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Small-Scale Challenges to ΛCDM
Many more small halos than observed small galaxies"
" 1) Field galaxies"
" 2) Satellite galaxies

Cusp-Core issue at centers of small galaxies

“Too Big to Fail” problem for satellite galaxies

Evidence that the large numbers of small subhalos 
predicted by ΛCDM actually exist:"
" 1) Gaps in cold stellar streams in the Milky Way"
" 2) Gravitational lensing “flux anomalies”

Evidence Supporting ΛCDM



Velocity "
Function

observed VF"
(HIPASS + 

SDSS)

theoretical 
VF with AC

theoretical VF 
without AC

Discrepancy due to"
incomplete observations 

or ΛCDM failure?

Theory & Observations	

Agree Pretty Well

Bolshoi"
Sub-Halo"
Abundance"
Matching

Trujillo-Gomez, 

Klypin, Primack, 

& Romanowsky 

ApJ 2011



Klypin, Karachentsev, Nasonova 2012

Total sample:   813 galaxies	

Within 10 Mpc:    686	

       MB<-13  N=304	

       MB<-10  N=611	
!
80-90% are spirals or dIrr (T>0)	
!
Errors of distances are 8-10%	
!
80% with D<10Mpc have HI linewidth	
!
Vrot = 	

  150x10^(-(20.5+MB)/8.5)km/s

Local Volume: D <10 Mpc

Distribution of observed line-widths     
(similar after correction for inclination)

No disagreement 
for V > 60 km/s

A factor of two disagreement	

 at  V = 40 km/s

ΛCDM

Presented at KITP Conf “First Light and Faintest Dwarfs” Feb 2012 and UCSC Galaxy Workshop Aug 2012

Deeper Local Survey -- better  
agreement with ΛCDM but still more 
halos than galaxies below 50 km/s



We present new measurements of the abundance of galaxies with a given circular velocity in the Local Volume: a region centered on 
the Milky Way Galaxy and extending to distance ∼10 Mpc. The sample of ∼ 800 mostly dwarf galaxies provides a unique opportunity 
to study the abundance and properties of galaxies down to absolute magnitudes MB ≈ −10, and virial masses Mvir = 109M⊙. We find 
that the standard ΛCDM model gives remarkably accurate estimates for the velocity function of galaxies with circular velocities V ≥ 
60 km s−1 and corresponding virial masses Mvir ≥ 3 × 1010M⊙, but it badly fails by over-predicting ∼ 5 times the abundance of large 
dwarfs with velocities V = 30 − 50 km s−1. The Warm Dark Matter (WDM) models cannot explain the data either, regardless of mass of 
WDM particle. Though reminiscent to the known overabundance of satellites problem, the overabundance of field galaxies is a much 
more difficult problem. For the standard ΛCDM model to survive, in the 10 Mpc radius of the Milky Way there should be 1000 dark 
galaxies with virial mass Mvir ≈ 1010M⊙, extremely low surface brightness and no detectable HI gas. So far none of this type of 
galaxies have been discovered.

PREDICTED

OBSERVED

PREDICTED
A factor of two disagreement 	


at  σ = 40 km/s







Challenges: Cusp-Core, Too Big to Fail, Satellite Galaxies 
Flores & Primack94 and Moore94 first pointed out that dark matter simulations have 
density ρ(r) ~ rα at small r with α ≈ −1 (“cusp”) while observed small spiral galaxies and 
clusters appeared to have α ≈ 0 (“core”). 
Governato+10,13 and the Nature review by 
Pontzen & Governato14 show that in high-
resolution galaxy simulations, baryonic 
physics softens the central DM cusp to a 
core as long as enough stars form, M* ≥ 107 
M⦿.  This happens because of repeated 
episodes when the baryons cool and slowly fall 
into the galaxy center, and are then expelled 
rapidly (in less than a dynamical time) by 
energy released by stars and supernovae.

matter halo through sufficiently rapid galactic fountains or outflows90,
but few simulations of luminous galaxies reach the resolution necessary
to study the formation of cores. Some high-resolution simulations of
Milky Way analogues have been reported to form dark matter cores on
scales of a kiloparsec or larger94,95. On the other hand it has been
reported that cores shrink with respect to the halo scale radius96 for total
masses exceeding 1011M[ (the mass of the Milky Way is about
1012M[). These statements may be reconcilable; further higher-resolution
work is required for progress in our understanding. As masses continue
to increase to the cluster scale (see the ‘High-mass galaxies’ section
above), further processes become interesting. For instance, numerical
work has shown that accretion onto the central black hole, if proceeding
in repeated, highly energetic bursts, replicates the effect of supernovae on
dwarf galaxies97.

Modifying dark matter
We have established that there are many processes that can modify the
dark matter distribution in the centre of galaxies, even if the dark matter
is cold and collisionless (that is, interacts only through gravity)—a ‘min-
imal’ scenario motivated by supersymmetric weakly interacting massive
particles. However, the observational controversies detailed in the
‘Evidence for a cusp–core discrepancy’ section above have prompted
considerable interest in non-minimal dark matter models. By changing
the properties of the dark matter candidate particle, the predictions for
the distribution within halos are altered; potentially, therefore, galaxies
and galaxy clusters become an important probe of particle physics.

For instance, the warm dark matter models (WDM) invoke a candidate
particle with non-negligible residual streaming motions after decoupling

(such as a sterile neutrino), suppressing the formation of small-scale structure98

and delaying the collapse of dwarf-sized halos and their associated star
formation to slightly later epochs99. However, these models do not pro-
duce cores on observationally relevant scales100 and are currently strongly
constrained by the clustering of the neutral gas in the cosmic web101.

Another major class, self-interacting dark matter (SIDM)102, refers
to particle physics scenarios with significant ‘dark sector’ interactions.
SIDM behaves more like a collisional fluid, preventing the central high-
density cusp from forming and making the central regions more spher-
ical103. Unlike in the WDM case, the number density of dark matter
halos remains relatively unchanged even at the smallest scales104. The
diversity of theoretical models, however, gives significant freedom in the
choice of the cross-section and its possible dependence on particle velo-
city105. This makes it difficult to establish a single baseline SIDM scenario.

The majority of work on non-minimal dark matter falls into the
WDM or SIDM categories. However, modifications to the dark matter
profile can also be achieved through other processes. For instance, par-
ticle–particle annihilations106 can reduce central densities directly, pro-
vided the physics is tuned to prevent rapid annihilation in the early
universe. Alternatively, if dark matter decays over long timescales to
slightly lighter daughter particles, the lost mass provides a source of
kinetic energy for expanding the centre of dark matter halos107. Another
relevant possibility is that the dark matter is not formed from particles
at all. In the case of an ultralight scalar field, for instance, the Compton
wavelength becomes larger than the supposed interparticle separation;
accordingly the field behaves as a Bose–Einstein condensate108 rather than
as individual particles, preventing the central cusps from forming.

BOX 2

How to generate outflows
Outflows are probably generated by young stars inside galaxies.
Computer simulations of the formation of galaxies would therefore
ideally resolve cosmological large-scale structure (over tens of
megaparsecs) down to the scale of individual stars (at least 1014 times
smaller). This is, and seems certain to remain, unfeasible. The line
of attack is instead to mimic the effects of stars without actually
resolving them individually. Because star formation is the conclusion
of runaway gas cooling and collapse, a typical computational
approach is to form stars when gas satisfies certain averaged
conditions, and in particular when it reaches a threshold density. As
resolution slowly improves in simulations, smaller regions and larger
densities can be self-consistently resolved89. Until the mid-2000s, a
typical threshold density was set at 0.1mH cm23, where mH is the mass
of a hydrogen atom. This corresponds to the mean density of galactic
neutral atomic gas, so stars form throughout the disk of a simulated
galaxy. Energy output from stars in the diffuse medium results in a
gentle heating of the entire galaxy, slowing the process of further star
formation. However, if one can achieve sufficient resolution (and
implement the more complicated cooling physics required16,38,110) to
push to 10mH cm23 or 100mH cm23, then a qualitatively different
behaviour results. This is the density that corresponds to molecular
cloud formation in our Galaxy, known to be the precursor of star
formation. Instead of forming stars in a diffuse way through the entire
disk, now stars form efficiently in small, isolated regions23,44, which is
considerably more realistic. When energy from the resulting stellar
populations is dumped into the gas, the cloud heats to much higher
temperatures than diffuse star formation achieves. It is likely that
intense radiation pressure is also a significant factor34. In any case, the
gas is overpressurizedby a factor of at least a hundred compared to its
surroundings and expands rapidly. The combination of high initial
density and explosive decompression is suitable for launching
galactic-scaleoutflows; it is alsowhatallowsanefficient couplingof the
available energy to dark matter (Box 1).
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Figure 3 | Dark matter cores are only generated in sufficiently bright
galaxies. Here we have plotted the power-law index a of the dark matter
density (as in Fig. 2, but here measured at radius 500 parsecs) against the mass
of stars formed, M* (updated from ref. 90). The expected slopes from pure dark
matter calculations are approximated by the solid line (using the scaling
relations from ref. 111), whereas hydrodynamic simulations at high mass have
shallower slopes, indicated by the crosses. Large crosses show halos resolved
with more than 500,000 simulated dark matter particles. Smaller crosses have
fewer particles, but always more than 50,000. When less than about 106.5M[ of
gas has formed into stars, there is insufficient energy available to flatten the
cusp93. The box symbols show data from the THINGS survey50 of field dwarf
galaxies. Additional observational data at stellar masses lower than 106M[
would be highly valuable. This figure is updated from figure 1 of ref. 90.
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matter halo through sufficiently rapid galactic fountains or outflows90,
but few simulations of luminous galaxies reach the resolution necessary
to study the formation of cores. Some high-resolution simulations of
Milky Way analogues have been reported to form dark matter cores on
scales of a kiloparsec or larger94,95. On the other hand it has been
reported that cores shrink with respect to the halo scale radius96 for total
masses exceeding 1011M[ (the mass of the Milky Way is about
1012M[). These statements may be reconcilable; further higher-resolution
work is required for progress in our understanding. As masses continue
to increase to the cluster scale (see the ‘High-mass galaxies’ section
above), further processes become interesting. For instance, numerical
work has shown that accretion onto the central black hole, if proceeding
in repeated, highly energetic bursts, replicates the effect of supernovae on
dwarf galaxies97.

Modifying dark matter
We have established that there are many processes that can modify the
dark matter distribution in the centre of galaxies, even if the dark matter
is cold and collisionless (that is, interacts only through gravity)—a ‘min-
imal’ scenario motivated by supersymmetric weakly interacting massive
particles. However, the observational controversies detailed in the
‘Evidence for a cusp–core discrepancy’ section above have prompted
considerable interest in non-minimal dark matter models. By changing
the properties of the dark matter candidate particle, the predictions for
the distribution within halos are altered; potentially, therefore, galaxies
and galaxy clusters become an important probe of particle physics.

For instance, the warm dark matter models (WDM) invoke a candidate
particle with non-negligible residual streaming motions after decoupling

(such as a sterile neutrino), suppressing the formation of small-scale structure98

and delaying the collapse of dwarf-sized halos and their associated star
formation to slightly later epochs99. However, these models do not pro-
duce cores on observationally relevant scales100 and are currently strongly
constrained by the clustering of the neutral gas in the cosmic web101.

Another major class, self-interacting dark matter (SIDM)102, refers
to particle physics scenarios with significant ‘dark sector’ interactions.
SIDM behaves more like a collisional fluid, preventing the central high-
density cusp from forming and making the central regions more spher-
ical103. Unlike in the WDM case, the number density of dark matter
halos remains relatively unchanged even at the smallest scales104. The
diversity of theoretical models, however, gives significant freedom in the
choice of the cross-section and its possible dependence on particle velo-
city105. This makes it difficult to establish a single baseline SIDM scenario.

The majority of work on non-minimal dark matter falls into the
WDM or SIDM categories. However, modifications to the dark matter
profile can also be achieved through other processes. For instance, par-
ticle–particle annihilations106 can reduce central densities directly, pro-
vided the physics is tuned to prevent rapid annihilation in the early
universe. Alternatively, if dark matter decays over long timescales to
slightly lighter daughter particles, the lost mass provides a source of
kinetic energy for expanding the centre of dark matter halos107. Another
relevant possibility is that the dark matter is not formed from particles
at all. In the case of an ultralight scalar field, for instance, the Compton
wavelength becomes larger than the supposed interparticle separation;
accordingly the field behaves as a Bose–Einstein condensate108 rather than
as individual particles, preventing the central cusps from forming.

BOX 2

How to generate outflows
Outflows are probably generated by young stars inside galaxies.
Computer simulations of the formation of galaxies would therefore
ideally resolve cosmological large-scale structure (over tens of
megaparsecs) down to the scale of individual stars (at least 1014 times
smaller). This is, and seems certain to remain, unfeasible. The line
of attack is instead to mimic the effects of stars without actually
resolving them individually. Because star formation is the conclusion
of runaway gas cooling and collapse, a typical computational
approach is to form stars when gas satisfies certain averaged
conditions, and in particular when it reaches a threshold density. As
resolution slowly improves in simulations, smaller regions and larger
densities can be self-consistently resolved89. Until the mid-2000s, a
typical threshold density was set at 0.1mH cm23, where mH is the mass
of a hydrogen atom. This corresponds to the mean density of galactic
neutral atomic gas, so stars form throughout the disk of a simulated
galaxy. Energy output from stars in the diffuse medium results in a
gentle heating of the entire galaxy, slowing the process of further star
formation. However, if one can achieve sufficient resolution (and
implement the more complicated cooling physics required16,38,110) to
push to 10mH cm23 or 100mH cm23, then a qualitatively different
behaviour results. This is the density that corresponds to molecular
cloud formation in our Galaxy, known to be the precursor of star
formation. Instead of forming stars in a diffuse way through the entire
disk, now stars form efficiently in small, isolated regions23,44, which is
considerably more realistic. When energy from the resulting stellar
populations is dumped into the gas, the cloud heats to much higher
temperatures than diffuse star formation achieves. It is likely that
intense radiation pressure is also a significant factor34. In any case, the
gas is overpressurizedby a factor of at least a hundred compared to its
surroundings and expands rapidly. The combination of high initial
density and explosive decompression is suitable for launching
galactic-scaleoutflows; it is alsowhatallowsanefficient couplingof the
available energy to dark matter (Box 1).
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Figure 3 | Dark matter cores are only generated in sufficiently bright
galaxies. Here we have plotted the power-law index a of the dark matter
density (as in Fig. 2, but here measured at radius 500 parsecs) against the mass
of stars formed, M* (updated from ref. 90). The expected slopes from pure dark
matter calculations are approximated by the solid line (using the scaling
relations from ref. 111), whereas hydrodynamic simulations at high mass have
shallower slopes, indicated by the crosses. Large crosses show halos resolved
with more than 500,000 simulated dark matter particles. Smaller crosses have
fewer particles, but always more than 50,000. When less than about 106.5M[ of
gas has formed into stars, there is insufficient energy available to flatten the
cusp93. The box symbols show data from the THINGS survey50 of field dwarf
galaxies. Additional observational data at stellar masses lower than 106M[
would be highly valuable. This figure is updated from figure 1 of ref. 90.
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matter halo through sufficiently rapid galactic fountains or outflows90,
but few simulations of luminous galaxies reach the resolution necessary
to study the formation of cores. Some high-resolution simulations of
Milky Way analogues have been reported to form dark matter cores on
scales of a kiloparsec or larger94,95. On the other hand it has been
reported that cores shrink with respect to the halo scale radius96 for total
masses exceeding 1011M[ (the mass of the Milky Way is about
1012M[). These statements may be reconcilable; further higher-resolution
work is required for progress in our understanding. As masses continue
to increase to the cluster scale (see the ‘High-mass galaxies’ section
above), further processes become interesting. For instance, numerical
work has shown that accretion onto the central black hole, if proceeding
in repeated, highly energetic bursts, replicates the effect of supernovae on
dwarf galaxies97.

Modifying dark matter
We have established that there are many processes that can modify the
dark matter distribution in the centre of galaxies, even if the dark matter
is cold and collisionless (that is, interacts only through gravity)—a ‘min-
imal’ scenario motivated by supersymmetric weakly interacting massive
particles. However, the observational controversies detailed in the
‘Evidence for a cusp–core discrepancy’ section above have prompted
considerable interest in non-minimal dark matter models. By changing
the properties of the dark matter candidate particle, the predictions for
the distribution within halos are altered; potentially, therefore, galaxies
and galaxy clusters become an important probe of particle physics.

For instance, the warm dark matter models (WDM) invoke a candidate
particle with non-negligible residual streaming motions after decoupling

(such as a sterile neutrino), suppressing the formation of small-scale structure98

and delaying the collapse of dwarf-sized halos and their associated star
formation to slightly later epochs99. However, these models do not pro-
duce cores on observationally relevant scales100 and are currently strongly
constrained by the clustering of the neutral gas in the cosmic web101.

Another major class, self-interacting dark matter (SIDM)102, refers
to particle physics scenarios with significant ‘dark sector’ interactions.
SIDM behaves more like a collisional fluid, preventing the central high-
density cusp from forming and making the central regions more spher-
ical103. Unlike in the WDM case, the number density of dark matter
halos remains relatively unchanged even at the smallest scales104. The
diversity of theoretical models, however, gives significant freedom in the
choice of the cross-section and its possible dependence on particle velo-
city105. This makes it difficult to establish a single baseline SIDM scenario.

The majority of work on non-minimal dark matter falls into the
WDM or SIDM categories. However, modifications to the dark matter
profile can also be achieved through other processes. For instance, par-
ticle–particle annihilations106 can reduce central densities directly, pro-
vided the physics is tuned to prevent rapid annihilation in the early
universe. Alternatively, if dark matter decays over long timescales to
slightly lighter daughter particles, the lost mass provides a source of
kinetic energy for expanding the centre of dark matter halos107. Another
relevant possibility is that the dark matter is not formed from particles
at all. In the case of an ultralight scalar field, for instance, the Compton
wavelength becomes larger than the supposed interparticle separation;
accordingly the field behaves as a Bose–Einstein condensate108 rather than
as individual particles, preventing the central cusps from forming.

