersymmetric standard model) and 
mSUGRA (minimal supergravity) WIMP parameter space!  If LUX 
and other large noble gas detectors succeed, they will leapfrog over 
CDMS and have great discovery potential during 2012-15.

LUX

10-8 pb = 10-44 cm2        (barn=10-24 cm2,  pb = 10-12 b = 10-36 cm2)

pb	


LUX



By ~2015 Direct Detection could probe most of the CMSSM 
(constrained minimal supersymmetric standard model) and 
mSUGRA (minimal supergravity) WIMP parameter space!

-

LUX (2010)

!
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-6	

-7	

-8	

-9	

-10

XENON100 April 2011



Search for Neutralino Dark Matter
Direct Method (Laboratory Experiments)

Crystal
Energy 
deposition

Recoil energy 
(few keV) is  
measured by 
• Ionisation 
• Scintillation 
• Cryogenic

Galactic 
dark matter 
particle 
(e.g.neutralino)

Indirect Method (Neutrino Telescopes)

  Sun

Galactic dark 
matter 
particles 
are accreted 

Annihilation
High-energy     
neutrinos 
(GeV-TeV) 
can be measured






