
Physics 224 Origin and Evolution of the Universe Spring 2014

Homework Set 2 - Solutions
DUE: Tuesday May 6

1. Power Spectrum of Perturbations. Suppose that the power spectrum of density
perturbations δ ≡ (δρ/ρ), with index n, is Pk ≡ |δk|2 ∝ kn.

a) Derive this expression for the rms density fluctuations on a comoving scale λ:(
δρ

ρ

)
λ

∼ k3/2|δk| ∝ λp

and find the index p in terms of n.

b) Find the index m for the rms mass fluctuations on a comoving scale λ:

(δM/M)λ ∝Mm.

What is the criterion on n such that structures grow in a top-down manner (large masses
collapse first)? In a bottom-up manner? If the primordial spectrum has n = 1 and the
CDM transfer function goes as T (k) ∼ k−2 due to the horizon entry effect, what m does this
correspond to and what is the physical interpretation of the mass fluctuation spectrum?

c) The dynamics of the perturbations are driven by the fluctuations in the gravitational
potential φ. Find the index f for the rms potential fluctuations

δφλ ∝ λf .

What is the physical significance of the scale invariant power spectrum index n = 1? Also
explain the difference between a process being scale free and being scale invariant. Which,
if either, is Newtonian gravity?

1. Power Spectrum of Perturbations - Solution

a) The root mean square fluctuation amplitude δρ/ρ is the Fourier transform of the power
spectrum, so (δρ/ρ)2λ ∼

∫
d3k Pk ∼

∫
k2dk Pk ∼ k3|δk|2. In a logarithmic interval dk/k,

a good broadband measure of the fluctuations on a scale λ ∼ k−1, one therefore has
(δρ/ρ)λ ∼ k3/2|δk|. If Pk = |δk|2 ∼ kn, then (δρ/ρ)λ ∼ k(3+n)/2 ∼ λ−(3+n)/2, so p =
−(3 + n)/2.

b) Since M ∼ ρλ3, for comoving scales (δρ/ρ) = (δM/M). Thus we need only convert
λ to M : λ ∼ M1/3. Therefore (δM/M) ∼ M−(3+n)/6 ∼ Mm, or m = −(3 + n)/6. If
n > −3 then small mass scales have larger fluctuations and so collapse first, leading to
the bottom-up picture of structure formation. If n < −3 one has the top-down picture.
Note that at short wavelengths, the transfer function for CDM would change a primordial



index n = 1 to n = −3 since Pk ∼ T 2
k . This gives mass invariant fluctuations m = 0 –

all scales collapse together. (Actually, the log k in Tk for CDM means that smaller scales
(larger k) collapse a little earlier on average.)

c) From Poisson’s equation k2(δφ)λ ∼ (δρ/ρ)λ so (δφ)λ ∼ λ2λ−(3+n)/2 ∼ λ(1−n)/2. Thus
f = (1−n)/2. The n = 1 power spectrum is called scale invariant because the gravitational
potential fluctuations are independent of scale. Note that any power law is scale free (no
unique scale) but only n = 1 gives scale invariant behavior, i.e. the same amplitude as
each scale enters the horizon. Newtonian gravity is scale free but the gravitational force
does depend on distance, so it is not invariant (also, Newtonian perturbation growth has
a characteristic length scale c/

√
Gρ since the gravitational growth time scale is 1/

√
Gρ).

2. Growth of Density Perturbations. For matter density perturbations with wave-
lengths much greater than the Jeans length, the time evolution is given by

δ̈ + 2Hδ̇ − (3/2)Ωm(t)H2 δ = 0.

a) Rewrite this equation with the dependent variable being the scale factor a. Write any
derivatives of a or H in terms of H and the deceleration parameter q. b) Consider the
case of a flat matter universe where, on the scales considered, only a constant fraction Ωcl
clumps to form structure. (Possible realizations are a cold + hot dark matter universe or a
dark + baryonic matter universe.) In this case the Ωm in the source term of the evolution
equation is replaced by Ωcl. Solve the equation to find the behavior of the growing mode:
δ ∝ am. Interpret. Check the limits Ωcl = 0 and 1. c) Consider the case of an open
universe at a time dominated by the curvature. Write the evolution equation, substituting
in for q and Ωm(t), keeping only the leading order for the coefficient of each term as a gets
large. What happens to the source term for the growth as the universe expands? Try a
solution δ ∝ am. Find the dominant mode and give the physical interpretation (include
explanation of the roles of both the drag and source terms).