BOX 2

How to generate outflows
Outflows are probably generated by young stars inside galaxies.
Computer simulations of the formation of galaxies would therefore
ideally resolve cosmological large-scale structure (over tens of
megaparsecs) down to the scale of individual stars (at least 1014 times
smaller). This is, and seems certain to remain, unfeasible. The line
of attack is instead to mimic the effects of stars without actually
resolving them individually. Because star formation is the conclusion
of runaway gas cooling and collapse, a typical computational
approach is to form stars when gas satisfies certain averaged
conditions, and in particular when it reaches a threshold density. As
resolution slowly improves in simulations, smaller regions and larger
densities can be self-consistently resolved89. Until the mid-2000s, a
typical threshold density was set at 0.1mH cm23, where mH is the mass
of a hydrogen atom. This corresponds to the mean density of galactic
neutral atomic gas, so stars form throughout the disk of a simulated
galaxy. Energy output from stars in the diffuse medium results in a
gentle heating of the entire galaxy, slowing the process of further star
formation. However, if one can achieve sufficient resolution (and
implement the more complicated cooling physics required16,38,110) to
push to 10mH cm23 or 100mH cm23, then a qualitatively different
behaviour results. This is the density that corresponds to molecular
cloud formation in our Galaxy, known to be the precursor of star
formation. Instead of forming stars in a diffuse way through the entire
disk, now stars form efficiently in small, isolated regions23,44, which is
considerably more realistic. When energy from the resulting stellar
populations is dumped into the gas, the cloud heats to much higher
temperatures than diffuse star formation achieves. It is likely that
intense radiation pressure is also a significant factor34. In any case, the
gas is overpressurizedby a factor of at least a hundred compared to its
surroundings and expands rapidly. The combination of high initial
density and explosive decompression is suitable for launching
galactic-scaleoutflows; it is alsowhatallowsanefficient couplingof the
available energy to dark matter (Box 1).
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Figure 3 | Dark matter cores are only generated in sufficiently bright
galaxies. Here we have plotted the power-law index a of the dark matter
density (as in Fig. 2, but here measured at radius 500 parsecs) against the mass
of stars formed, M* (updated from ref. 90). The expected slopes from pure dark
matter calculations are approximated by the solid line (using the scaling
relations from ref. 111), whereas hydrodynamic simulations at high mass have
shallower slopes, indicated by the crosses. Large crosses show halos resolved
with more than 500,000 simulated dark matter particles. Smaller crosses have
fewer particles, but always more than 50,000. When less than about 106.5M[ of
gas has formed into stars, there is insufficient energy available to flatten the
cusp93. The box symbols show data from the THINGS survey50 of field dwarf
galaxies. Additional observational data at stellar masses lower than 106M[
would be highly valuable. This figure is updated from figure 1 of ref. 90.
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Pontzen & Governato14

Observers (e.g., Walker & Peñarrubia11, 
Amorisco & Evans12) had agreed that the larger 
dwarf spheroidal Milky Way satellite galaxies 
such as Fornax (L ≈ 1.7x107 L⦿) have cores, but 
recent papers (e.g., Breddels & Helmi13 A&A, 
Jardel & Gebhardt13, Richardson & Fairbairn14) 
have questioned this.  Thus the cusp-core 
question is now observational and 
theoretical.  Adams, Simon+14 find α ≈ - 0.5 for 
dwarf spirals, in agreement with recent high-
resolution simulations with baryons. 

NFW



Challenges: Cusp-Core, Too Big to Fail, Satellite Galaxies 
In addition to the Governato group’s papers on this (including Zolotov+12, Brooks+13) there are 
several other important recent papers (e.g., Teyssier+13, Arraki+14, Trujillo-Gomez+14) arguing 
that baryonic effects convert the DM cusp to a core.  The highest-resolution simulation yet of 
a dwarf spiral was described by Jose Onorbe in his talk at the Near Field-Deep Field 
Connections conference at UC Irvine Feb 12-14.  The central star formation converted the 
central cusp to a core, reducing the rotation velocity.

Star Formation Rate: Dwarf Irregular

SF regulated by
feedback:

� Bursty on small
timescales
� Flatter in time

Jose Oñorbe The Role of Stellar Feedback in Dwarf Galaxy Formation 7

Feedback & the Dark Matter Distribution
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Onorbe, Hopkins+14 FIRE (Feedback in Realistic Environments) simulations

Repeated episodes when baryons cool 
and slowly fall into the galaxy center, 
dominate the mass, and then are 
expelled rapidly (in less than tdyn) by 
radiation pressure and supernovae, 
soften the central DM cusp to a core .

Bursty Star Formation



Mvir = 3 x 1010 M⦿ at z = 0 Mvir = 2 x 1011 M⦿ at z = 0
S. Trujillo-Gomez, A. Klypin, P. Coĺın, D. Ceverino, K. Arraki, & J.  Primack
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dwarf satellites around the Milky Way�

250 kpc 
sphere

S. Okamoto

12 bright satellites (LV > 105L�)

!CDM subhalos vs. Milky Way satellites

V. Springel / Virgo Consortium

>105 identified subhalos

“Missing satellites”: Klypin et al. 1999, Moore et al. 1999

The “too big to fail” problem

Aquarius Simulation

Diameter of visible Milky Way 
30 kpc = 100,000 light years

Diameter of Milky Way Dark Matter Halo 
1.5 million light years



MBK, Bullock, & Kaplinghat (2012)

“massive failures”: 
highest resolution 
LCDM simulations 
predict ~10 subhalos in 
this range in the MW, 
but we don’t see any 
such galaxies [except 
Sagittarius (?)]

SMC

LMCObserved Milky Way Satellites

All of the bright 
MW dSphs are 
consistent with 
V
max

. 25 km/s

No indication that more 
massive halos host more 

luminous galaxies

c.f. Strigari et al. 2008

(see also Strigari, Frenk, 
& White 2010)

Of the ~10 biggest subhalos, ~8 cannot host 
any known bright MW satellite

???

???

Image credits: V. Springel / Virgo Consortium; A. Riess / HST; SDSS; M. Schirmer

???

???

???
???

???

???

The Milky Way is anomalous?	
!
The Milky Way has a low 
mass dark matter halo? 	
!
Galaxy formation is 
stochastic at low masses?	
!
Dark matter is not just 
CDM -- maybe WDM (e.g., 
Lovell+12,13)? 	

!
Or even self-interacting DM 
(Rocha+13, Peter+13, Zavala
+14)?	
!
Or maybe high-resolution 
CDM simulations are being 
misinterpreted?  Maybe 
baryons strongly modify the 
structure of subhalos? 

Michael Boylan-Kolchin, Bullock, Kaplinghat 2011, 2012

Possible Solutions  
to “Too Big to Fail”



Satellite Galaxies in WDM 5

Figure 3. Images of the CDM (left) and WDM (right) level 2 haloes at z = 0. Intensity indicates the line-of-sight projected square
of the density, and hue the projected density-weighted velocity dispersion, ranging from blue (low velocity dispersion) to yellow (high
velocity dispersion). Each box is 1.5 Mpc on a side. Note the sharp caustics visible at large radii in the WDM image, several of which
are also present, although less well defined, in the CDM case.
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Figure 4. The correlation between subhalo maximum circular
velocity and the radius at which this maximum occurs. Sub-
haloes lying within 300kpc of the main halo centre are in-
cluded. The 12 CDM and WDM subhaloes with the most mas-
sive progenitors are shown as blue and red filled circles respec-
tively; the remaining subhaloes are shown as empty circles. The
shaded area represents the 2σ confidence region for possible hosts
of the 9 bright Milky Way dwarf spheroidals determined by
Boylan-Kolchin et al. (2011).

the same radii in the simulated subhaloes. To provide a fair
comparison we must choose the simulated subhaloes that
are most likely to correspond to those that host the 9 bright
dwarf spheroidals in the Milky Way. As stripping of sub-
haloes preferentially removes dark matter relative to the
more centrally concentrated stellar component, we choose to

associate final satellite luminosity with the maximum pro-
genitor mass for each surviving subhalo. This is essentially
the mass of the object as it falls into the main halo. The
smallest subhalo in each of our samples has an infall mass
of 3.2 × 109M⊙ in the WDM case, and 6.0 × 109M⊙ in the
CDM case.

The LMC, SMC and the Sagittarius dwarf are all
more luminous than the 9 dwarf spheroidals considered by
Boylan-Kolchin et al. (2011) and by us. As noted above, the
Milky Way is exceptional in hosting galaxies as bright as
the Magellanic Clouds, while Sagittarius is in the process of
being disrupted so its current mass is difficult to estimate.
Boylan-Kolchin et al. hypothesize that these three galaxies
all have values of Vmax > 60kms−1 at infall and exclude sim-
ulated subhaloes that have these values at infall as well as
Vmax > 40kms−1 at the present day from their analysis. In
what follows, we retain all subhaloes but, where appropri-
ate, we highlight those that might host large satellites akin
to the Magellanic Clouds and Sagittarius.

The circular velocity curves at z = 0 for the 12 sub-
haloes which had the most massive progenitors at infall are
shown in Fig. 5 for both WDM and CDM. The circular
velocities within the half-light radius of the 9 satellites mea-
sured by Wolf et al. (2010) are also plotted as symbols. Leo-
II has the smallest half-light radius, ∼ 200pc. To compare
the satellite data with the simulations we must first check
the convergence of the simulated subhalo masses within at
least this radius. We find that the median of the ratio of the
mass within 200pc in the Aq-W2 and Aq-W3 simulations is
W 2/W 3 ∼ 1.22, i.e., the mass within 200pc in the Aq-W2
simulation has converged to better than ∼ 22%.

As can be inferred from Fig. 5, the WDM subhaloes
have similar central masses to the observed satellite galax-
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WDM simulation at right has no “too big to fail” subhalos, but it 
doesn’t lead to the right systematics to fit dwarf galaxy properties as 
Kuzio de Naray+10 showed.  It also won’t have the subhalos needed 
to explain grav lensing flux anomalies and gaps in stellar streams.

Aquarius simulation. Springel et al. 2008 



WDM simulation at right has no “too big to fail” subhalos, but it is inconsistent at 
>10σ with Ultra Deep Field galaxy counts.  It also won’t have the subhalos needed 
to reionize the universe unless mνthermal ≳ 2.6 keV (or mνsterile ≳ 15 keV) assuming an 
optimistic ionizing radiation escape fraction (Schultz, Onorbe, Abazajian, Bullock14).  
And the new Ly-α forest analysis (Viel+13) excludes mνthermal ≲ 2 keV at 4σ.

The High-z Universe Confronts Warm Dark Matter: Galaxy Counts, Reionization and the Nature of Dark Matter 5

Figure 3. Simulation snapshots from CDM (left) and 0.8 keV WDM (right) overlaid with circles to indicate identified dark matter halos that are more massive
than 3.4⇥10

8h�1M�. The size of the circle is proportional to the virial radius of each halo. The CDM slice is filled with collapsed structure at z=6, while the
WDM slice is largely devoid of collapsed halos that are massive enough for hydrogen cooling. Note that artificial haloes would show up as regularly separated
haloes in the filaments, suggesting that contamination by artificial haloes is likely negligible here.

matching technique we took into account the merger history of each
halo and used its maximal mass obtained over its lifetime M

peak

in-
stead of Mh. In any case, this correction turned to be small due to
the lack of substructure at high redshifts. We used a requirement of
at least 40 simulation particles to constitute a halo, setting a halo
mass completeness limit of Mh = 3.4⇥ 108 h�1M�.

Compared to the density maps shown in Figure 2, the differ-
ences between WDM and CDM become even more apparent when
we compare halo counts. Figure 3 shows two of the same density
slices overlaid with white circles to indicate identified dark matter
halos more massive than our Mh = 3.4 ⇥ 108 h�1M� complete-
ness limit. Circle sizes are proportional to the virial radius of each
identified halo. The difference in collapsed structures is striking be-
tween these two simulations. For example, the void in the upper left
corner is completely empty of any haloes in the 0.8 keV WDM run.

Figure 4 provides a more quantitative demonstration of the
differences in halo abundances from model to model, where each
panel shows the cumulative dark halo mass function at redshifts
z = 6, 7, 8, and 13. The CDM result (dotted line with shading) is
in all cases above the WDM models (solid lines with shading, as
labeled). Angulo et al. (2013) found a suppression of the halo mass
function of the form1

n
WDM

n
CDM

(M) =
1

2

✓
1 +

M
1

M

◆�↵ 
1 + erf

✓
log

M

M
2

◆�
. (5)

We have verified this expression provides a good fit to the
WDM/CDM abundance ratio for z . 10, with decreasing accu-
racy with increasing redshift. In our simulations, at 109M�, the
0.8 keV model is suppressed by more than an order of magnitude
at all redshifts relative to CDM.

As can be seen in the z = 13 panel of Figure 4, no haloes at all
exist in 0.8 keV WDM model. Indeed we find that no haloes have
formed before z = 12 for 0.8 keV WDM and none before z = 15

1 Strictly speaking Angulo et al. (2013) has ↵ = 1 fixed, however they also
correct for artificial haloes. We find that keeping ↵ as a free fitting parameter
is necessary to provide reasonable fits, probably owing to a strong evolution
with redshift.

in the 1.3 keV model. Detections at these epochs should be robust in
the future with JWST. However, even current detections offer an in-
teresting test: the point with error bar (2�) corresponds to the lower
limit on the cumulative abundance of galaxies at those redshifts, as
set by the faintest galaxies observed in the HUDF (Bouwens et al.
2007; McLure et al. 2012; Oesch et al. 2013). Its horizontal po-
sition (corresponding halo mass) is based on the luminosity limit
and our adopted Mh-L relation presented in the next section. Im-
portantly, the total abundance of galaxies at each redshift must be
above the data point shown (regardless of its horizontal positioning
on the plot). One can see without any further analysis that the 0.8
keV WDM model will have trouble producing enough galaxies to
match current observations at z > 8; there are simply not enough
collapsed objects of any mass to account for the known galaxies at
this epoch.

In order to provide a more precise connection with observa-
tions we will need a mapping between halo mass and galaxy lumi-
nosity. This is a primary subject of the next section.

3 PREDICTING OBSERVABLES

3.1 Observed Luminosity Functions

We will normalize our predictions using observed high-z galaxy
counts. In doing so, we follow the literature and assume that high-z
luminosity function is well characterized by a Schechter function

�(L) dL = �⇤

✓
L

L⇤

◆↵

exp

✓
� L

L⇤

◆
dL

L⇤
. (6)

Robust observations of luminosity functions with measures of �⇤,
L⇤, and ↵ exist out to z ⇠ 8 (Bouwens et al. 2011; McLure et al.
2012; Schenker et al. 2013) and current observations can provide
constraints on the normalization (with other parameters fixed) out
to z ⇠ 10 (Oesch et al. 2013).

We parameterize the evolution of the luminosity function with
redshift by fitting quoted observational results for log �⇤, L⇤ and ↵
and fitting them linearly as a function of z from z = 4 � 8. Fig-
ure 5 shows the fit used in this work in comparison with fits from
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However there is new evidence for WDM with mνsterile ≈ 7 keV from 
detection of 3.5 keV X-rays.  Will this be consistent with high-z galaxies, 
breaks in cold stellar streams and gravitational lensing flux anomalies?
DETECTION OF AN UNIDENTIFIED EMISSION LINE IN THE STACKED X-RAY 
SPECTRUM OF GALAXY CLUSTERS   arXiv:1402.2301!
Esra Bulbul, Maxim Markevitch, Adam Foster, Randall K. Smith, Michael Loewenstein, and Scott W. Randall
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Figure 6. 3�4 keV band of the stacked MOS (left panel) and stacked PN (right panel) spectra of the Perseus cluster. The figures show
the energy band, where a new spectral feature at 3.57 keV is detected. The Gaussian lines with peak values of the flux normalizations of
K xviii and Ar xvii estimated using AtomDB were included in the models. The red lines in the top panels show the model and the excess
emission in both spectra. The blue lines show the total model after a Gaussian line is added, indicating that the unidentified spectral line
can be modeled with a Gaussian.

fits.

3.3. Stacked Spectra of the Nearby Bright Clusters;
Centaurus + Coma + Ophiuchus

We now check the MOS and PN spectra of the three
dominant nearby clusters, Coma, Ophiuchus, and Cen-
taurus. A total of 525.3 ks of good stacked MOS and
168 ks good stacked PN exposure times were obtained
for this sub-sample. The total source counts obtained in
the MOS and PN spectra were 3.2 ⇥ 106 and 2.1 ⇥ 106,
respectively.
We performed the fits as above. The best determina-

tions for the continuum temperature and normalizations
and the fluxes of the S xvi, Ca xix, and Ca xx are given
in Table 2. We detected an excess emission feature in
the same band, i.e. 3.4 � 3.7 keV as in the stacked MOS
spectra. To determine the flux of the emission line at 3.57
keV, we estimated the maximum fluxes of the K xviii, K
xix, and Ar xvii lines using the AtomDB and the mea-
sured fluxes of S xvi, Ca xix, and Ca xx as described
in §3.1. Using the 0.1 and 3 times these fluxes as lower
and upper limits, we found that the unidentified line has
a flux of 15.9+3.4

�3.8 (+6.7
�5.5) ⇥ 10�6 photons cm�2 s�1 in the

stacked MOS observations. Adding this Gaussian to the
model improves the fit by ��2 of 17.1 for an additional
degree of freedom for the stacked MOS spectrum.
We then allowed the energy of the additional Gaus-

sian model to vary to test whether the energy measured
from two di↵erent samples are the same. The best-fit
energy obtained from the stacked MOS observations of
Coma, Centaurus, and Ophiuchus clusters was 3.56 ±

0.02 (0.03), with a flux of 1.6+0.52
�0.44 (+0.81

�0.70) ⇥ 10�5 pho-
tons cm�2 s�1. This measurement is consistent with the
energy measured in the MOS observations of the full sam-
ple. The sterile neutrino mixing angle that corresponds
to this flux is sin2(2✓) = 18.2+4.4

�3.9 (+12.6
�11.5) ⇥ 10�11, con-

sistent at 2� with the full-sample value.
The fits to the stacked PN observations did not need an

additional Gaussian line, and resulted in a non-detection.
This could be due to the low count statistics of the

stacked PN observations (168 ks clean time). A 90%
upper limit on the flux of this line at 3.57 keV is 9.5
⇥ 10�6 photons cm�2 s�1 from this spectrum; the upper
limit on the mixing angle from this flux limit is consistent
with the full-sample and MOS detections.

