
The spherical collapse model

We will in the following consider what is perhaps the simplest model for
the formation of non-linear (gravitationally bound) structures. Imagine that
in an Einstein-de Sitter (that is, spatially flat and matter-dominated) uni-
verse we have a spherical region with density higher than the density of the
background (which is equal to the critical density). According to general
relativity, the evolution of this spherical overdensity will be independent of
the background evolution, so that it will evolve exactly like a sub-universe
with density higher than the critical density. For a positively curved matter-
dominated universe the Friedmann equations have the parametric form

Rp = A(1 − cos θ) (1)

t = B(θ − cos θ), (2)

where I have denoted the scale factor of the sub-universe by Rp, and the
constants A and B are given by

A =
Ωm0

2(Ωm0 − 1)
(3)

B =
Ωm0

2H0(Ωm0 − 1)3/2
, (4)

where Ωm0 > 1 is the density parameter of this sub-universe, and H0 its
Hubble constant. According to equations (1) and (2) the spherical region
will expand until θ = π, when Rp = Rmax

p = 2A, then turn around and
collapse, formally reaching Rp = Rmin

p = 0 and infinite density when θ = 2π.
We have

Rmax
p = 2A =

Ωm0

Ωm0 − 1
(5)

tmax = πB =
πΩm0

2H0(Ωm0 − 1)3/2
. (6)

At that time the density of the spherical region compared to the EdS back-
ground is

ρ

ρ0

=
Ωm0ρc0

1
(Rmax

p
)3

ρc0
1
a3

= Ωm0

(

a

Rmax
p

)3

. (7)
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Here a is the scale factor of the background given by a =
(

3
2
H0t

)2/3
, so that

a3(tmax) =
(

3

2
H0tmax

)2

=
9π2

16

Ω2
m0

(Ωm0 − 1)3
. (8)

Therefore

ρ

ρ0

= Ωm0
9π2

16

Ω2
m0

(Ωm0 − 1)3

(Ωm0 − 1)3

Ω3
m0

=
9π2

16
≈ 5.55. (9)

So the spherical perturbation starts to collapse when its density has reached
5.55 times the background density.

In this simple-minded model matter has no internal pressure, so there
is nothing stopping the spherical blob to collapse to infinite density. If the
redshift at which the region reaches maximum size is zmax, the redshift at
which it has collapsed completely, zc, is given by

1 + zc

1 + zmax

=
amax

ac

=
(

tmax

tc

)2/3

=
1

22/3
, (10)

i.e.,

1 + zc =
1 + zmax

22/3
. (11)

In real life collapse will, of course, stop before infinite density is reached. The
end result will be a system which satisfies the virial theorem, such that the
kinetic energy Ek and the potential energy Ep satisfy

Ek = −
1

2
Ep. (12)

We can find the dimensions of the structure by the following argument: At
zmax the sphere momentarily stands still before starting to collapse, so all its
energy is potential energy,

E = Ep = −
3GM2

5rmax

, (13)

where r is its physical size. When it has collapsed to r = rmax/2, we have

Ep = −
3GM2

5rmax/2
= −

6GM2

5rmax
, (14)
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and from conservation of energy we find

Ek = E − Ep = −
3GM2

5rmax
+

6GM2

5rmax
=

3GM2

5rmax
= −

1

2
Ep(rmax/2). (15)

So the virial theorem is satisfied when the spherical region has collapesed to
half its maximum size, and we say that it has virialized and become stable.
It is now 8 times as dense as when it started to collapse. The time when this
occurs si found by requiring

Rvir
p =

1

2
Rmax

p , (16)

that is,
A(1 − cos θ) = A, (17)

and we must have θ > π to correspond to times after the onset of collapse.
The solution is then θ = 3π/2, giving

tvir = B
(

3π

2
+ 1

)

= πB
(

3

2
+

1

π

)

=
(

3

2
+

1

π

)

tmax ≈ 1.81tmax (18)

Since turnaround the background EdS density has decreased further by a
factor

(

amax

avir

)3

=
(

tmax

tvir

)2

=
1

1.812
. (19)

At virialization, then, the spherical perturbation has a density which is larger
than the background density by a factor of

5.55 × 8 × 1.812
≈ 145. (20)

In many books and papers you will find that the authors take tvir to be the
time when Rp = 0, so that tvir = t(θ = 2π) = 2tmax. In that case the
background density has dropped by a factor 1/22 = 1/4, and the ratio of the
density of the blob to the background becomes

5.55 × 8 × 4 ≈ 178. (21)

The main message is the same in both cases: Perturbations form gravia-
tionally bound structures when they become 150-200 times as dense as the
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background. This simple model is consistent with results from N-body sim-
ulations: Galaxies and clusters of galaxies separate out as distinct gravia-
tionally bound structures when their densities are at least 100 times greater
than the background density.