2. Growth of Density Perturbations - Solution

a) Note that

d

dt
= aH

d

da
d2

dt2
= a2H2 d

2

da2
+
d(aH)

dt

d

da
= a2H2 d

2

da2
+ ä

d

da
= a2H2 d

2

da2
− aH2q

d

da
.

With a prime denoting d/da and dividing by a2H2,

δ′′ + (2− q)a−1δ′ − (3/2)Ωm(a)a−2δ = 0,

where the deceleration parameter q = −äa/ȧ2.



b) Since the universe is flat and matter dominated then q = 1/2. Taking δ ∼ am gives a
characteristic equation: m(m− 1) + (3/2)m− (3/2)Ωcl = 0. The two solutions are

m =
1

4

[
−1±

√
1 + 24Ωcl

]
with the plus sign giving the growing mode. This indicates that the clustered component
doesn’t grow as fast as the usual solution δ ∼ a. When Ωcl = 0 then m = 0, i.e. δ =
constant; there is no growth since there is no clumping. When Ωcl = 1 then we return to
the δ ∼ a solution as expected.

c) In a curvature dominated universe q = 0 so the equation becomes

δ′′ + 2a−1δ′ − (3/2)Ωm(a) a−2δ = 0.

Looking at the source term, we see that

Ωm(a) =
Ωm0 a

−3

Ωm0 a−3 + (1− Ωm0) a−2
=

[
1 +

1− Ωm0

Ωm0
a

]−1
≈ Ωm0

1− Ωm0
a−1.

Therefore the source term dies off as a gets large. Trying δ ∼ am gives a characteristic
equation: m(m − 1) + 2m = 0. This has no growing mode; the dominant mode is δ =
constant. Curvature domination shuts off growth because of a combination of a weak
source term and a large Hubble drag term (large 2− q from small deceleration q).

3. Spherical Collapse. The evolution of a spherically symmetric, overdense perturbation
in an Ω = 1 universe can be solved analytically up to the point of singular collapse. As a
consequence of Birkhoff’s theorem (in a spherically symmetric universe, only the interior
mass matters), the perturbation follows the equations of a k = +1 Friedmann universe,
for which we have a parametric solution.

a) Perturbation overdensity The solutions – unperturbed for the background universe
(barred quantities) and perturbed for the overdense region – for the evolution of the size
of a sphere and the time are given by

r̄ = r0 (a/a0) = r0 (η/η0)2 t̄ = t0 (a/a0)3/2 = t0 (η/η0)3

r = A (1− cosθ), t = B (θ − sinθ),

where η is the conformal time and θ is the development angle.

At early times the density perturbation must be small (ρ → ρ̄) so the Friedmann
equations for the universe and the perturbation region look the same. Enforce this by
matching x, ẋ, ẍ for x = r, r̄ with the respective time variables in order to find r(θ) and
t(θ), i.e. A and B. Hint: Remember the definition of the conformal time parameters η and
θ.

The age of the universe is unique so t and t̄ must be equal. Use this to derive η(θ).



Use mass conservation to express the overdensity ρ/ρ̄ first in terms of r/r̄ and then
as a function of θ.

Verify that turnaround occurs at θ = π and ρ/ρ̄ = 5.55 and that virialization occurs
at ρ/ρ̄ = 178. Use that the radius is half the turnaround radius (implying V = −2K),
but use the time corresponding to θ = 2π. (Although V = −2K at θ = 3π/2, virialization
requires 〈V 〉 = −2〈K〉, which obtains roughly at θ = 2π).

b) Linear regime Show that the density contrast

δρ

ρ
≡ ρ− ρ̄

ρ̄
∝ a

when θ � 1. Show that the dimensionless velocity perturbation for θ � 1 is

δv ≡
v −Hr
Hr

= −1

3

(
δρ

ρ

)
,

where v = dr/dt is the perturbation’s expansion velocity and H is the Hubble parameter
of the background universe.

c) Astrophysical application Suppose that we observe a galaxy with rotation speed σ
at radius R. If we attribute this rotation speed to the mass of a (spherical) dark halo and
assume the spherical collapse model in an Ω = 1 universe gives an accurate description of
the formation of this halo, what is the expression for the redshift of virialization zv? What
is the value of zv if σ = 180 km s−1, R = 30 kpc and H0 = 60 km s−1 Mpc−1?