3.4. Perseus

Initially, we extracted the spectrum of the Perseus clus-
ter using the entire MOS and PN field-of-view. We have
co-added the XMM-Newton MOS and PN observations
of the Perseus cluster in the cluster’s frame. The total
exposure time in the stacked MOS spectrum was 317 ks
with a total of 7⇥106 source counts in the 2 � 10 keV
band and 38 ks total exposure with 2⇥106 source counts
in the stacked PN observations.
Following the same approach we used for modeling the

full cluster sample, we first fit the MOS and PN observa-
tions with the line-free apec model and additional Gaus-
sian models. Count-weighted responses were used to fit
the plasma emission lines and the continuum emission.
Probing the 3�4 keV band the MOS observations re-
vealed residuals around 3.57 keV, at the same energy
band where we detected line emission in the previous
samples. The left panel of Figure 6 shows the detection
in the co-added MOS observations of the Perseus cluster.
Using the limits on the K and Ar lines (Table 3) as above
and adding a Gaussian model to the MOS spectrum at
the fixed energy of 3.57 keV improved the fit by ��2 of
15.7. The best-fit flux at 3.57 keV was 5.2+2.41

�1.52 (+3.70
�2.13)

⇥ 10�5 photons cm�2 s�1.
This flux corresponds to a mixing angle of sin2(2✓) =

5.5+2.6
�1.6 (

+3.9
�2.3) ⇥10�10. This angle is not only an outlier in

our measurements from the other samples, it is also not
consistent with the upper limits on the mixing angle at
this value of ms from the previous studies (e.g., Horiuchi
et al. 2013).
We were unable to detect the line in the short (38 ks

clean time) PN observation of Perseus and placed a 90%
upper limit on the flux of the line of 17.7 photons cm�2

s�1, which corresponds to an upper limit of sin2(2✓) <
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Figure 6. 3�4 keV band of the stacked MOS (left panel) and stacked PN (right panel) spectra of the Perseus cluster. The figures show
the energy band, where a new spectral feature at 3.57 keV is detected. The Gaussian lines with peak values of the flux normalizations of
K xviii and Ar xvii estimated using AtomDB were included in the models. The red lines in the top panels show the model and the excess
emission in both spectra. The blue lines show the total model after a Gaussian line is added, indicating that the unidentified spectral line
can be modeled with a Gaussian.

fits.

3.3. Stacked Spectra of the Nearby Bright Clusters;
Centaurus + Coma + Ophiuchus

We now check the MOS and PN spectra of the three
dominant nearby clusters, Coma, Ophiuchus, and Cen-
taurus. A total of 525.3 ks of good stacked MOS and
168 ks good stacked PN exposure times were obtained
for this sub-sample. The total source counts obtained in
the MOS and PN spectra were 3.2 ⇥ 106 and 2.1 ⇥ 106,
respectively.
We performed the fits as above. The best determina-

tions for the continuum temperature and normalizations
and the fluxes of the S xvi, Ca xix, and Ca xx are given
in Table 2. We detected an excess emission feature in
the same band, i.e. 3.4 � 3.7 keV as in the stacked MOS
spectra. To determine the flux of the emission line at 3.57
keV, we estimated the maximum fluxes of the K xviii, K
xix, and Ar xvii lines using the AtomDB and the mea-
sured fluxes of S xvi, Ca xix, and Ca xx as described
in §3.1. Using the 0.1 and 3 times these fluxes as lower
and upper limits, we found that the unidentified line has
a flux of 15.9+3.4

�3.8 (+6.7
�5.5) ⇥ 10�6 photons cm�2 s�1 in the

stacked MOS observations. Adding this Gaussian to the
model improves the fit by ��2 of 17.1 for an additional
degree of freedom for the stacked MOS spectrum.
We then allowed the energy of the additional Gaus-

sian model to vary to test whether the energy measured
from two di↵erent samples are the same. The best-fit
energy obtained from the stacked MOS observations of
Coma, Centaurus, and Ophiuchus clusters was 3.56 ±

0.02 (0.03), with a flux of 1.6+0.52
�0.44 (+0.81

�0.70) ⇥ 10�5 pho-
tons cm�2 s�1. This measurement is consistent with the
energy measured in the MOS observations of the full sam-
ple. The sterile neutrino mixing angle that corresponds
to this flux is sin2(2✓) = 18.2+4.4

�3.9 (+12.6
�11.5) ⇥ 10�11, con-

sistent at 2� with the full-sample value.
The fits to the stacked PN observations did not need an

additional Gaussian line, and resulted in a non-detection.
This could be due to the low count statistics of the

stacked PN observations (168 ks clean time). A 90%
upper limit on the flux of this line at 3.57 keV is 9.5
⇥ 10�6 photons cm�2 s�1 from this spectrum; the upper
limit on the mixing angle from this flux limit is consistent
with the full-sample and MOS detections.

3.4. Perseus

Initially, we extracted the spectrum of the Perseus clus-
ter using the entire MOS and PN field-of-view. We have
co-added the XMM-Newton MOS and PN observations
of the Perseus cluster in the cluster’s frame. The total
exposure time in the stacked MOS spectrum was 317 ks
with a total of 7⇥106 source counts in the 2 � 10 keV
band and 38 ks total exposure with 2⇥106 source counts
in the stacked PN observations.
Following the same approach we used for modeling the

full cluster sample, we first fit the MOS and PN observa-
tions with the line-free apec model and additional Gaus-
sian models. Count-weighted responses were used to fit
the plasma emission lines and the continuum emission.
Probing the 3�4 keV band the MOS observations re-
vealed residuals around 3.57 keV, at the same energy
band where we detected line emission in the previous
samples. The left panel of Figure 6 shows the detection
in the co-added MOS observations of the Perseus cluster.
Using the limits on the K and Ar lines (Table 3) as above
and adding a Gaussian model to the MOS spectrum at
the fixed energy of 3.57 keV improved the fit by ��2 of
15.7. The best-fit flux at 3.57 keV was 5.2+2.41

�1.52 (+3.70
�2.13)

⇥ 10�5 photons cm�2 s�1.
This flux corresponds to a mixing angle of sin2(2✓) =

5.5+2.6
�1.6 (

+3.9
�2.3) ⇥10�10. This angle is not only an outlier in

our measurements from the other samples, it is also not
consistent with the upper limits on the mixing angle at
this value of ms from the previous studies (e.g., Horiuchi
et al. 2013).
We were unable to detect the line in the short (38 ks

clean time) PN observation of Perseus and placed a 90%
upper limit on the flux of the line of 17.7 photons cm�2

s�1, which corresponds to an upper limit of sin2(2✓) <
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neutrino dark matter production 
models (Abazajian+07). Lines !
in black show theoretical 
predictions assuming sterile 
neutrinos are the dark matter 
with lepton number L = 0, L = 
0.003, L = 0.01, L = 0.1.  The      
is consistent with upper limits.
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Figure 12. Recent constraints on sterile neutrino production
models, assuming sterile neutrinos constitute dark matter (Abaza-
jian et al. 2007). Straight lines in black show theoretical predictions
assuming sterile neutrinos constitute the dark matter with lepton
number L = 0, L = 0.003, L = 0.01, L = 0.1. Constraints from the
cosmic X-ray background are shown in the solid (blue and hatched
regions). The region is solid green is excluded based upon obser-
vations of the di↵use X-ray background (Abazajian et al. 2007).
Individual galaxy cluster constraints from XMM-Newton observa-
tions of the Coma and Virgo clusters are shown in light blue (Bo-
yarsky et al. 2006). The horizontal pink band shows the mass scale
consistent with producing a 100�300 pc core in the Fornax dwarf
galaxy (Strigari et al. 2006), and limits from the Milky Way by
Boyarsky et al. (2006) is indicated with BMW. The orange region
at m

s

< 0.4 keV is ruled out by an application of the Tremaine-
Gunn bound (Bode et al. 2001). Our measurement obtained from
the full sample which is marked with the star in red, is consistent
with previous upper limits.

are unable to collisionally excite any Ar XVII lines, but
dielectronic recombination is still possible. Examining
the satellite line data in the AtomDB, taken from Vain-
shtein & Safronova (1980), shows that even in this case
the maximum ratio is only 7%, as there are DR satellite
lines at the energies of the Ar XVII triplet as well and
these lines would also be excited in such a case. While
not physically impossible if there was a significant and
unexpected error in the atomic physics calculations, we
have no reason to believe this has occurred.
We also note that our assumptions regarding rela-

tive line strengths have assumed the ICM is in thermal
equilibrium or close to it. Charge exchange (CX) be-
tween highly-ionized ions and neutral hydrogen or he-
lium could also create X-ray emission lines with di↵erent
ratios (Smith et al. 2012). This could a↵ect our assump-
tion of equilibrium line ratios, although we have included
a substantial range around the equilibrium values. It is
important to note that these CX lines are not ‘new, but
rather the same lines occurring in di↵erent ratios. Due
to its large cross section relative to electron excitation
rates, astrophysical CX can occur only in a thin sheet
where ions and neutrals interact directly, limiting its to-
tal emission relative to the large ICM volume. In certain

cases, such as the core of the Perseus cluster where many
neutral filaments are known, it is possible that CX could
be large enough to create a small fraction of the total
X-ray emission, although it would not create or enhance
a line at 3.57 keV or the DR line at 3.62 keV. CX could
not dominate the overall emission, however, as it would
also create Fe XVII and other lines that are not detected.

5.2. Sterile neutrino decay line?

An interesting interpretation of the line is the decay
signature of the sterile neutrino, a long-sought dark mat-
ter particle candidate (Boyarsky et al. (e.g., 2009), see
our §1). The mass of the sterile neutrino would be dou-
ble the decay photon energy, ms =7.1 keV. The line flux
detected in our full sample corresponds to a mixing angle
for the decay sin2(2✓) ⇠ 7 ⇥ 10�11. This value is below
the upper limits placed by the previous searches, shown
in Fig. 12. Our detection from the stacked XMM-Newton
MOS observations galaxy clusters are shown with a star
in red in that figure. Figure 13 shows the detections and
upper limits we obtained from our various subsamples we
used in this work (based on the included cluster masses
and distances), as well as a comparison with previous up-
per limit placed using the Bullet cluster by Boyarsky et
al. (2008) at 3.57 keV, which is the most relevant earlier
constraint for us. Since the mixing angle is a universal
quantity, all the subsample measurements must agree.
The line in the subsample of fainter 69 clusters (full

sample sans Perseus, Coma, Ophiuchus and Centaurus)
corresponds to a mixing angle that is consistent with
the full sample; the same is seen (though with a mild
1.5� tension) for the subsample of bright nearby clusters
Coma+Centaurus+Ophiuchus. However, the brightness
of the new line in the XMM-Newton spectrum of Perseus
corresponds to a significantly higher mixing angle than
that for the full sample (by factor 8 for the MOS spec-
trum), which poses a problem in need of further investi-
gation.
We tried to excise the central 10 region of the Perseus

cluster, to see if the flux originates in the cool core of the
cluster. Indeed, this decreased the flux in the line in half
and removed most of the tension with the other measure-
ments. However, this suggests that either some of the line
flux is astrophysical in origin (at least in Perseus), or the
cool gas in the core of the cluster a↵ects our ability to
measure the continuum and the fluxes of the nearby K
xviii and Ar xvii lines, in the end resulting in an over-
estimate of the flux of our detected line. It appears that
in Preseus, there is an anomalously strong line at the po-
sition of the Ar xvii dielectronic recombination line at
3.62 keV.
With this knowledge, we have tried to add this anoma-

lous 3.62 keV line in the model for the full sample, where
we have the most statistically significant line detection.
The additional line is still required, albeit at a lower sig-
nificance and a slightly lower energy of 3.55± 0.03 keV.
Note that the sample of bright clusters is dominated by
the emission from the cool cores of Ophiuchus and Cen-
taurus cluster, if this Ar 3.62 keV line anomaly is typical
of cool cores, they may also be a↵ected. However, free-
ing the flux of the 3.62 keV line in the MOS full-sample
fit did not require additional contribution from clusters
other than Perseus, though the constraints are obviously
weak.
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Figure 12. Recent constraints on sterile neutrino production
models, assuming sterile neutrinos constitute dark matter (Abaza-
jian et al. 2007). Straight lines in black show theoretical predictions
assuming sterile neutrinos constitute the dark matter with lepton
number L = 0, L = 0.003, L = 0.01, L = 0.1. Constraints from the
cosmic X-ray background are shown in the solid (blue and hatched
regions). The region is solid green is excluded based upon obser-
vations of the di↵use X-ray background (Abazajian et al. 2007).
Individual galaxy cluster constraints from XMM-Newton observa-
tions of the Coma and Virgo clusters are shown in light blue (Bo-
yarsky et al. 2006). The horizontal pink band shows the mass scale
consistent with producing a 100�300 pc core in the Fornax dwarf
galaxy (Strigari et al. 2006), and limits from the Milky Way by
Boyarsky et al. (2006) is indicated with BMW. The orange region
at m

s

< 0.4 keV is ruled out by an application of the Tremaine-
Gunn bound (Bode et al. 2001). Our measurement obtained from
the full sample which is marked with the star in red, is consistent
with previous upper limits.

are unable to collisionally excite any Ar XVII lines, but
dielectronic recombination is still possible. Examining
the satellite line data in the AtomDB, taken from Vain-
shtein & Safronova (1980), shows that even in this case
the maximum ratio is only 7%, as there are DR satellite
lines at the energies of the Ar XVII triplet as well and
these lines would also be excited in such a case. While
not physically impossible if there was a significant and
unexpected error in the atomic physics calculations, we
have no reason to believe this has occurred.
We also note that our assumptions regarding rela-

tive line strengths have assumed the ICM is in thermal
equilibrium or close to it. Charge exchange (CX) be-
tween highly-ionized ions and neutral hydrogen or he-
lium could also create X-ray emission lines with di↵erent
ratios (Smith et al. 2012). This could a↵ect our assump-
tion of equilibrium line ratios, although we have included
a substantial range around the equilibrium values. It is
important to note that these CX lines are not ‘new, but
rather the same lines occurring in di↵erent ratios. Due
to its large cross section relative to electron excitation
rates, astrophysical CX can occur only in a thin sheet
where ions and neutrals interact directly, limiting its to-
tal emission relative to the large ICM volume. In certain

cases, such as the core of the Perseus cluster where many
neutral filaments are known, it is possible that CX could
be large enough to create a small fraction of the total
X-ray emission, although it would not create or enhance
a line at 3.57 keV or the DR line at 3.62 keV. CX could
not dominate the overall emission, however, as it would
also create Fe XVII and other lines that are not detected.

5.2. Sterile neutrino decay line?

An interesting interpretation of the line is the decay
signature of the sterile neutrino, a long-sought dark mat-
ter particle candidate (Boyarsky et al. (e.g., 2009), see
our §1). The mass of the sterile neutrino would be dou-
ble the decay photon energy, ms =7.1 keV. The line flux
detected in our full sample corresponds to a mixing angle
for the decay sin2(2✓) ⇠ 7 ⇥ 10�11. This value is below
the upper limits placed by the previous searches, shown
in Fig. 12. Our detection from the stacked XMM-Newton
MOS observations galaxy clusters are shown with a star
in red in that figure. Figure 13 shows the detections and
upper limits we obtained from our various subsamples we
used in this work (based on the included cluster masses
and distances), as well as a comparison with previous up-
per limit placed using the Bullet cluster by Boyarsky et
al. (2008) at 3.57 keV, which is the most relevant earlier
constraint for us. Since the mixing angle is a universal
quantity, all the subsample measurements must agree.
The line in the subsample of fainter 69 clusters (full

sample sans Perseus, Coma, Ophiuchus and Centaurus)
corresponds to a mixing angle that is consistent with
the full sample; the same is seen (though with a mild
1.5� tension) for the subsample of bright nearby clusters
Coma+Centaurus+Ophiuchus. However, the brightness
of the new line in the XMM-Newton spectrum of Perseus
corresponds to a significantly higher mixing angle than
that for the full sample (by factor 8 for the MOS spec-
trum), which poses a problem in need of further investi-
gation.
We tried to excise the central 10 region of the Perseus

cluster, to see if the flux originates in the cool core of the
cluster. Indeed, this decreased the flux in the line in half
and removed most of the tension with the other measure-
ments. However, this suggests that either some of the line
flux is astrophysical in origin (at least in Perseus), or the
cool gas in the core of the cluster a↵ects our ability to
measure the continuum and the fluxes of the nearby K
xviii and Ar xvii lines, in the end resulting in an over-
estimate of the flux of our detected line. It appears that
in Preseus, there is an anomalously strong line at the po-
sition of the Ar xvii dielectronic recombination line at
3.62 keV.
With this knowledge, we have tried to add this anoma-

lous 3.62 keV line in the model for the full sample, where
we have the most statistically significant line detection.
The additional line is still required, albeit at a lower sig-
nificance and a slightly lower energy of 3.55± 0.03 keV.
Note that the sample of bright clusters is dominated by
the emission from the cool cores of Ophiuchus and Cen-
taurus cluster, if this Ar 3.62 keV line anomaly is typical
of cool cores, they may also be a↵ected. However, free-
ing the flux of the 3.62 keV line in the MOS full-sample
fit did not require additional contribution from clusters
other than Perseus, though the constraints are obviously
weak.
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the satellite line data in the AtomDB, taken from Vain-
shtein & Safronova (1980), shows that even in this case
the maximum ratio is only 7%, as there are DR satellite
lines at the energies of the Ar XVII triplet as well and
these lines would also be excited in such a case. While
not physically impossible if there was a significant and
unexpected error in the atomic physics calculations, we
have no reason to believe this has occurred.
We also note that our assumptions regarding rela-

tive line strengths have assumed the ICM is in thermal
equilibrium or close to it. Charge exchange (CX) be-
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lium could also create X-ray emission lines with di↵erent
ratios (Smith et al. 2012). This could a↵ect our assump-
tion of equilibrium line ratios, although we have included
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important to note that these CX lines are not ‘new, but
rather the same lines occurring in di↵erent ratios. Due
to its large cross section relative to electron excitation
rates, astrophysical CX can occur only in a thin sheet
where ions and neutrals interact directly, limiting its to-
tal emission relative to the large ICM volume. In certain

cases, such as the core of the Perseus cluster where many
neutral filaments are known, it is possible that CX could
be large enough to create a small fraction of the total
X-ray emission, although it would not create or enhance
a line at 3.57 keV or the DR line at 3.62 keV. CX could
not dominate the overall emission, however, as it would
also create Fe XVII and other lines that are not detected.
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An interesting interpretation of the line is the decay
signature of the sterile neutrino, a long-sought dark mat-
ter particle candidate (Boyarsky et al. (e.g., 2009), see
our §1). The mass of the sterile neutrino would be dou-
ble the decay photon energy, ms =7.1 keV. The line flux
detected in our full sample corresponds to a mixing angle
for the decay sin2(2✓) ⇠ 7 ⇥ 10�11. This value is below
the upper limits placed by the previous searches, shown
in Fig. 12. Our detection from the stacked XMM-Newton
MOS observations galaxy clusters are shown with a star
in red in that figure. Figure 13 shows the detections and
upper limits we obtained from our various subsamples we
used in this work (based on the included cluster masses
and distances), as well as a comparison with previous up-
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al. (2008) at 3.57 keV, which is the most relevant earlier
constraint for us. Since the mixing angle is a universal
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corresponds to a mixing angle that is consistent with
the full sample; the same is seen (though with a mild
1.5� tension) for the subsample of bright nearby clusters
Coma+Centaurus+Ophiuchus. However, the brightness
of the new line in the XMM-Newton spectrum of Perseus
corresponds to a significantly higher mixing angle than
that for the full sample (by factor 8 for the MOS spec-
trum), which poses a problem in need of further investi-
gation.
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cluster, to see if the flux originates in the cool core of the
cluster. Indeed, this decreased the flux in the line in half
and removed most of the tension with the other measure-
ments. However, this suggests that either some of the line
flux is astrophysical in origin (at least in Perseus), or the
cool gas in the core of the cluster a↵ects our ability to
measure the continuum and the fluxes of the nearby K
xviii and Ar xvii lines, in the end resulting in an over-
estimate of the flux of our detected line. It appears that
in Preseus, there is an anomalously strong line at the po-
sition of the Ar xvii dielectronic recombination line at
3.62 keV.
With this knowledge, we have tried to add this anoma-

lous 3.62 keV line in the model for the full sample, where
we have the most statistically significant line detection.
The additional line is still required, albeit at a lower sig-
nificance and a slightly lower energy of 3.55± 0.03 keV.
Note that the sample of bright clusters is dominated by
the emission from the cool cores of Ophiuchus and Cen-
taurus cluster, if this Ar 3.62 keV line anomaly is typical
of cool cores, they may also be a↵ected. However, free-
ing the flux of the 3.62 keV line in the MOS full-sample
fit did not require additional contribution from clusters
other than Perseus, though the constraints are obviously
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the maximum ratio is only 7%, as there are DR satellite
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these lines would also be excited in such a case. While
not physically impossible if there was a significant and
unexpected error in the atomic physics calculations, we
have no reason to believe this has occurred.
We also note that our assumptions regarding rela-
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important to note that these CX lines are not ‘new, but
rather the same lines occurring in di↵erent ratios. Due
to its large cross section relative to electron excitation
rates, astrophysical CX can occur only in a thin sheet
where ions and neutrals interact directly, limiting its to-
tal emission relative to the large ICM volume. In certain

cases, such as the core of the Perseus cluster where many
neutral filaments are known, it is possible that CX could
be large enough to create a small fraction of the total
X-ray emission, although it would not create or enhance
a line at 3.57 keV or the DR line at 3.62 keV. CX could
not dominate the overall emission, however, as it would
also create Fe XVII and other lines that are not detected.
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signature of the sterile neutrino, a long-sought dark mat-
ter particle candidate (Boyarsky et al. (e.g., 2009), see
our §1). The mass of the sterile neutrino would be dou-
ble the decay photon energy, ms =7.1 keV. The line flux
detected in our full sample corresponds to a mixing angle
for the decay sin2(2✓) ⇠ 7 ⇥ 10�11. This value is below
the upper limits placed by the previous searches, shown
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constraint for us. Since the mixing angle is a universal
quantity, all the subsample measurements must agree.
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corresponds to a mixing angle that is consistent with
the full sample; the same is seen (though with a mild
1.5� tension) for the subsample of bright nearby clusters
Coma+Centaurus+Ophiuchus. However, the brightness
of the new line in the XMM-Newton spectrum of Perseus
corresponds to a significantly higher mixing angle than
that for the full sample (by factor 8 for the MOS spec-
trum), which poses a problem in need of further investi-
gation.
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cluster, to see if the flux originates in the cool core of the
cluster. Indeed, this decreased the flux in the line in half
and removed most of the tension with the other measure-
ments. However, this suggests that either some of the line
flux is astrophysical in origin (at least in Perseus), or the
cool gas in the core of the cluster a↵ects our ability to
measure the continuum and the fluxes of the nearby K
xviii and Ar xvii lines, in the end resulting in an over-
estimate of the flux of our detected line. It appears that
in Preseus, there is an anomalously strong line at the po-
sition of the Ar xvii dielectronic recombination line at
3.62 keV.
With this knowledge, we have tried to add this anoma-

lous 3.62 keV line in the model for the full sample, where
we have the most statistically significant line detection.
The additional line is still required, albeit at a lower sig-
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Note that the sample of bright clusters is dominated by
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these lines would also be excited in such a case. While
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unexpected error in the atomic physics calculations, we
have no reason to believe this has occurred.
We also note that our assumptions regarding rela-
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tween highly-ionized ions and neutral hydrogen or he-
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rates, astrophysical CX can occur only in a thin sheet
where ions and neutrals interact directly, limiting its to-
tal emission relative to the large ICM volume. In certain
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corresponds to a mixing angle that is consistent with
the full sample; the same is seen (though with a mild
1.5� tension) for the subsample of bright nearby clusters
Coma+Centaurus+Ophiuchus. However, the brightness
of the new line in the XMM-Newton spectrum of Perseus
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ments. However, this suggests that either some of the line
flux is astrophysical in origin (at least in Perseus), or the
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measure the continuum and the fluxes of the nearby K
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to its large cross section relative to electron excitation
rates, astrophysical CX can occur only in a thin sheet
where ions and neutrals interact directly, limiting its to-
tal emission relative to the large ICM volume. In certain

cases, such as the core of the Perseus cluster where many
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be large enough to create a small fraction of the total
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not dominate the overall emission, however, as it would
also create Fe XVII and other lines that are not detected.
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detected in our full sample corresponds to a mixing angle
for the decay sin2(2✓) ⇠ 7 ⇥ 10�11. This value is below
the upper limits placed by the previous searches, shown
in Fig. 12. Our detection from the stacked XMM-Newton
MOS observations galaxy clusters are shown with a star
in red in that figure. Figure 13 shows the detections and
upper limits we obtained from our various subsamples we
used in this work (based on the included cluster masses
and distances), as well as a comparison with previous up-
per limit placed using the Bullet cluster by Boyarsky et
al. (2008) at 3.57 keV, which is the most relevant earlier
constraint for us. Since the mixing angle is a universal
quantity, all the subsample measurements must agree.
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corresponds to a mixing angle that is consistent with
the full sample; the same is seen (though with a mild
1.5� tension) for the subsample of bright nearby clusters
Coma+Centaurus+Ophiuchus. However, the brightness
of the new line in the XMM-Newton spectrum of Perseus
corresponds to a significantly higher mixing angle than
that for the full sample (by factor 8 for the MOS spec-
trum), which poses a problem in need of further investi-
gation.
We tried to excise the central 10 region of the Perseus

cluster, to see if the flux originates in the cool core of the
cluster. Indeed, this decreased the flux in the line in half
and removed most of the tension with the other measure-
ments. However, this suggests that either some of the line
flux is astrophysical in origin (at least in Perseus), or the
cool gas in the core of the cluster a↵ects our ability to
measure the continuum and the fluxes of the nearby K
xviii and Ar xvii lines, in the end resulting in an over-
estimate of the flux of our detected line. It appears that
in Preseus, there is an anomalously strong line at the po-
sition of the Ar xvii dielectronic recombination line at
3.62 keV.
With this knowledge, we have tried to add this anoma-

lous 3.62 keV line in the model for the full sample, where
we have the most statistically significant line detection.
The additional line is still required, albeit at a lower sig-
nificance and a slightly lower energy of 3.55± 0.03 keV.
Note that the sample of bright clusters is dominated by
the emission from the cool cores of Ophiuchus and Cen-
taurus cluster, if this Ar 3.62 keV line anomaly is typical
of cool cores, they may also be a↵ected. However, free-
ing the flux of the 3.62 keV line in the MOS full-sample
fit did not require additional contribution from clusters
other than Perseus, though the constraints are obviously
weak.
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FIG. 2: The line’s brightness profile in M31 (left) and the Perseus cluster (right). An NFW DM distribution is assumed, the scale rs is fixed to
its best-fit values from [22] (M31) or [23] (Perseus) and the overall normalization is adjusted to pass through the left-most point.

For the Perseus cluster the observations can be grouped in
3 radial bins by their off-center angle. For each bin we fix
the line position to its average value across Perseus (3.47 ±

0.07 keV). The obtained line fluxes together with 1σ errors
are shown in Fig. 2. For comparison, we draw the expected
line distribution from dark matter decay using the NFW pro-
file of [23] (best fit value rs = 360 kpc, black solid line; 1σ
upper bound rs = 872 kpc, black dashed line). The isother-
mal β-profile from [26] is shown in magenta. The surface
brightness profile follows the expected DM decay line’s dis-
tribution in Perseus.

Finally, we compare the predictions for the DM lifetime from
the two objects. The estimates of the average column den-
sity within the central part of M31 give S(rs) ∼ 200 −

600M⊙/pc2 [13]. The column density of clusters follows
from the c − M relation [27–29]. Considering the uncer-
tainty on the profile and that our observations of Perseus go
beyond rs, the average column density in the region of interest
is within S̄ ∼ 100− 600M⊙/pc2. Therefore the signal from
Perseus can be both stronger and weaker than that of M31, by
0.2 − 3.0. This is consistent with the ratio of measured flux
from Perseus to M31 0.7− 2.7.

If DM is made of right-handed (sterile) neutrinos [30], the
lifetime is related to its interaction strength (mixing angle):

τDM =
1024π4

9αG2
F
sin2(2θ)m5

DM

7.2× 1029 sec

[

10−8

sin2(2θ)

] [

1 keV
mDM

]5

.

Using the data from M31 we obtain the mass mDM = 7.06 ±
0.05 keV and the mixing angle in the range sin2(2θ) = (2.2−
20) × 10−11. This value is consistent with previous bounds,
Fig. 4. This means that sterile neutrinos should be produced
resonantly [31–33], which requires the presence of significant
lepton asymmetry in primordial plasma at temperatures few
hundreds MeV. This produces restrictions on parameters of
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the νMSM.

The position and flux of the discussed weak line are inevitably
subject to systematical uncertainties. There are two weak in-
strumental lines (K Kα at 3.31 keV and Ca Kα at 3.69 keV),
although formally their centroids are separated by more than
4σ. Additionally, the region below 3 keV is difficult to model
precisely, especially at large exposures, due to the presence of
the absorption edge and galactic emission. However, although
the residuals below 3 keV are similar between theM31 dataset
(Fig. 1) and the blank sky dataset (Fig. 3), the line is not de-
tected in the latter. Although the count rate at these energies
is 4 times larger for M31, the exposure for the blank sky is 16
times larger. This disfavors the interpretation of the line as due
to a wiggle in the effective area. The properties of this line are
consistent (within uncertainties) with the DM interpretation.
To reach a conclusion about its nature, one will need to find
more objects that give a detection or where non-observation of
the line will put tight constraints on its properties. The forth-
coming Astro-H mission [34] has sufficient spectral resolution
to spectrally resolve the line against other nearby features and
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For the Perseus cluster the observations can be grouped in
3 radial bins by their off-center angle. For each bin we fix
the line position to its average value across Perseus (3.47 ±

0.07 keV). The obtained line fluxes together with 1σ errors
are shown in Fig. 2. For comparison, we draw the expected
line distribution from dark matter decay using the NFW pro-
file of [23] (best fit value rs = 360 kpc, black solid line; 1σ
upper bound rs = 872 kpc, black dashed line). The isother-
mal β-profile from [26] is shown in magenta. The surface
brightness profile follows the expected DM decay line’s dis-
tribution in Perseus.

Finally, we compare the predictions for the DM lifetime from
the two objects. The estimates of the average column den-
sity within the central part of M31 give S(rs) ∼ 200 −

600M⊙/pc2 [13]. The column density of clusters follows
from the c − M relation [27–29]. Considering the uncer-
tainty on the profile and that our observations of Perseus go
beyond rs, the average column density in the region of interest
is within S̄ ∼ 100− 600M⊙/pc2. Therefore the signal from
Perseus can be both stronger and weaker than that of M31, by
0.2 − 3.0. This is consistent with the ratio of measured flux
from Perseus to M31 0.7− 2.7.

If DM is made of right-handed (sterile) neutrinos [30], the
lifetime is related to its interaction strength (mixing angle):

τDM =
1024π4

9αG2
F
sin2(2θ)m5

DM

7.2× 1029 sec

[

10−8

sin2(2θ)

] [

1 keV
mDM

]5

.

Using the data from M31 we obtain the mass mDM = 7.06 ±
0.05 keV and the mixing angle in the range sin2(2θ) = (2.2−
20) × 10−11. This value is consistent with previous bounds,
Fig. 4. This means that sterile neutrinos should be produced
resonantly [31–33], which requires the presence of significant
lepton asymmetry in primordial plasma at temperatures few
hundreds MeV. This produces restrictions on parameters of
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the νMSM.

The position and flux of the discussed weak line are inevitably
subject to systematical uncertainties. There are two weak in-
strumental lines (K Kα at 3.31 keV and Ca Kα at 3.69 keV),
although formally their centroids are separated by more than
4σ. Additionally, the region below 3 keV is difficult to model
precisely, especially at large exposures, due to the presence of
the absorption edge and galactic emission. However, although
the residuals below 3 keV are similar between theM31 dataset
(Fig. 1) and the blank sky dataset (Fig. 3), the line is not de-
tected in the latter. Although the count rate at these energies
is 4 times larger for M31, the exposure for the blank sky is 16
times larger. This disfavors the interpretation of the line as due
to a wiggle in the effective area. The properties of this line are
consistent (within uncertainties) with the DM interpretation.
To reach a conclusion about its nature, one will need to find
more objects that give a detection or where non-observation of
the line will put tight constraints on its properties. The forth-
coming Astro-H mission [34] has sufficient spectral resolution
to spectrally resolve the line against other nearby features and
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For the Perseus cluster the observations can be grouped in
3 radial bins by their off-center angle. For each bin we fix
the line position to its average value across Perseus (3.47 ±

0.07 keV). The obtained line fluxes together with 1σ errors
are shown in Fig. 2. For comparison, we draw the expected
line distribution from dark matter decay using the NFW pro-
file of [23] (best fit value rs = 360 kpc, black solid line; 1σ
upper bound rs = 872 kpc, black dashed line). The isother-
mal β-profile from [26] is shown in magenta. The surface
brightness profile follows the expected DM decay line’s dis-
tribution in Perseus.

Finally, we compare the predictions for the DM lifetime from
the two objects. The estimates of the average column den-
sity within the central part of M31 give S(rs) ∼ 200 −

600M⊙/pc2 [13]. The column density of clusters follows
from the c − M relation [27–29]. Considering the uncer-
tainty on the profile and that our observations of Perseus go
beyond rs, the average column density in the region of interest
is within S̄ ∼ 100− 600M⊙/pc2. Therefore the signal from
Perseus can be both stronger and weaker than that of M31, by
0.2 − 3.0. This is consistent with the ratio of measured flux
from Perseus to M31 0.7− 2.7.

If DM is made of right-handed (sterile) neutrinos [30], the
lifetime is related to its interaction strength (mixing angle):

τDM =
1024π4

9αG2
F
sin2(2θ)m5

DM

7.2× 1029 sec

[

10−8

sin2(2θ)

] [

1 keV
mDM

]5

.

Using the data from M31 we obtain the mass mDM = 7.06 ±
0.05 keV and the mixing angle in the range sin2(2θ) = (2.2−
20) × 10−11. This value is consistent with previous bounds,
Fig. 4. This means that sterile neutrinos should be produced
resonantly [31–33], which requires the presence of significant
lepton asymmetry in primordial plasma at temperatures few
hundreds MeV. This produces restrictions on parameters of
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the νMSM.

The position and flux of the discussed weak line are inevitably
subject to systematical uncertainties. There are two weak in-
strumental lines (K Kα at 3.31 keV and Ca Kα at 3.69 keV),
although formally their centroids are separated by more than
4σ. Additionally, the region below 3 keV is difficult to model
precisely, especially at large exposures, due to the presence of
the absorption edge and galactic emission. However, although
the residuals below 3 keV are similar between theM31 dataset
(Fig. 1) and the blank sky dataset (Fig. 3), the line is not de-
tected in the latter. Although the count rate at these energies
is 4 times larger for M31, the exposure for the blank sky is 16
times larger. This disfavors the interpretation of the line as due
to a wiggle in the effective area. The properties of this line are
consistent (within uncertainties) with the DM interpretation.
To reach a conclusion about its nature, one will need to find
more objects that give a detection or where non-observation of
the line will put tight constraints on its properties. The forth-
coming Astro-H mission [34] has sufficient spectral resolution
to spectrally resolve the line against other nearby features and
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For the Perseus cluster the observations can be grouped in
3 radial bins by their off-center angle. For each bin we fix
the line position to its average value across Perseus (3.47 ±

0.07 keV). The obtained line fluxes together with 1σ errors
are shown in Fig. 2. For comparison, we draw the expected
line distribution from dark matter decay using the NFW pro-
file of [23] (best fit value rs = 360 kpc, black solid line; 1σ
upper bound rs = 872 kpc, black dashed line). The isother-
mal β-profile from [26] is shown in magenta. The surface
brightness profile follows the expected DM decay line’s dis-
tribution in Perseus.

Finally, we compare the predictions for the DM lifetime from
the two objects. The estimates of the average column den-
sity within the central part of M31 give S(rs) ∼ 200 −

600M⊙/pc2 [13]. The column density of clusters follows
from the c − M relation [27–29]. Considering the uncer-
tainty on the profile and that our observations of Perseus go
beyond rs, the average column density in the region of interest
is within S̄ ∼ 100− 600M⊙/pc2. Therefore the signal from
Perseus can be both stronger and weaker than that of M31, by
0.2 − 3.0. This is consistent with the ratio of measured flux
from Perseus to M31 0.7− 2.7.

If DM is made of right-handed (sterile) neutrinos [30], the
lifetime is related to its interaction strength (mixing angle):

τDM =
1024π4

9αG2
F
sin2(2θ)m5

DM

7.2× 1029 sec

[

10−8

sin2(2θ)

] [

1 keV
mDM

]5

.

Using the data from M31 we obtain the mass mDM = 7.06 ±
0.05 keV and the mixing angle in the range sin2(2θ) = (2.2−
20) × 10−11. This value is consistent with previous bounds,
Fig. 4. This means that sterile neutrinos should be produced
resonantly [31–33], which requires the presence of significant
lepton asymmetry in primordial plasma at temperatures few
hundreds MeV. This produces restrictions on parameters of
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the νMSM.

The position and flux of the discussed weak line are inevitably
subject to systematical uncertainties. There are two weak in-
strumental lines (K Kα at 3.31 keV and Ca Kα at 3.69 keV),
although formally their centroids are separated by more than
4σ. Additionally, the region below 3 keV is difficult to model
precisely, especially at large exposures, due to the presence of
the absorption edge and galactic emission. However, although
the residuals below 3 keV are similar between theM31 dataset
(Fig. 1) and the blank sky dataset (Fig. 3), the line is not de-
tected in the latter. Although the count rate at these energies
is 4 times larger for M31, the exposure for the blank sky is 16
times larger. This disfavors the interpretation of the line as due
to a wiggle in the effective area. The properties of this line are
consistent (within uncertainties) with the DM interpretation.
To reach a conclusion about its nature, one will need to find
more objects that give a detection or where non-observation of
the line will put tight constraints on its properties. The forth-
coming Astro-H mission [34] has sufficient spectral resolution
to spectrally resolve the line against other nearby features and
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For the Perseus cluster the observations can be grouped in
3 radial bins by their off-center angle. For each bin we fix
the line position to its average value across Perseus (3.47 ±

0.07 keV). The obtained line fluxes together with 1σ errors
are shown in Fig. 2. For comparison, we draw the expected
line distribution from dark matter decay using the NFW pro-
file of [23] (best fit value rs = 360 kpc, black solid line; 1σ
upper bound rs = 872 kpc, black dashed line). The isother-
mal β-profile from [26] is shown in magenta. The surface
brightness profile follows the expected DM decay line’s dis-
tribution in Perseus.