3. Spherical Collapse - Solution

For more on Spherical Collapse in GR, see http://physics.ucsc.edu/~joel/Phys224/

SphericalCollapse.pdf.

a) The definitions of the conformal parameters dη ≡ dt̄/a and dθ ≡ dt/ap imply η0 =
3t0/a0 and B = Aa0/r0. At early times matching a = ap (r̄ ∼ a, r ∼ ap) implies that
matching the first derivatives with respect to times τ = (t, t̄), ẋ = dx/dτ = a−1dx/dc,
matches them with respect to conformal times c = (θ, η) also. I.e. dr/dt = dr̄/dt̄ implies
dr/dθ = dr̄/dη. Similarly ẍ = a−1(d/dc)(a−1dx/dc) = a−2d2x/dc2 − a−3(da/dc)(dx/dc)
so already matching x, ẋ implies d2r/dθ2 = d2r̄/dη2.

Thus the matching conditions are

dr̄

dη
= 2r0η

−2
0 η =

dr

dθ
= A sin θ → Aθ

d2r̄

dη2
= 2r0η

−2
0 =

d2r

dθ2
= A cos θ → A

with solution A = 2r0η
−2
0 , B = 2a0η

−2
0 , and θ → η at early times.



Setting t = t̄, valid at all times, gives

η3 = 6(θ − sin θ).

Mass conservation says ρ r3 = ρ̄ r̄3 so

ρ

ρ̄
=
( r̄
r

)3
=

1

8
η6(1− cos θ)−3

=
9

2
(θ − sin θ)2(1− cos θ)−3.

(1)

At turnaround, r is maximum hence θ = π. Plugging this in gives an overdensity
ρ/ρ̄ = 9π2/16 = 5.55.

Taking virialization to be at a time given by θ = 2π means substituting that into
(θ − sin θ)2, which comes from η6, but using the half radius criterion means 1 − cos θ =
(1 − cosπ)/2 = 1. Alternately one could work out ρ/ρ̄ at virialization relative to at
turnaround: the density ρ has increased by 8 since r has decreased by 2, while ρ̄ ∼ a−3 ∼
t̄−2 has decreased by 4 since t̄ ∼ η3 has doubled (θ = π became 2π). Either way gives(

ρ

ρ̄

)
v

= 18π2 = 178.

b) Expanding equation (1) for the overdensity to O(θ5) gives

δρ

ρ
≡ ρ− ρ̄

ρ̄
→ 3

20
θ2 → 3

20
η2.

Since η2 ∼ a then δρ/ρ ∝ a.

The velocity is

v ≡ dr

dt
=
dr

dθ

/
dt

dθ

=
r0
a0

sin θ

1− cos θ
.

The Hubble parameter is

H =
2

3t̄
=

2

3t0

(
η

η0

)−3
.

One can then calculate δv by expanding to O(θ5). A faster way is to calculate v/r to
O(θ−3) since the next higher order term is missing. Either way, the answer is

δv ≡
v −Hr
Hr

= − 1

20
θ2 = −1

3

δρ

ρ
,



which is not surprising since in the linear regime ρr3 =const implies δρ/ρ = −3(δr/r) =
−3(v −Hr)/(Hr).

c) Virialization occurs at a fixed overdensity, ρ/ρ̄ = 178, as we derived in b). The back-
ground density scales as (1+z)3 so the physical density of the galaxy today (constant since
virialization) is

ρ = 178ρ̄(zv) = 178 (1 + zv)
3 · 3H2

0

8πG
.

The density is related to the mass M by ρ = M/(4πR3/3) and the mass is related to the
circular velocity by

σ2 =
GM

R
.

Putting all this together one finds

(1 + zv)
3 =

2

178

(
σ

H0R

)2

.

Substituting the given values yields zv = 3.8.