Finally, we compare the predictions for the DM lifetime from
the two objects. The estimates of the average column den-
sity within the central part of M31 give S(rs) ∼ 200 −

600M⊙/pc2 [13]. The column density of clusters follows
from the c − M relation [27–29]. Considering the uncer-
tainty on the profile and that our observations of Perseus go
beyond rs, the average column density in the region of interest
is within S̄ ∼ 100− 600M⊙/pc2. Therefore the signal from
Perseus can be both stronger and weaker than that of M31, by
0.2 − 3.0. This is consistent with the ratio of measured flux
from Perseus to M31 0.7− 2.7.

If DM is made of right-handed (sterile) neutrinos [30], the
lifetime is related to its interaction strength (mixing angle):

τDM =
1024π4

9αG2
F
sin2(2θ)m5

DM

7.2× 1029 sec

[

10−8

sin2(2θ)

] [

1 keV
mDM

]5

.

Using the data from M31 we obtain the mass mDM = 7.06 ±
0.05 keV and the mixing angle in the range sin2(2θ) = (2.2−
20) × 10−11. This value is consistent with previous bounds,
Fig. 4. This means that sterile neutrinos should be produced
resonantly [31–33], which requires the presence of significant
lepton asymmetry in primordial plasma at temperatures few
hundreds MeV. This produces restrictions on parameters of
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the νMSM.

The position and flux of the discussed weak line are inevitably
subject to systematical uncertainties. There are two weak in-
strumental lines (K Kα at 3.31 keV and Ca Kα at 3.69 keV),
although formally their centroids are separated by more than
4σ. Additionally, the region below 3 keV is difficult to model
precisely, especially at large exposures, due to the presence of
the absorption edge and galactic emission. However, although
the residuals below 3 keV are similar between theM31 dataset
(Fig. 1) and the blank sky dataset (Fig. 3), the line is not de-
tected in the latter. Although the count rate at these energies
is 4 times larger for M31, the exposure for the blank sky is 16
times larger. This disfavors the interpretation of the line as due
to a wiggle in the effective area. The properties of this line are
consistent (within uncertainties) with the DM interpretation.
To reach a conclusion about its nature, one will need to find
more objects that give a detection or where non-observation of
the line will put tight constraints on its properties. The forth-
coming Astro-H mission [34] has sufficient spectral resolution
to spectrally resolve the line against other nearby features and

3

Dataset Exposure χ2/d.o.f. Line position Flux ∆χ2

[ksec] [keV] 10−6 cts/sec/cm2

M31 ON-CENTER 978.9 97.8/74 3.53± 0.025 4.9+1.6
−1.3 13.0

M31 OFF-CENTER 1472.8 107.8/75 3.53± 0.03 < 1.8 (2σ) . . .
PERSEUS CLUSTER (MOS) 528.5 72.7/68 3.50+0.044

−0.036 7.0+2.6
−2.6 9.1

PERSEUS CLUSTER (PN) 215.5 62.6/62 3.46± 0.04 9.2+3.1
−3.1 8.0

PERSEUS (MOS) 1507.4 191.5/142 3.518+0.019
−0.022 8.6+2.2

−2.3 (Perseus) 25.9
+ M31 ON-CENTER 4.6+1.4

−1.4 (M31) (3 dof)
BLANK-SKY 15700.2 33.1/33 3.53± 0.03 < 0.7 (2σ) . . .

TABLE I: Basic properties of combined observations used in this paper. Second column denotes the sum of exposures of individual observa-
tions. The last column shows change in∆χ2 when 2 extra d.o.f. (position and flux of the line) are added. The energies for Perseus are quoted
in the rest frame of the object.
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FIG. 1: Left: Folded count rate (top) and residuals (bottom) for the MOS spectrum of the central region of M31. Statistical Y-errorbars on the
top plot are smaller than the point size. The line around 3.5 keV is not added, hence the group of positive residuals. Right: zoom onto the line
region.

with such a large exposure requires special analysis (as de-
scribed in [16]). This analysis did not reveal any line-like
residuals in the range 3.45−3.58 keVwith the 2σ upper bound
on the flux being 7× 10−7 cts/cm2/sec. The closest detected
line-like feature (∆χ2 = 4.5) is at 3.67+0.10

−0.05 keV, consistent
with the instrumental Ca Kα line.3

Combined fit of M31 + Perseus. Finally, we have performed
a simultaneous fit of the on-center M31 and Perseus datasets
(MOS), keeping common position of the line (in the rest-
frame) and allowing the line normalizations to be different.
The line improves the fit by ∆χ2 = 25.9 (Table I), which
constitutes a 4.4σ significant detection for 3 d.o.f.

Results and discussion. We identified a spectral feature at
E = 3.518+0.019

−0.022 keV in the combined dataset of M31 and
Perseus that has a statistical significance 4.4σ and does not
coincide with any known line. Next we compare its properties
with the expected behavior of a DM decay line.

3 Previously this line has only been observed in the PN camera [9].

The observed brightness of a decaying DM line should be pro-
portional to the dark matter column density SDM =

∫

ρDMdℓ –
integral along the line of sight of the DM density distribution:

FDM ≈ 2.0× 10−6 cts

cm2 · sec

(

Ωfov

500 arcmin2

)

× (1)
(

SDM

500 M⊙/pc2

)

1029 s

τDM

(

keV

mDM

)

.

M31 and Perseus brightness profiles. Using the line flux
of the center of M31 and the upper limit from the off-center
observations we constrain the spatial profile of the line. The
DM distribution in M31 has been extensively studied (see an
overview in [13]). We take NFW profiles for M31 with con-
centrations c = 11.7 (solid line, [22]) and c = 19 (dash-dotted
line). For each concentration we adjust the normalization so
that it passes through first data point (Fig. 2). The c = 19
profile was chosen to intersect the upper limit, illustrating that
the obtained line fluxes of M31 are fully consistent with the
density profile of M31 (see e.g. [22, 24, 25] for a c = 19− 22
model of M31).

3

Dataset Exposure χ2/d.o.f. Line position Flux ∆χ2

[ksec] [keV] 10−6 cts/sec/cm2

M31 ON-CENTER 978.9 97.8/74 3.53± 0.025 4.9+1.6
−1.3 13.0

M31 OFF-CENTER 1472.8 107.8/75 3.53± 0.03 < 1.8 (2σ) . . .
PERSEUS CLUSTER (MOS) 528.5 72.7/68 3.50+0.044

−0.036 7.0+2.6
−2.6 9.1

PERSEUS CLUSTER (PN) 215.5 62.6/62 3.46± 0.04 9.2+3.1
−3.1 8.0

PERSEUS (MOS) 1507.4 191.5/142 3.518+0.019
−0.022 8.6+2.2

−2.3 (Perseus) 25.9
+ M31 ON-CENTER 4.6+1.4

−1.4 (M31) (3 dof)
BLANK-SKY 15700.2 33.1/33 3.53± 0.03 < 0.7 (2σ) . . .

TABLE I: Basic properties of combined observations used in this paper. Second column denotes the sum of exposures of individual observa-
tions. The last column shows change in∆χ2 when 2 extra d.o.f. (position and flux of the line) are added. The energies for Perseus are quoted
in the rest frame of the object.
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FIG. 1: Left: Folded count rate (top) and residuals (bottom) for the MOS spectrum of the central region of M31. Statistical Y-errorbars on the
top plot are smaller than the point size. The line around 3.5 keV is not added, hence the group of positive residuals. Right: zoom onto the line
region.

with such a large exposure requires special analysis (as de-
scribed in [16]). This analysis did not reveal any line-like
residuals in the range 3.45−3.58 keVwith the 2σ upper bound
on the flux being 7× 10−7 cts/cm2/sec. The closest detected
line-like feature (∆χ2 = 4.5) is at 3.67+0.10

−0.05 keV, consistent
with the instrumental Ca Kα line.3

Combined fit of M31 + Perseus. Finally, we have performed
a simultaneous fit of the on-center M31 and Perseus datasets
(MOS), keeping common position of the line (in the rest-
frame) and allowing the line normalizations to be different.
The line improves the fit by ∆χ2 = 25.9 (Table I), which
constitutes a 4.4σ significant detection for 3 d.o.f.

Results and discussion. We identified a spectral feature at
E = 3.518+0.019

−0.022 keV in the combined dataset of M31 and
Perseus that has a statistical significance 4.4σ and does not
coincide with any known line. Next we compare its properties
with the expected behavior of a DM decay line.

3 Previously this line has only been observed in the PN camera [9].

The observed brightness of a decaying DM line should be pro-
portional to the dark matter column density SDM =

∫

ρDMdℓ –
integral along the line of sight of the DM density distribution:

FDM ≈ 2.0× 10−6 cts

cm2 · sec

(

Ωfov

500 arcmin2

)

× (1)
(

SDM

500 M⊙/pc2

)

1029 s

τDM

(

keV

mDM

)

.

M31 and Perseus brightness profiles. Using the line flux
of the center of M31 and the upper limit from the off-center
observations we constrain the spatial profile of the line. The
DM distribution in M31 has been extensively studied (see an
overview in [13]). We take NFW profiles for M31 with con-
centrations c = 11.7 (solid line, [22]) and c = 19 (dash-dotted
line). For each concentration we adjust the normalization so
that it passes through first data point (Fig. 2). The c = 19
profile was chosen to intersect the upper limit, illustrating that
the obtained line fluxes of M31 are fully consistent with the
density profile of M31 (see e.g. [22, 24, 25] for a c = 19− 22
model of M31).
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FIG. 4: Constraints on sterile neutrino DM within νMSM [4]. The
blue point would corresponds to the best-fit value from M31 if the
line comes from DM decay. Thick errorbars are ±1σ limits on the
flux. Thin errorbars correspond to the uncertainty in the DM distri-
bution in the center of M31.

to detect the candidate line in the “strong line” regime [35]. In
particular, Astro-H should be able to resolve the Milky Way
halo’s DM decay signal and therefore all its observations can
be used. Failure to detect such a line will rule out the DM
origin of the Andromeda/Perseus signal presented here.
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FIG. 4: Constraints on sterile neutrino DM within νMSM [4]. The
blue point would corresponds to the best-fit value from M31 if the
line comes from DM decay. Thick errorbars are ±1σ limits on the
flux. Thin errorbars correspond to the uncertainty in the DM distri-
bution in the center of M31.

to detect the candidate line in the “strong line” regime [35]. In
particular, Astro-H should be able to resolve the Milky Way
halo’s DM decay signal and therefore all its observations can
be used. Failure to detect such a line will rule out the DM
origin of the Andromeda/Perseus signal presented here.
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FIG. 4: Constraints on sterile neutrino DM within νMSM [4]. The
blue point would corresponds to the best-fit value from M31 if the
line comes from DM decay. Thick errorbars are ±1σ limits on the
flux. Thin errorbars correspond to the uncertainty in the DM distri-
bution in the center of M31.

to detect the candidate line in the “strong line” regime [35]. In
particular, Astro-H should be able to resolve the Milky Way
halo’s DM decay signal and therefore all its observations can
be used. Failure to detect such a line will rule out the DM
origin of the Andromeda/Perseus signal presented here.
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CLUMPY STREAMS FROM CLUMPY HALOS:
DETECTING MISSING SATELLITES WITH COLD STELLAR STRUCTURES
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ABSTRACT

Dynamically cold stellar streams are ideal probes of the gravitational field of the Milky Way. This
paper re-examines the question of how such streams might be used to test for the presence of “miss-
ing satellites” — the many thousands of dark-matter subhalos with masses 105 − 107M⊙ which are
seen to orbit within Galactic-scale dark-matter halos in simulations of structure formation in ΛCDM
cosmologies. Analytical estimates of the frequency and energy scales of stream encounters indicate
that these missing satellites should have a negligible effect on hot debris structures, such as the tails
from the Sagittarius dwarf galaxy. However, long cold streams, such as the structure known as GD-1
or those from the globular cluster Palomar 5 (Pal 5) are expected to suffer many tens of direct im-
pacts from missing satellites during their lifetimes. Numerical experiments confirm that these impacts
create gaps in the debris’ orbital energy distribution, which will evolve into degree- and sub-degree-
scale fluctuations in surface density over the age of the debris. Maps of Pal 5’s own stream contain
surface density fluctuations on these scales. The presence and frequency of these inhomogeneities sug-
gests the existence of a population of missing satellites in numbers predicted in the standard ΛCDM
cosmologies.
Subject headings: cosmology: theory – dark-matter – Galaxy: halo – Galaxy: kinematics and dynamics

– Galaxy: structure

1. INTRODUCTION

Standard ΛCDMmodels of the Universe allow us to ex-
plain structure formation on large scales. However, they
predict an order of magnitude more dark-matter subha-
los within the halos of typical galaxies than the num-
ber of known satellite galaxies orbiting the Milky Way
(Klypin et al. 1999; Moore et al. 1999; Diemand et al.
2007; Springel et al. 2008). Recent, large-area stellar
surveys have discovered dozens of new satellite galaxies,
most notably using the Sloan Digital Sky Survey (SDSS,
e.g. Willman et al. 2005; Belokurov et al. 2006a, 2007;
Zucker et al. 2006; Irwin et al. 2007; Koposov et al.
2007; Walsh et al. 2007) but the number discrepancy
between simulated dark-matter subhalos and observed
satellite populations is still significant. This discrep-
ancy can partially be explained by accounting for the
the incomplete sky-coverage of SDSS and the distance-
dependent limit on this survey’s sensitivity to low-surface
brightness objects (Koposov et al. 2008; Tollerud et al.
2008). Indeed, models which take this into account and
consider diffuse, (i.e. undetectable) satellite galaxies can
reconcile the number counts for subhalos (Bullock et al.
2010). However, when they impose the suppression of
stellar populations in low mass subhalos (which have
masses below 5 × 108M⊙) the number of undetected
galaxies significantly declines and the prediction of nu-
merous purely dark-matter subhalos less massive than
5× 108M⊙ remains.
There could be a genuine absence of “missing satel-

lites” in the inner halo due to destruction by disk

⋆jhyoon@astro.columbia.edu
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10027, USA
2 Center for Cosmology and Particle Physics, Department of

Physics, New York University, New York 10003, USA

shocks, as illustrated in the calculations D’Onghia et al.
(2010). However, note that these analytic descrip-
tions of disk shocking based on the energy criterion
are known to overestimate disruption rates of subhalos
significantly(Goerdt et al. 2007). Once these destructive
effects are accurately accounted for, proof of the exis-
tence (or lack) of these “missing satellites” could provide
an important constraint on the nature of dark matter,
which sets the minimum scale for the formation of dark-
matter subhalos (e.g. Hooper et al. 2007).
Along with the discovery of new satellite galaxies,

SDSS has also uncovered a multitude of stellar struc-
tures in the Milky Way halo from disrupting glob-
ular clusters or satellite galaxies. In many cases,
the debris is dynamically cold and distributed nar-
rowly in space (Odenkirchen et al. 2001; Belokurov et al.
2006b; Lauchner et al. 2006; Grillmair & Johnson 2006;
Grillmair & Dionatos 2006b; Grillmair 2006, 2009). Such
cold stellar streams should be sensitive probes of the
gravitational potential. On global scales, they can be
used to constrain the radial profile, shape and orienta-
tion of the Milky Way’s triaxial dark-matter halo (e.g.
Johnston et al. 1999; Ibata et al. 2002; Johnston et al.
2005; Binney 2008; Eyre 2010; Koposov et al. 2010;
Law & Majewski 2010). The presence of dark-matter
subhalos would add asymmetries to the global potential
over a range of smaller scales which will perturb these
cold streams or even destroy them. Hence, if the missing
satellites do exist they will add random uncertainties to
any stellar-dynamical assessment of the global potential.
Gravitational lensing has been suggested to be

a useful tool to probe the presence of subha-
los (Chiba 2002; Metcalf & Zhao 2002; Chen et al.
2003; Moustakas & Metcalf 2003; Metcalf et al. 2004;
Keeton & Moustakas 2009; Riehm et al. 2009; Xu et al.
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ABSTRACT

Dark matter sub-halos create gaps in the stellar streams orbiting in the halos of galaxies. We
evaluate the sub-halo stream crossing integral with the guidance of simulations to find that the linear
rate of gap creation, R∪, in a typical Cold Dark Matter (CDM) galactic halo at 100 kpc is R∪ ≃
0.0066M̂−0.35

8 kpc−1Gyr−1, where M̂8(≡ M̂/108M⊙) is the minimum mass halo that creates a visible
gap. The relation can be recast entirely in terms of observables, as R∪ ≃ 0.059w−0.85 kpc−1Gyr−1,
for w in kpc, normalized at 100 kpc. Using published data, the density of gaps is estimated for M31’s
NW stream and the Milky Way Pal 5 stream, Orphan stream, and Eastern Banded Structure. The
estimates of the rates of gap creation have errors of 50% or more due to uncertain dynamical ages and
the relatively noisy stream density measurements. The gap rate-width data are in good agreement
with the CDM predicted relation. The high density of gaps in the narrow streams require a total halo
population of about 105 sub-halos above a minimum mass of 105M⊙.

Subject headings: dark matter; Local Group; galaxies: dwarf

1. INTRODUCTION

The dark matter halos in which galaxies are embedded
are satisfactorily modeled as smooth quasi-isothermal
spheroids, such as Hernquist (1990) or Navarro-Frenk-
White (NFW, 1997) functions, as described in author-
itative texts such as Binney & Merrifield (1998) and
Binney & Tremaine (2008). Such mass models, with
addition of the visible stars, gas and dust, can ade-
quately account for most of the observed internal kine-
matics of galactic systems. On the other hand, N-body
simulations of the formation of dark matter halos ro-
bustly predict that approaching 10% of the mass of any
galactic dark halo should be in the form of sub-halos
with numbers that rise steeply towards lower masses
(Klypin et al. 1999; Moore et al. 1999; Springel et al.
2008; Diemand, Kuhlen & Madau 2007). The baryonic
disk and bulge components of a galaxy will lead to sub-
halo depletion in the central regions (D’Onghia et al.
2010) relative to a pure dark matter model. Although
galaxies do contain visible dwarf galaxies embedded in
dark matter sub-halos, the numbers are far short of the
many thousands expected. Hence, it appears that either
the predicted sub-halos are very dark, or, substantially
not present.
An accurate census of the relatively low mass com-

pletely dark sub-halos remains a significant challenge.
In principle the dark matter itself must have some cross-
section for interaction with either itself or baryons, which
could potentially give rise to annihilation radiation, but
so far there is no clear association of gamma-rays with
known sub-halos (Buckley & Hooper 2010; Vivier et al.
2011). The gravitational effects of the large num-
bers of sub-halos quickly average with distance. Sub-
halos are potentially detectable through micro-lensing
of multiple-image background sources (Mao & Schneider
1998; Dalal & Kochanek 2002). The anomalous flux ra-

1 Department of Astronomy and Astrophysics, Univer-
sity of Toronto, Toronto, ON M5S 3H4, Canada carl-
berg@astro.utoronto.ca

tios of multiple image gravitational lenses are explained
with the addition of at least one moderately massive
sub-halo projected onto the central region of the galaxy
(Vegetti et al. 2010), but this is not a detection of a vast
population. Over a Hubble time sub-halos lead to heat-
ing of some ∼ 30 kms−1 (Carlberg 2009). Such heating
is not easily detectable in most of the visible components
of a galaxy.
The ongoing discovery of thin, low mass, stel-

lar streams in galaxies opens up the possibility
that the sub-halos can be detected through their
gravitational effects on star streams. In partic-
ular, sub-halos that pass near or through a star
stream create a gap in the stream (Ibata et al. 2002;
Siegal-Gaskins & Valluri 2008; Yoon, Johnston & Hogg
2011; Carlberg et al. 2011; Helmi et al. 2011). Detect-
ing gaps in stream pseudo-images is observationally less
expensive than measuring stream kinematics. The chal-
lenge of the image analysis is that the stars in any im-
age are overwhelmingly in the foreground or background
and the signal above the statistical noise at any point
in the stream is often fairly low. Detections of gaps
and lumps have been claimed with good statistical con-
fidence for the Pal 5 stream (Odenkirchen et al. 2003;
Grillmair & Dionatos 2006), the 100 kpc NW stream of
M31 (Carlberg et al. 2011), the Eastern Banded Struc-
ture of the galaxy (Grillmair 2011) and discussed for the
Orphan stream (Newberg et al. 2010).
The purpose of this paper is to develop a basic analytic

prediction of the rate at which sub-halos create visible
gaps in star streams as a statistical measure of the num-
bers of sub-halos present. The relation can be applied
to either simulations or observational data. In principle,
the density of dark matter sub-halos (and other bound
structures) in a galactic halo is simply measured with
the number of times they cross a stellar stream to cre-
ate visible gaps (Carlberg 2009; Yoon, Johnston & Hogg
2011). The rate at which gaps are created in a stream
is the product of the density of sub-halos, the distance
between sub-halo and stream which creates a gap, and

Star Stream Gaps 9

Fig. 11.— The estimated gap rate vs stream width relation for
M31 NW, Pal 5, the EBS and the CDM halo prediction. All data
have been normalized to 100 kpc. The width of the theoretical re-
lation is evaluated from the dispersion in the length-height relation
of Fig. 8. Predictions for an arbitrary alternative mass functions,
N(M) ∝ M−1.6 normalized to have 33 halos above 109 M⊙ is
shown with a dotted line.

when the other streams work fairly well with the adopted
CDM spectrum the Orphan stream is expected to fall
into line and could potentially be a case against a rich
sub-halo population in our galaxy.

5. DISCUSSION AND CONCLUSIONS

This paper lays a basis for understanding the rate at
which dark matter sub-halos create visible gaps in stellar
streams. Restricted n-body experiments guide a calcula-
tion based on the impact approximation. The outcome
is a prediction of the local rate at which gaps are in-
duced in a stellar stream which effectively counts the

number of sub-halos massive enough to produce visible
gaps. The rate of gap creation is cast as a relationship
with the stream width, which gives a predicted relation-
ship between observables that tests the CDM sub-halo
prediction.
Comparison of the CDM based prediction of the gap

rate-width relation with published data for four streams
shows generally good agreement within the fairly large
measurement errors. The result is a statistical argument
that the vast predicted population of sub-halos is indeed
present in the halos of galaxies like M31 and the Milky
Way. The data do tend to be somewhat below the pre-
diction at most points. This could be the result of many
factors, such as the total population of sub-halos is ex-
pected to vary significantly from galaxy to galaxy, allow-
ing for the stream age would lower the predicted number
of gaps for the Orphan stream and possibly others as
well, and most importantly these are idealized stream
models.
There are many improvements possible to strengthen,

or, destroy this result. Each observed stream could be
realized through an n-body model and inserted into an
appropriate model of a sub-halo rich galactic halo. The
result would still be statistical but the various time de-
pendent and mass dependencies would be fully taken into
account. On the observational side the presence or ab-
sence of a particular gap in a stream are somewhat uncer-
tain due to the relatively low signal to noise of streams
at the present time. A statistically robust measure of
the number of gaps needs to be developed. However,
the observations are improving quickly and much more
secure gap descriptions will soon be available. Overall,
within our simplified general modeling of sub-halos cross-
ing streams to create gaps, we finding a perhaps surpris-
ingly good agreement between data acquired for other
purposes and the CDM prediction of a large population
of sub-halos.

This research is supported by NSERC and CIfAR.
Rosie Wyse, Carl Grillmair and an anonymous referee
made helpful suggestions.
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M31 and the Milky Way. The data do tend to be somewhat below the prediction at 
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ABSTRACT

Dynamically cold stellar streams are ideal probes of the gravitational field of the Milky Way. This paper re-examines
the question of how such streams might be used to test for the presence of “missing satellites”—the many thousands
of dark-matter subhalos with masses 105–107 M⊙ which are seen to orbit within Galactic-scale dark-matter halos in
simulations of structure formation in ΛCDM cosmologies. Analytical estimates of the frequency and energy scales
of stream encounters indicate that these missing satellites should have a negligible effect on hot debris structures,
such as the tails from the Sagittarius dwarf galaxy. However, long cold streams, such as the structure known as GD1
or those from the globular cluster Palomar 5 (Pal 5), are expected to suffer many tens of direct impacts from missing
satellites during their lifetimes. Numerical experiments confirm that these impacts create gaps in the debris’ orbital
energy distribution, which will evolve into degree- and sub-degree-scale fluctuations in surface density over the
age of the debris. Maps of Pal 5’s own stream contain surface density fluctuations on these scales. The presence
and frequency of these inhomogeneities suggests the existence of a population of missing satellites in numbers
predicted in the standard ΛCDM cosmologies.

Key words: cosmology: theory – dark matter – Galaxy: halo – Galaxy: kinematics and dynamics – Galaxy:
structure

1. INTRODUCTION

Standard ΛCDM models of the universe allow us to explain
structure formation on large scales. However, they predict an
order of magnitude more dark-matter subhalos within the halos
of typical galaxies than the number of known satellite galaxies
orbiting the Milky Way (Klypin et al. 1999; Moore et al. 1999;
Diemand et al. 2007; Springel et al. 2008). Recent, large-area
stellar surveys have discovered dozens of new satellite galaxies,
most notably using the Sloan Digital Sky Survey (SDSS; e.g.,
Willman et al. 2005; Belokurov et al. 2006a, 2007; Zucker
et al. 2006; Irwin et al. 2007; Koposov et al. 2007; Walsh
et al. 2007), but the number discrepancy between simulated
dark-matter subhalos and observed satellite populations is still
significant. This discrepancy can partially be explained by
accounting for the incomplete sky coverage of SDSS and the
distance-dependent limit on this survey’s sensitivity to low-
surface brightness objects (Koposov et al. 2008; Tollerud et al.
2008). Indeed, models which take this into account and consider
diffuse (i.e., undetectable) satellite galaxies can reconcile the
number counts for subhalos (Bullock et al. 2010). However,
when they impose the suppression of stellar populations in
low-mass subhalos (which have masses below 5 × 108 M⊙),
the number of undetected galaxies significantly declines and
the prediction of numerous purely dark-matter subhalos less
massive than 5 × 108 M⊙ remains.

There could be a genuine absence of “missing satellites” in
the inner halo due to destruction by disk shocks, as illustrated in
the calculations of D’Onghia et al. (2010). However, note that
these analytic descriptions of disk shocking based on the energy
criterion are known to overestimate disruption rates of subhalos
significantly (Goerdt et al. 2007). Once these destructive effects
are accurately accounted for, proof of the existence (or lack) of
these “missing satellites” could provide an important constraint
on the nature of dark matter, which sets the minimum scale for
the formation of dark-matter subhalos (e.g., Hooper et al. 2007).

Along with the discovery of new satellite galaxies, SDSS has
also uncovered a multitude of stellar structures in the Milky
Way halo from disrupting globular clusters or satellite galaxies.
In many cases, the debris is dynamically cold and distributed
narrowly in space (Odenkirchen et al. 2001; Belokurov et al.
2006b; Lauchner et al. 2006; Grillmair & Johnson 2006;
Grillmair & Dionatos 2006b; Grillmair 2006, 2009). Such cold
stellar streams should be sensitive probes of the gravitational
potential. On global scales, they can be used to constrain the
radial profile, shape, and orientation of the Milky Way’s triaxial
dark-matter halo (e.g., Johnston et al. 1999; Ibata et al. 2002;
Johnston et al. 2005; Binney 2008; Eyre 2010; Koposov et al.
2010; Law & Majewski 2010). The presence of dark-matter
subhalos would add asymmetries to the global potential over a
range of smaller scales which will perturb these cold streams or
even destroy them. Hence, if the missing satellites do exist,
they will add random uncertainties to any stellar-dynamical
assessment of the global potential.

Gravitational lensing has been suggested to be a useful tool
to probe the presence of subhalos (Chiba 2002; Metcalf &
Zhao 2002; Chen et al. 2003; Moustakas & Metcalf 2003;
Metcalf et al. 2004; Keeton & Moustakas 2009; Riehm et al.
2009; Xu et al. 2009). These investigations conclude that flux
ratio anomalies in lensed images or lensing time delays could
be caused by dark-matter subhalos, though the constraints are
limited by our knowledge of the spatial distribution of subhalos.
However, this method is only applicable to the most massive
and most centrally concentrated dark-matter halos and not to
galaxies like the Milky Way more generally.

The effect of dark-matter subhalos on stellar streams has been
explored in several previous studies. Ibata et al. (2002) showed
that debris from the destruction of a 106 M⊙ globular cluster
should be affected by heating due to repeated close encounters
of subhalos and concluded that this effect could be detectable
with future astrometric surveys. Moreover, Quinn et al. (2008)
found that the inhomogeneities seen in Palomar 5’s (Pal 5’s)

1
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will suppress small-scale structures, but there is evidence for them!WDM

See also other recent papers by Carlberg et al.



We conclude that line-of-sight structures can be as important as intrinsic substructures in causing 
flux-ratio anomalies. ... This alleviates the discrepancy between models and current data, but a larger 
observational sample is required for a stronger test of the theory.

D. D. Xu, Shude Mao, Andrew Cooper, Liang Gao, Carlos S. Frenk, Raul Angulo, John Helly                MNRAS (2012)

Constraints on Small-Scale Structures of Dark Matter from Flux Anomalies in Quasar Gravitational Lenses

We investigate the statistics of flux anomalies in gravitationally lensed QSOs as a function of dark 
matter halo properties such as substructure content and halo ellipticity.  ... The constraints that we 
are able to measure here with current data are roughly consistent with ΛCDM N-body simulations.

 Effects of Line-of-Sight Structures on Lensing Flux-ratio Anomalies in a ΛCDM Universe

R. Benton Metcalf, Adam Amara                                                                                                 MNRAS 419, 3414 (2012)

More evidence for substructure in DM halos: lensing flux anomalies

Gravitational detection of a low-mass dark satellite galaxy at cosmological distance, Simona Vigetti+ 2012 Nature

This group uses galaxy-galaxy lensing to look for the effects of 
substructure.  Our results are consistent with the predictions from 
cold dark matter simulations at the 95 per cent confidence level, 
and therefore agree with the view that galaxies formed 
hierarchically in a Universe composed of cold dark matter.

Direct Detection of Cold Dark Matter Substructure 
Neal Dalal & Christopher S. Kochanek                                                                                               ApJ 572, 25 (2002)

We devise a method to measure the abundance of satellite halos in gravitational lens galaxies and 
apply our method to a sample of seven lens systems. After using Monte Carlo simulations to 
verify the method, we find that substructure comprises fsat=0.02 (median, 0.006<fsat<0.07 at 90% 
confidence) of the mass of typical lens galaxies, in excellent agreement with predictions of cold 
dark matter (CDM) simulations.



Small-Scale Challenges to ΛCDM
Many more small halos than observed small galaxies"
" 1) Field galaxies"
" 2) Satellite galaxies

Cusp-Core issue at centers of small galaxies

“Too Big to Fail” problem for satellite galaxies

Evidence that the large numbers of small subhalos 
predicted by ΛCDM actually exist:"
" 1) Gaps in cold stellar streams in the Milky Way"
" 2) Gravitational lensing “flux anomalies”

Evidence Supporting ΛCDM



MBK, Bullock, & Kaplinghat (2012)

“massive failures”: 
highest resolution 
LCDM simulations 
predict ~10 subhalos in 
this range in the MW, 
but we don’t see any 
such galaxies [except 
Sagittarius (?)]

SMC

LMCObserved Milky Way Satellites

All of the bright 
MW dSphs are 
consistent with 
V
max

. 25 km/s

No indication that more 
massive halos host more 

luminous galaxies

c.f. Strigari et al. 2008

(see also Strigari, Frenk, 
& White 2010)

Of the ~10 biggest subhalos, ~8 cannot host 
any known bright MW satellite

???

???

Image credits: V. Springel / Virgo Consortium; A. Riess / HST; SDSS; M. Schirmer
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???

The Milky Way is anomalous?	
!
The Milky Way has a low mass 
dark matter halo? 	
!
Galaxy formation is stochastic 
at low masses?	
!
Dark matter is not just CDM 
-- maybe WDM or even 
repulsive self-interacting DM?	
!
Or maybe high-resolution 
CDM-only simulations are 
being misinterpreted?  Stellar 
feedback can strongly modify 
the central structure of 
subhalos, and may resolve the 
TBTF challenge to ΛCDM. 

Michael Boylan-Kolchin, Bullock, Kaplinghat 2011, 2012

Possible Solutions  
to “Too Big to Fail”



 THE BARYON CYCLE OF DWARF GALAXIES: "
CORED AND NOT TOO-BIG-TO-FAIL"

Piero Madau & Sijing Shen!
Department of Astronomy and Astrophysics, University of California, Santa Cruz!!

 ABSTRACT!
We present more results from a fully cosmological, “zoom-in”, CDM simulation of a group 
of seven field dwarf galaxies with present-day virial masses in the range Mvir  = 4. 4 x108 
− 3. 6x1010 M⊙.  The simulation, run with the TreeSPH code Gasoline  at 86 (proper) 
parsec force resolution, has been previously shown to successfully reproduce the 
observed stellar mass and cold gas content, resolved star formation histories, and 
metallicities of field dwarfs in the Local Volume. Here we show that repeated, supernova-
driven gas outflows turn dark matter (DM) cusps into kpc-size cores of nearly constant 
density in all systems having a stellar mass M∗ ≳ 107 M⊙, with a “DM removal efficiency” 
that increases with decreasing host halo mass. DM cores form early, survive during galaxy!
mergers, and grow secularly over time to kpc scales as the energy input from supernovae 
exceeds 1056 ergs. The “scouring” of the core is not as energetically taxing as estimated 
in some non-cosmological idealized calculations, and the fraction of the energy released 
by supernovae that is absorbed by the DM is only of order a few percent. The present-day 
slopes of the inner dark matter mass profiles of the simulated “Bashful” and “Doc” 
massive dwarfs are similar to those measured in the luminous Fornax and Sculptor dwarf 
spheroidals. None of the simulated dwarfs has a circular velocity profile exceeding 20 km 
s−1  in the inner 1 kpc, i.e. supernova feedback can plausibily solve the “too-big-to-
fail” problem for Milky Way subhalos.



Many Opportunities for Progress Now: !
Halo Substructure, Early Galaxies, Galactic Archeology

● New ways of observing dark matter halo substructure"
       Optical lensing of quasar narrow line regions!
       ALMA spectral detection of lensing of dusty galaxies

● AGORA high-resolution galaxy simulation comparison"
       Will clarify cusp-core and TBTF ΛCDM predictions for !
       satellite and dwarf galaxies, and larger galaxies

● HST Frontier Fields program"
       Uses lensing clusters to get a preview of JWST!
       Will clarify nature of high-z galaxies, reionization
● GAIA will do astrometry on 109 stars in the Milky Way"
       This will allow new probes of dark matter substructure!
        Parallel spectroscopic programs on chemical evolution



● New ways of observing dark matter halo substructure"
       Optical lensing of quasar narrow line regions

Detection of a substructure with adaptive optics integral field spectroscopy of the gravitational lens B1422+231
A. M. Nierenberg, T. Treu, S. A. Wright, C. D. Fassnacht, M. W. Auger                                                    arXiv:1402.1496

In this paper we demonstrate for the first time that subhalos can be detected using strongly 
lensed narrow-line quasar emission, as originally proposed by Moustakas & Metcalf (2003).  Many 
quasars have detectable narrow line emission, so this technique can really measure substructure.

ALMA spectral detection of lensing of dusty galaxies

Yashar Hezaveh, Neal Dalal, Gilbert Holder, Michael Kuhlen,  Daniel Marrone, Norman Murray, Joaquin Vieira    ApJ 2013
Dark Matter Substructure Detection Using Spatially Resolved Spectroscopy of Lensed Dusty Galaxies

Lensed"
SubMM"
Galaxies

We find that modeling of the full, three- 
dimensional (angular position and radial 
velocity) data can significantly facilitate 
substructure detection, increasing the 
sensitivity of observables to lower mass 
subhalos.   We find that in typical DSFG 
lenses, there is a ∼55% probability of 

detecting a substructure with M > 108 M⊙    
with more than 5σ detection significance in 
each lens, if the abundance of substructure 
is consistent with previous lensing results.	




● HST Frontier Fields program"
       Uses lensing clusters to get a preview of JWST!
       Will clarify nature of high-z galaxies, reionization!
       The program runs 2014-2016, includes Chandra & Spitzer

Abell 2744
Cluster 

a model of the cluster’s ‘optics’ gives us the magnification power
model credit: J. Richard, CATS teambackground galaxies are magnified by factors up to ~10-100, 

providing the deepest yet view of the universe

Chandra Frontier Fields

archival Chandra data available for all of Frontier Fields;
Chandra FOV encompasses both cluster + parallel fields

MACS0717.5+3745
C. Jones-Forman

MACS0416.1-2403
S. Murray

Spitzer Frontier Fields

Spitzer is dedicating >900 hrs of DD time 
      deep IRAC imaging at 3.6, 4.5 μm to ~26.5 ABmag depths
      (1st four clusters this year;  last 2 TBD)

N. Laporte et al.: The first Frontier Fields cluster: 4.5µm excess in a z ⇠8 galaxy candidate in Abell 2744

Stacked 
optical F435W F606W F814W F105W F125W F140W F160W 3.6µm 4.5µm 

Fig. 1. Postage stamps of the Y105-dropout discussed in this letter. The size of each HST stamp is 2”x2” ( 7”x7” for the IRAC channels) and the
position of the target is displayed by a red circle of 0.4” (ACS and WFC3) and 1.4” (IRAC) radius. We show also the mean stacked optical image
computed using the 3 ACS bands.

Table 2. Photometry of the z ⇠8 galaxy candidate

Filter F105W F125W F140W F160W 3.6µm 4.5µm

Abell2744_Y1 27.50 26.32 26.26 26.25 >25.48a 25.16
±0.08 ±0.04 ±0.03 ±0.04 ±0.16

Notes. Informations given in this table : Kron-like aperture corrected
photometry . Error bars are computed using noise measured in empty
apertures around the object.
a 3� limit at the position of our candidate

similar to other high-redshift IRAC studies (e.g., F13). Then,
we measured the photometry on residual (contamination-free)
image in a 1.4” radius aperture. At 3.6µm, the source is not de-
tected neither in original nor in residual images. If we consider
the 4.5µm detection and the 3.6µm 3 sigma limit, the flux ratio
is larger than ⇡1.3.

4. Physical properties

4.1. Photometric redshift

Photometric redshifts were computed with a new version (v12.2)
of the public code Hyperz (New�Hyperz6), originally devel-
opped by Bolzonella et al. (2000). The method consists on fitting
the SED by a library of 14 templates: 8 evolutionary synthetic
SEDs extracted from Bruzual & Charlot (2003), with Chabrier
IMF (Chabrier 2003) and solar metallicity ; a set of 4 empirical
SEDs compiled by Coleman et al. (1980), and 2 starburst galax-
ies from the Kinney et al. (1996) library. In case of non-detection
in a given band, the flux in this band was set to zero, with an error
bar corresponding to the limiting flux.

The best SED-fit is found at z ⇠7.98 (�2
red=0.17), with 1�

confidence interval ranging from z ⇠7.5 to 8.2. We also fitted the
SED assuming a low-redshift solution, with z ranging from 0.0
to 3.0. In that configuration the best SED-fit is found at z ⇠1.92
(�2=1.17 - 1� : 1.7 - 2.1). This z ⇠8 candidate has a SED re-
markably similar to the F13 z ⇠7.51 galaxy where a strong break
is observed in the IRAC data. For these two galaxies, the excess
of flux observed at 4.5µm could be explained by contamination
due to strong H�+[OIII] lines. For the SED fit shown in Fig.2 ob-
tained assuming 1/50 solar metallicity and imposing an age prior
of >50 Myr, the [OIII]5007, H� restframe equivalent widths are
600 and 190 Å , respectively, which are compatible with the val-
ues derived by Smit et al. (2013) from the photometry of seven
z ⇠ 6.6-7 LBGs. At this stage and even if the high-redshift solu-
tion seems more likely and the low-z solution disfavored by the
SED-fitting work, it appears di�cult to conclude definitively on
the nature of this source. The arrival of new IRAC data in 2014
will improve the SNR at 3.6µm and help to better understand the
nature of this object.

6 http://userpages.irap.omp.eu/⇠rpello/newhyperz/

Fig. 2. Fit of the z ⇠8 galaxy candidate SED at high (black line) and
low-redshift (magenta line). ACS upper limits are shown at 1� and
IRAC non-detection is plotted at 3�. The high-z SED fit shown here
is for 1/50 solar metallicity, imposing an age prior of > 50 Myr. The
high-redshift solution shows an excess at 4.5µm due to [OIII] and H�
emission lines as already observed in the z ⇠7.51 galaxy published in
F13. P(z) and �2(z) are also plotted.

4.2. Magnification

One of the interest of using lensing by galaxy clusters to search
for very high-redshift galaxies is the magnification by the cluster
lens. However this object is relatively far from the cluster core.
We estimated an amplification factor of µ=1.49±0.02 using the
public lensing model provided by the CATS group (Richard et
al., in prep), in the framework of the Frontier Fields. This factor
is consistent with those found using other lensing models pro-
duced by Merten (µ=1.50), Sharon (µ=1.91), Williams (µ=1.16)
and Zitrin (µ=1.33-2.11), confirming a moderate amplification
regime for that object.

4.3. Star Formation Rate, Mass and Size

In this section, the SFRs, mass and luminosities are corrected for
magnification, and are derived assuming a Salpeter IMF from
0.1–100 M�. Overall the quantities derived from SED fits are
fairly uncertain, since they depend on assumptions on the metal-
licity and degeneracies in age–extinction. We therefore only give
indicative values for these quantities.

With an absolute UV magnitude M1500 = -20.5 the star for-
mation rate is SFR ⇡ 8 M�.yr�1 using the standard Kennicutt
(1998) relation, and without correcting for attenuation by dust.
Standard SED fits with solar metallicity models and neglecting
nebular emission yield SFR ⇠ 10 M�.yr�1 for a AV=0.15. When
nebular emission is included, following the models of Schaerer
& de Barros (2009,2010) the best fits yield SFR ⇠ 8–60 M�.yr�1,

Article number, page 3 of 4

Laporte et 2014



● GAIA will do astrometry on 109 stars in the Milky Way"
       This will allow new probes of dark matter substructure!
        Parallel spectroscopic programs on chemical evolution



Outline

Grand Unification of Forces 
Phase Transitions in the Early Universe 
Topological Defects: Strings, Monopoles 
Cosmic Inflation 
Motivations: Horizon, Flatness, Dragons, Structure 
How much inflation is needed? 
!



Grand Unification 
!
The basic premise of grand unification is that the known symmetries of the 
elementary particles result from a larger (and so far unknown) symmetry 
group G. Whenever a phase transition occurs, part of this symmetry is lost, 
so the symmetry group changes. This can be represented mathematically as 

!
  G → H → ... → SU(3) x SU(2) x U(1) → SU(3) x U(1). 

!
Here, each arrow represents a symmetry breaking phase transition where 
matter changes form and the groups - G, H, SU(3), etc. - represent the 
different types of matter, specifically the symmetries that the matter exhibits 
and they are associated with the different fundamental forces of nature.  
!
The liquid phase of water is rotationally symmetric, that is, it looks the same 
around each point regardless of the direction in which we look. We could 
represent this large three-dimensional symmetry by the group G (actually 
SO(3)). The solid form of frozen water, however, is not uniform in all 
directions; the ice crystal has preferential lattice directions along which the 
water molecules align. The group describing these different discrete 
directions H, say, will be smaller than G. Through the process of freezing, 
therefore, the original symmetry G is broken down to H. 
!



Grand Unified Theory 
!
GUT refers to a theory in physics that unifies the strong interaction and 
electroweak interaction. Several such theories have been proposed, but none 
is currently universally accepted. The (future) theory that will also include 
gravity is termed theory of everything.  Some common GUT models are:  
!

• Georgi-Glashow (1974) model -- SU(5) 
• SO(10)  
• Flipped SU(5) -- SU(5)×U(1)  
• Pati-Salam model -- SU(4)×SU(2)×SU(2)  
• E6  

!
There is still no hard evidence that nature is described by a GUT theory. But 
since grand unification is realized with supersymmetry, i.e. the three forces do 
come together at about 1016 GeV, the GUT hypothesis is theoretically 
attractive. 
!
However, GUT models generically predict the existence of topological defects 
such as monopoles, cosmic strings, domain walls, and others. None have been 
observed and explaining their absence is known as the monopole problem in 
cosmology.  Solving it was Alan Guth’s motivation for inventing Cosmic 
Inflation. 
  



Topological Defects
These arise when some n-component scalar field φi(x) = 0 because of 
topological trapping that occurs as a result of a phase transition in the 
early universe (as I will explain shortly).   
!
If the φ field is complex then n=2, and φi(x) = 0 occurs along a linear 
locus of points, a string, in three dimensional space.  This corresponds 
to a 2-dimensional world-sheet in the 3+1 dimensions of spacetime.   
!
If the φ field has three components, then φi(x) = 0 occurs at a point in 
three dimensional space, a monopole.  This corresponds to a  
1-dimensional world-line in the 3+1 dimensions of spacetime.   
!
If the φ field has four components, then φi(x) = 0 occurs at a point in 
space-time, an instanton.  A related concept is texture. 
!
Topological defects were once thought to be a possible origin of the 
fluctuations that lead to galaxy formation.



Phase transitions 
!
The cosmological significance of symmetry breaking is due to the fact that 
symmetries are restored at high temperature (just as it is for liquid water when ice 
melts). For extremely high temperatures in the early universe, we might even 
achieve a grand unified state G. Viewed from the moment of creation forward, the 
universe will pass through a sucession of phase transitions at which the strong 
nuclear force will become differentiated and then the weak nuclear force and 
electromagnetism. 
!
Phase transitions can have a wide variety of important implications including the 
formation of topological defects - cosmic strings, domain walls, monopoles and 
textures, or it may even trigger a period of exponential expansion (inflation). 

Phase transitions can be either dramatic 
- first order, or smooth - second order. 
!
During a first-order phase transition, the 
matter fields get trapped in a `false 
vacuum' state from which they can only 
escape by nucleating bubbles of the new 
phase, that is, the `true vacuum' state. 
!

False vacuum

True vacuum



First-order phase transitions (illustrated below) occur through the formation of bubbles 
of the new phase in the middle of the old phase; these bubbles then expand and 
collide until the old phase disappears completely and the phase transition is complete. 

First-order phase transitions proceed by bubble nucleation. A bubble of the new phase 
(the true vacuum) forms and then expands until the old phase (the false vacuum) 
disappears. A useful analogue is boiling water in which bubbles of steam form and expand 
as they rise to the surface. 

Second-order phase transitions, on the other hand, proceed smoothly. The old 
phase transforms itself into the new phase in a continuous manner.  There is energy 
(specific heat of vaporization, for example) associated with a first order phase 
transition. 
!
Either type of phase transition can produce stable configurations called “topological 
defects.” 
!



Topological defects are stable configurations that are in the original, symmetric 
or old phase, but nevertheless for topological reasons they persist after a phase 
transition to the asymmetric or new phase is completed - because to unwind 
them would require a great deal of energy. There are a number of possible types 
of defects, such as domain walls, cosmic strings, monopoles, and textures. The 
type of defect is determined by the symmetry properties of the matter and the 
nature of the phase transition. 
!
Domain walls:  These are two-dimensional objects that form when a discrete 
symmetry is broken at a phase transition. A network of domain walls effectively 
partitions the universe into various `cells'. Domain walls have some rather 
peculiar properties. For example, the gravitational field of a domain wall is 
repulsive rather than attractive. 

Cosmic Strings & Other Topological Defects



Cosmic strings:  These are one-dimensional (that is, line-like) objects which 
form when an axial or cylindrical symmetry is broken. Strings can be associated 
with grand unified particle physics models, or they can form at the electroweak 
scale. They are very thin and may stretch across the visible universe. A typical 
GUT string has a thickness that is less then a trillion times smaller that the 
radius of a hydrogen atom, but a 10 km length of one such string would weigh 
as much as the earth itself!

Cosmic strings are associated with models in which the set of minima are not simply-connected, 
that is, the vacuum manifold has `holes' in it. The minimum energy states on the left form a circle 
and the string corresponds to a non-trivial winding around this.



Monopoles:  These are zero-dimensional (point-like) objects which form 
when a spherical symmetry is broken. Monopoles are predicted to be 
supermassive and carry magnetic charge. The existence of monopoles is 
an inevitable prediction of grand unified theories (GUTs - more on this 
shortly); why the universe isn’t filled with them is one of the puzzles of the 
standard cosmology.

Monopole No Monopole



Textures:  These form when larger, more complicated symmetry groups 
are completely broken. Textures are delocalized topological defects which 
are unstable to collapse. A speculation that the largest “cold spot” in the 
WMAP CMB data was caused by cosmic textures was published by Cruz et 
al. (2007, Science 318, 1612), but by 2010 this was shown to be unlikely.

Examples of delocalized texture configurations in one and two 
dimensions.



A Cosmic Microwave Background Feature 
Consistent with a Cosmic Texture

The zone of the CS has been 
placed at the center of the black 
circle.

The Axis of Evil revisited!
Kate Land, Joao Magueijo, 2007 MNRAS, 378, 153!!
Abstract: In light of the three-year data release from WMAP we re-
examine the evidence for the ``Axis of Evil'' (AOE) [anomalous 
alignment of CMB multipoles in the direction l ≃ −100, b = 60]. We 
discover that previous statistics are not robust with respect to the data-
sets available and different treatments of the galactic plane. We identify 
the cause of the instability and implement an alternative ``model 
selection'' approach. A comparison to Gaussian isotropic simulations find 
the features significant at the 94-98% level, depending on the particular 
AOE model. The Bayesian evidence finds lower significance, ranging 
from ``substantial''  to no evidence for the most general AOE model. 





Planck Collaboration: Cosmological parameters
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Fig. 39. Left: Planck TT spectrum at low multipoles with 68% ranges on the posteriors. The “rainbow” band show the best fits to
the entire Planck+WP likelihood for the base ⇤CDM cosmology, colour-coded according to the value of the scalar spectral index
ns. Right: Limits (68% and 95%) on the relative amplitude of the base ⇤CDM fits to the Planck+WP likelihood fitted only to the
Planck TT likelihood over the multipole range 2  `  `max.

We find the following notable results using CMB data alone:

– The deviation of the scalar spectral index from unity is ro-
bust to the addition of tensor modes and to changes in the
matter content of the Universe. For example, adding a tensor
component we find ns = 0.9600 ± 0.0072, a 5.5� departure
from ns = 1.

– A 95% upper limit on the tensor-to-scalar ratio of r0.002 <
0.11. The combined contraints on ns and r0.002 are on the
borderline of compatibility with single-field inflation with a
quadratic potential (Fig. 23).

– A 95% upper limit on the summed neutrino mass of
P

m⌫ <
0.66 eV.

– A determination of the e↵ective number of neutrino-like rel-
ativistic degrees of freedom of Ne↵ = 3.36±0.34, compatible
with the standard value of 3.046.

– The results from Planck are consistent with the results of
standard big bang nucleosynthesis. In fact, combining the
CMB data with the most recent results on the deuterium
abundance, leads to the constraint Ne↵ = 3.02 ± 0.27, again
compatible with the standard value of 3.046.

– New limits on a possible variation of the fine-structure
constant, dark matter annihilation and primordial magnetic
fields.

We also find a number of marginal (around 2�) results,
perhaps indicative of internal tension within the Planck data.
Examples include the preference of the (phenomenological)
lensing parameter for values greater than unity (AL = 1.23±0.11;
Eq. 44) and for negative running (dns/d ln k = �0.015±0.09; Eq.
62b). In Planck Collaboration XXII (2013), the Planck data indi-
cate a preference for anti-correlated isocurvature modes and for
models with a truncated power spectrum on large scales. None
of these results have a decisive level of statistical significance,
but they can all be traced to an unusual aspect of the tempera-
ture power spectrum at low multipoles. As can be seen in Fig.
1, and on an expanded scale in the left-hand panel of Fig. 39,
the measured power spectrum shows a dip relative to the best-fit
base ⇤CDM cosmology in the multipole range 20 <⇠ ` <⇠ 30 and
an excess at ` = 40. The existence of “glitches” in the power
spectrum at low multipoles was noted by the WMAP team in the

first-year papers (Hinshaw et al. 2003; Spergel et al. 2003) and
acted as motivation to fit an inflation model with a step-like fea-
ture (Peiris et al. 2003). Similar investigations have been carried
out by a number of authors, (see e.g., Mortonson et al. 2009, and
references therein). At these low multipoles, the Planck spec-
trum is in excellent agreement with the WMAP nine-year spec-
trum (Planck Collaboration XV 2013), so it is unlikely that any
of the features such as the low quadrupole or “dip” in the multi-
pole range 20–30 are caused by instrumental e↵ects or Galactic
foregrounds. These are real features of the CMB anisotropies.

The Planck data, however, constrain the parameters of the
base ⇤CDM model to such high precision that there is little re-
maining flexibility to fit the low-multipole part of the spectrum.
To illustrate this point, the right-hand panel of Fig. 39 shows the
68% and 95% limits on the relative amplitude of the base⇤CDM
model (sampling the chains constrained by the full likelihood)
fitted only to the Planck TT likelihood over the multipole range
2  `  `max. From multipoles `max ⇡ 25 to multipoles `max ⇡
35, we see more than a 2� departure from values of unity. (The
maximum deviation from unity is 2.7� at ` = 30.) It is di�cult
to know what to make of this result, and we present it here as a
“curiosity” that needs further investigation. The Planck temper-
ature data are remarkably consistent with the predictions of the
base ⇤CDM model at high multipoles, but it is also conceivable
that the ⇤CDM cosmology fails at low multipoles. There are
other indications, from both WMAP and Planck data for “anoma-
lies” at low multipoles (Planck Collaboration XXIII 2013), that
may be indicative of new physics operating on the largest scales
in our Universe. Interpretation of large-scale anomalies (includ-
ing the results shown in Fig. 39) is di�cult in the absence of a
theoretical framework. The problem here is assessing the role of
a posteriori choices, i.e., that inconsistencies attract our atten-
tion and influence our choice of statistical test. Nevertheless, we
know so little about the physics of the early Universe that we
should be open to the possibility that there is new physics be-
yond that assumed in the base ⇤CDM model. Irrespective of the
interpretation, the unusual shape of the low multipole spectrum
is at least partly responsible for some of the 2� e↵ects seen in
the analysis of extensions to the⇤CDM model discussed in Sect.
6.

54

The main Planck 
anomaly is the 
low amplitudes 
at l ≈ 21-27
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Seven-Year Wilkinson Microwave Anisotropy Probe 
(WMAP) Observations: Are There Cosmic Microwave 
Background Anomalies?  C. Bennett et al. WMAP7 Jan 2010

A simple six-parameter LCDM model provides a successful fit to WMAP data, both when the data are 
analyzed alone and in combination with other cosmological data. Even so, it is appropriate to search for 
any hints of deviations from the now standard model of cosmology, which includes inflation, dark energy, 
dark matter, baryons, and neutrinos. The cosmological community has subjected the WMAP data to 
extensive and varied analyses. While there is widespread agreement as to the overall success of the six-
parameter LCDM model, various "anomalies" have been reported relative to that model. In this paper we 
examine potential anomalies and present analyses and assessments of their significance. In most cases 
we find that claimed anomalies depend on posterior selection of some aspect or subset of the data. 
Compared with sky simulations based on the best fit model, one can select for low probability features of 
the WMAP data. Low probability features are expected, but it is not usually straightforward to determine 
whether any particular low probability feature is the result of the a posteriori selection or of non-standard 
cosmology. We examine in detail the properties of the power spectrum with respect to the LCDM model. 
We examine several potential or previously claimed anomalies in the sky maps and power spectra, 
including cold spots, low quadrupole power, quadropole-octupole alignment, hemispherical or dipole 
power asymmetry, and quadrupole power asymmetry. We conclude that there is no compelling 
evidence for deviations from the LCDM model, which is generally an acceptable statistical fit to 
WMAP and other cosmological data.

arXiv:1001.4758v1



Why do cosmic topological defects form?
If cosmic strings or other topological defects can form at a cosmological phase 
transition, then they will form. This was first pointed out by Tom Kibble and, in a 
cosmological context, the defect formation process is known as the Kibble 
mechanism.  
 

The simple fact is that causal effects in the early universe can only propagate (as at 
any time) at the speed of light c. This means that at a time t, regions of the universe 
separated by more than a distance d=ct can know nothing about each other. In a 
symmetry breaking phase transition, different regions of the universe will choose to 
fall into different minima in the set of possible states (this set is known to 
mathematicians as the vacuum manifold). Topological defects are precisely the 
“boundaries” between these regions with different choices of minima, and their 
formation is therefore an inevitable consequence of the fact that different regions 
cannot agree on their choices.

For example, in a theory with two minima, plus 
+ and minus -, then neighboring regions 
separated by more than ct will tend to fall 
randomly into the different states (as shown 
below). Interpolating between these different 
minima will be a domain wall.



Cosmic strings will arise in slightly more 
complicated theories in which the minimum 
energy states possess `holes'. The strings will 
simply correspond to non-trivial `windings' 
around these holes (as illustrated at right).

The Kibble mechanism for the 
 formation of cosmic strings.

Topological defects can provide a unique link to the physics of the very early 
universe. Furthermore, they can crucially affect the evolution of the universe, so their 
study is an unavoidable part of any serious attempt to understand the early universe. 
The cosmological consequences vary with the type of defect considered. Domain 
walls and monopoles are cosmologically catastrophic.  Any cosmological model 
in which they form will evolve in a way that contradicts the basic observational facts 
that we know about the universe. Such models must therefore be ruled out!  Cosmic 
inflation was invented to solve this problem. 
 

Cosmic strings and textures are (possibly) much more benign. Among other things, 
they were until recently thought to be a possible source of the fluctuations that led to 
the formation of the large-scale structures we observe today, as well as the 
anisotropies in the Cosmic Microwave Background. However, the CMB anisotropies 
have turned out not to agree with the predictions of this theory.



Cosmic String Dynamics and Evolution
The evolution of cosmic string network is the relatively complicated result of 
only three rather simple and fundamental processes: cosmological 
expansion, intercommuting & loop production, and radiation.  !
Cosmological expansion 
The overall expansion of the universe will ‘stretch’ the strings, just like any 
other object that is not gravitationally bound. You can easily undertand this 
through the well-known analogy of the expanding balloon. If you draw a line 
of the surface of the balloon and then blow it up, you will see that the length 
of your `string' will grow at the same rate as the radius of the balloon. 
 

Intercommuting & loop production 
Whenever two long strings cross each other, they exchange ends, or `intercommute' (case 
(a) in the figure below). In particular, a long string can intercommute with itself, in which 
case a loop will be produced (this is case (b) below).



Radiation from strings 
Both long cosmic strings and small loops will emit radiation. In most 
cosmological scenarios this will be gravitational radiation, but electromagnetic 
radiation or axions can also be emitted in some cases (for some specific phase 
transitions).
The effect of radiation is much 
more dramatic for loops, since 
they lose all their energy this way, 
and eventually disappear. Here 
you can see what happens in the 
case of two interlocked loops. This 
configuration is unlikely to happen 
in a cosmological setting, but it is 
nevertheless quite enlightening. 
Notice the succession of 
complicated dynamic processes 
before the loop finally disappears!

After formation, an initially high density string network begins to chop itself up 
by producing small loops. These loops oscillate rapidly (relativistically) and 
decay away into gravitational waves. 



The net result is that the strings become more and more dilute with time as the 
universe expands. From an enormous density at formation, mathematical 
modelling suggests that today there would only be about 10 long strings stretching 
across the observed universe, together with about a thousand small loops!

In fact the network dynamics is such that the string density will eventually stabilize at 
an exactly constant level relative to the rest of the radiation and matter energy 
density in the universe. Thus the string evolution is described as `scaling' or scale-
invariant, that is, the properties of the network look the same at any particular time t 
if they are scaled (or multiplied) by the change in the time. This is schematically 
represented below:



Because strings are extremely 
complex non-linear objects, the 
only rigorous way to study their 
evolution and cosmological 
consequences is to simulate in on 
the computer. One of the aims of 
performing numerical simulations 
of the evolution of cosmic string 
networks is to subsequently use 
the resulting information as an 
input to build (relatively) simpler 
semianalytic models that 
reproduce (in an averaged sense) 
the crucial properties of these 
objects.  One starts by generating 
an initial “box of stings” containing 
a configuration of strings such as 
one would expect to find after a 
phase transition in the early 
universe. Then one evolves this 
initial box, by using the laws of 
motion of the strings.

In this and all other pictures and movies below long 
strings are shown in yellow, while small loops have 
a color code going from yellow to red according to 
their size (red loops being the smallest). 



Snapshot of a string network in the radiation 
era. Note the high density of small loops and 
the `wiggliness' of the long strings in the 
network. The box size is about 2ct. (B. Allen 
& E. P. Shellard)

Snapshot of a string network in the matter 
era. Compare with the radiation case at left. 
Notice the lower density of both long 
strings and loops, as well as the lower 
`wiggliness' of the former. The box size is 
again about 2ct. 

Why do the two boxes below look different? Because the 
rate at which the universe is expanding is different.

http://www.damtp.cam.ac.uk/user/gr/public/images/cs_rad.gif
http://www.damtp.cam.ac.uk/user/gr/public/images/cs_mat.gif


Two movies of the evolution of a cosmic string network in the radiation era. In the movie on the 
left the box has a fixed size (so you will see fewer and fewer strings as it evolves), while in the 
one on the right it grows as the comoving horizon. (C. Martins & E. P. Shellard)

Notice that the number of long strings in the box that grows with the horizon 
remains roughly constant, in agreement with the scaling hypothesis. This is 
because the additional length in strings is quickly converted into small loops.

fixed size box box grows with horizon



Two movies of the evolution of a cosmic string network in the matter era. In the movie on the 
left the box has a fixed size (so you will see fewer and fewer strings as it evolves), while in the 
one on the right it grows as the comoving horizon. (C. Martins & E. P. Shellard)

Notice that the number of long strings in the box that grows with the horizon 
again remains roughly constant, in agreement with the scaling hypothesis. 
This is because the additional length in strings is quickly converted into small 
loops.

fixed size box box grows with horizon



When strings evolve, scaling from smaller scales to larger ones, they create 
perturbations in the matter energy density of the universe.  Because of their 
tension, cosmic strings pull straight as they come inside the horizon.  Although 
there is no gravitational force from a static string, such moving cosmic strings 
produce wakes toward which matter falls, thus serving as seeds for structure 
formation. For a static string along the z axis of mass µ per unit length, the energy 
momentum tensor is 
!
and the metric is 
!!
Gµ ≈ (MGUT/MPl)2 ≈ 10-6 is just the magnitude needed for GUT string structure 
formation.  There is an angular defect of 8πGµ = 5.18" (106 Gµ). This implies 

A. Vilenkin, E. P. S. Shellard, Cosmic Strings and Other 
Topological Defects (Cambridge U P, 1994)

that the geodesic path of light 
is curved towards a string 
when light passes by it. Two 
copies of a galaxy near a 
cosmic string will appear to 
observers on the other side 
of the string.



Cosmic Strings Summary
Cosmic strings arise in spontaneously broken (SB) gauge theories  
!
!
as a consequence of causality in the expanding universe.  
As the temperature T falls, a complex scalar 
field φ gets a nonzero expectation value  

φ(x) = φv e iθ(x) 

The phase θ will inevitably be different in 
regions separated by distances greater than

T

the horizon size when the SB phase transition occurred.  If θ runs over 0 → 2π 
as x goes around a loop in space, the loop encloses a string.



Andreas Albrecht, Defect models of cosmic structure in light of the new CMB data,  
XXXVth Rencontres de Moriond ``Energy Densities in the Universe'' (2000).

By 2000, it was clear that cosmic defects are 
not the main source of the CMB anisotropies.

Defect Models

ΛCDM



Improved limits on short-wavelength gravitational waves from the cosmic 
microwave background, by Irene Sendra, Tristan L. Smith (arXiv:1203.4232)

We present updated observational bounds for both adiabatic and homogeneous initial 
conditions using the latest CMB data at small scales from the South Pole Telescope 
(SPT) in combination with Wilkinson Microwave Anisotropy Probe (WMAP), current 
measurements of the baryon acoustic oscillations, and the Hubble parameter. With the 
inclusion of the data from SPT the adiabatic bound on the CGWB density is improved by 
a factor of 1.7 to Ωgw < 8.7x10-6 at the 95% confidence level (C.L.), with weak evidence 
in favor of an additional radiation component consistent with previous analyses. The 
homogeneous bound improves by a factor of 3.5 to Ωgw < 1.0x10-6 at 95% C.L., with no 
evidence for such a component from current data.

Constraints on cosmic string tension imposed 
by the limit on the stochastic gravitational wave 
background from the European Pulsar Timing 
Array, by S. Sanidas + (arXiv:1201.2419)

We investigate the constraints that can be placed on the cosmic string tension by using 
the current Pulsar Timing Array limits on the stochastic gravitational wave background 
(SGWB).  Taking into account all the possible uncertainties in the parameters we find a 
conservative upper limit of Gµc2 < 5.3x10-7.  We discuss the prospects for lowering this 
limit by two orders of magnitude, or even a detection of the SGWB, in the very near 
future in the context of the Large European Array for Pulsars and the Square Kilometre 
Array.



GUT Monopoles
A simple SO(3) GUT illustrates how nonsingular monopoles arise.  The 
Lagragian is

The masses of the resulting charged vector and Higgs bosons after 
spontaneous symmetry breaking are 

If the Higgs field Φa happens to rotate about a sphere in SO(3) space as 
one moves around a sphere about any particular point in x-space, then it 
must vanish at that point.  Remarkably, if we identify the massless vector 
field as the photon, this configuration corresponds to a nonsingular 
magnetic monopole, as was independently discovered by ‘tHooft and 
Polyakov.  The monopole has magnetic charge twice the minimum Dirac 
value, g = 2π/e = (4π/e2)(e/2) ≈ 67.5 e.  
The singular magnetic field is cut off at scale σ, and as a result the GUT 
monopole has mass Mmonopole ≈ MV/α ≈ MGUT /α ≈ 1018 GeV.  



The Kibble mechanism produces ~ one GUT monopole per horizon volume 
when the GUT phase transition occurs.  These GUT monopoles have a 
number density over entropy (using the old TGUT ~ MGUT ~ 1014 GeV) 
!

nM/s ~ 102 (TGUT/MPl)3 ~ 10-13 

!
(compared to nB/s ~ 10-9 for baryons) Their annihilation is inefficient since they 
are so massive, and as a result they are about as abundant as gold atoms but 
1016 times more massive, so they “overclose” the universe.  This catastrophe 
must be avoided!  This was Alan Guth’s initial motivation for inventing 
cosmic inflation.

GUT Monopole Problem

The first accurate calculation of the mass of the ‘t Hooft - Polyakov non-
singular monopole was Bais & Primack (Phys. Rev. D13:819,1976).

I will summarize the key ideas of inflation theory, following my lectures at the 
Jerusalem Winter School, published as the first chapter in Avishai Dekel & 
Jeremiah Ostriker, eds., Formation of Structure in the Universe (Cambridge 
University Press, 1999), and Dierck-Ekkehard Liebscher, Cosmology 
(Springer, 2005) (available online through the UCSC library).



Motivations for Inflation

Joel Primack, in Formation of Structure in the Universe, ed. Dekel & Ostriker (Cambridge Univ Press, 1999)



Inflation Basics

Joel Primack, in Formation of Structure in the Universe, (Cambridge Univ Press, 1999)



Joel Primack, in Formation of Structure in the Universe, (Cambridge Univ Press, 1999)
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According to Cosmic Inflation 
theory, the entire visible universe 
was once about 10-29 cm in size.   
Its size then inflated by a factor of 
about 1030 so that when Cosmic 
Inflation ended (after about 10-32 
second) it had reached the size of 
a newborn baby. 

During its entire 
subsequent evolution, 
the size of the visible 
universe has 
increased by a       

similar factor of 1029.
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Joel Primack, in Formation of Structure in the Universe, (Cambridge Univ Press, 1999)
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Inflaton Theory in More Detail

The action of gravity + scalar inflaton field is

The simplest V is just quadratic 

which just gives the inflaton field a mass m.   
!
!
The Einstein equation Gij = - (8πG/c4) Tij  follows by varying the 
metric gij; the first term in the action S leads to the Einstein tensor 
Gij and the second term leads to the energy-momentum tensor Tij.  

Lagrangian 
for Scalar   

Field Φ

Dierck-Ekkehard Liebscher, Cosmology (Springer, 2005)



The energy–momentum tensor is given by

which implies that the energy density and pressure are given by

and

Thus a scalar field with a nearly constant potential V corresponds to

Since w = p/ε = -1, this is effectively a cosmological constant.  More 
generally, a scalar field that is not at the minimum of its potential 
generates generates “dark energy”.

Dierck-Ekkehard Liebscher, Cosmology (Springer, 2005)



The field equation for the inflaton in expanding space is

With a suitably chosen potential V, the inflaton will quickly reach its 
ground state and inflation will end.  

This becomes the following equation if the spatial variations of 
φ(and the last term, which allows the inflaton to decay into other 
fields at the end of inflation, thus reheating the universe) can be 
neglected

This equation must be solved along with the Einstein equations:  



The last equation leads to

which allows us to write the Friedmann equation as

When the inflaton is rolling slowly, the evolution of the inflaton is 
governed by the “slow roll” equations

Then the number N of e-folds of the scale factor a is given by

N = ln
a1

a_

The last approximate equality used the slow roll approximation.



Prototype model for “new inflation”

Inflationary Models in More Detail





The evolution of the scales of perturbations. The larger scales overtake the Hubble radius at an early time and fall 
below it again later. They measure the inflation at an earlier time than do the smaller scales, which overtake the 
Hubble radius during inflation later and fall below it again earlier. The region A of scales that are accessible to 
evaluation today corresponds to a time span B of the inflation and related values of the inflaton field; for this time 
span, we can tell something – at least in principle – about the potential of the inflaton.

Dierck-Ekkehard Liebscher, Cosmology (Springer, 2005)
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Eternal Inflation

(mPlanck = 1/G1/2).
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THE 
COSMIC 
LAS VEGAS

At the instant it 
passes through the 
floor, it exits eternity.  

Time begins with a Big 
Bang, and it becomes 
a universe and starts 
evolving.

Coins constantly flip.  Heads, and 
the coin is twice the size and 
there are two of them.  Tails, and 
a coin is half the size.

Consider a coin that has a run of 
tails.  It becomes so small it can 
pass through the grating on the 
floor.

The Multiverse

“grating”
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BUBBLE 
UNIVERSES  
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INFLATION

Bubble Collision

Center of Coordinates 
(for orientation)

Nancy Abrams 
Anthony Aguirre 
Nina McCurdy 
Joel Primack



Expanding Bubbles 
Getting Dimmer 
Are Receding 

BUBBLE 
UNIVERSES  
IN ETERNAL 
INFLATION



84



Supersymmetric Inflation

of



Inflation Summary



Joel Primack, in Formation of Structure in the Universe, ed. Dekel & Ostriker (Cambridge Univ Press, 1999)



       

Basic Predictions of Inflation
1. Flat universe. This is perhaps the most fundamental prediction of inflation. Through  
the Friedmann equation it implies that the total energy density is always equal to the 
critical energy density; it does not however predict the form (or forms) that the critical 
density takes on today or at any earlier or later epoch. !
2. Nearly scale-invariant spectrum of Gaussian density perturbations. These 
density perturbations (scalar metric perturbations) arise from quantum-mechanical 
fuctuations in the field that drives inflation; they begin on very tiny scales (of the 
order of 10-23 cm, and are stretched to astrophysical size by the tremendous growth of 
the scale factor during inflation (factor of e60 or greater). Scale invariant refers to the 
fact that the fuctuations in the gravitational potential are independent of length scale; 
or equivalently that the horizon-crossing amplitudes of the density perturbations are 
independent of length scale. While the shape of the spectrum of density perturbations 
is common to all models, the overall amplitude is model dependent. Achieving density 
perturbations that are consistent with the observed anisotropy of the CBR and large 
enough to produce the structure seen in the Universe today requires a horizon 
crossing amplitude of around 2 ×10-5. !
3. Nearly scale-invariant spectrum of gravitational waves, from quantum-mechanical 
fluctuations in the metric itself .  These can be detected as CMB “B-mode” 
polarization, or using special gravity wave detectors such as LIGO and LISA.



                                                 

     

generally nonzero, ≈ 0.04 
according to WMAP & Planck 

Density Fluctuations from Inflation

Power Spectrum

Tilt

Running Tilt

Transfer function

Useful Formulas

s

.  The fitting formula (4) isn’t
accurate enough for precision work; instead, use the website http://camb.info/ .

http://camb.info


     

Useful Formulas

                 Gravity Waves from Inflation  

is an upper but no lower limit on the



Root mean square fluctuations in temperature (T) and polarization (E and B modes) of 
the CMB predicted by inflation.

L M Krauss, S. Dodelson, S. Meyer Science 2010;328:989-992

The top B mode curve represents the current upper limit, r = 0.3, and 
the bottom curve represents the value r = 0.01.
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BICEP2 BB auto spectra and 95% upper limits from several previous experiments. The 
curves show the theory expectations for Tensor/Scalar = r = 0.2 and lensed-ΛCDM.

BICEP2 I: DETECTION OF B-mode POLARIZATION AT DEGREE ANGULAR SCALES



Planck indirect constraints on r from CMB 
temperature spectrum measurements 
relax in the context of various model 
extensions. Shown here, following Planck 
Collaboration XVI (2013) Figure 23, with 
tensors and running of the scalar spectral 
index added to the base ΛCDM model. 
The contours show the resulting 68% and 
95% confidence regions for r and the 
scalar spectral index ns when also allowing 
running. 

Planck Collaboration XVI (2013) Figure 23: 
Posterior distribution for ns for the ΛCDM 
model with tensors (blue) compared to the 
posterior when a tensor component and 
running scalar spectral index are added to the 
model (red).  The dotted line shows the 
relation between r and ns for a V(φ) inflaton 
potential where N is the number of inflationary 
e-foldings. 

BICEP2 I: DETECTION OF B-mode POLARIZATION AT DEGREE ANGULAR SCALES