We can estimate the redshift at which virialization happens in a general
CDM model, assuming that the same results as above remain approximately
true even when the background density differs from the critical. Denote the
density parameter of the background by Ωbg

m0. Our approximate criterion for
virialization is then

ρvir ≥ 100 ×
3Ωbg

m0

8πG
(1 + zvir)

3. (22)

We take the blob to be made up of particles with velocity dispersion σ,
and use the virial theorem. Since the calculation is approximate, we allow
ourselves to be careless with factors of order 1, and write the virial theorem
as

1

2
Mσ2 =

1

2

GM2

R
, (23)

which gives

R =
GM

σ2
. (24)

The density of the spherical region at virialization is then

ρvir =
M

4π
3
R3

=
M

4π
3

G3M3

σ6

=
3σ6

4πG3M2
. (25)

So the condition for virialization becomes

3σ2

4πG3M2
≥ 100 ×

3H2
0Ωbg

m0

8πG
(1 + zvir)

3, (26)

which, after solving for 1 + zvir and inserting numbers, gives

1 + zvir ≤ 0.47
(

σ

100 km s−1

)2
(

M

1012 M⊙

)−2/3

(Ωbg
m0h

2)−1/3. (27)

Using the value presently favoured by observations, Ωbg
m0h

2 = 0.13, we finally
have

1 + zvir ≤ 0.93
(

σ

100 km s−1

)2
(

M

1012 M⊙

)−2/3

. (28)
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This is a crude result, but it gives some insights into when structures of
different sizes formed. A large galaxy like the Milky Way has σ ∼ 300 km s−1

and M ∼ 1012 M⊙, and we find 1 + zvir ≤ 8. Thus we would be surprised
to find a fully-formed large galaxy at redshifts significantly larger than 10.
Rich galaxy clusters have σ ∼ 1000 km s−1 and M ∼ 1015 M⊙, which gives
1 + zvir ≤ 0.93. This is clearly inaccurate, but still indicates that clusters of
galaxies formed fairly recently.

Finally, if we assume equality in (28) and assume hydrostatic equilibrium
is reached so that the temperature T satisfies T ∝ σ2, it can be shown that

kBT

7 keV
=

(

M

1015h−1 M⊙

)2/3

(1 + zvir), (29)

which makes it seem reasonable that gas in galaxy clusters radiate X-rays.
We can analyse the spherical collapse model in another way to make the

connection to linear perturbation theory by expanding equations (1) and (2)
as power series in θ:

Rp = A(1 − cos θ) ≈ A
(

1 − 1 +
1

2
θ2 −

1

24
θ4
)

= A
(

1

2
θ2 −

1

24
θ4
)

(30)

t = B(θ − sin θ) ≈ B
(

θ − θ +
1

6
θ3 −

1

120
θ5
)

= B
(

1

6
θ3

−
1

120
θ5
)

. (31)

If we keep just the first term in each expression, we have

Rp =
1

2
Aθ2 (32)

t =
1

6
Bθ3 (33)

from which we see that Rp ∝ t2/3, that is, the same expansion as the uniform
background.

Since we have Rmax
p = 2A and tmax = πB, we can write equations (30)

and (31) as

Rp

Rmax
p

≈
1

4
θ2 −

1

48
θ4 (34)

t

tmax
=

1

π

(

1

6
θ3

−
1

120
θ5
)

. (35)
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What we want to do is to find Rp as a functin of t. We start by rewriting
equation (35) as

θ3 = 6π
t

tmax
+

1

20
θ5, (36)

and imagine solving iteratively for θ as a function of t. The first guess is
simply

θ3
(0) = 6π

t

tmax
, (37)

i.e.,

θ(0) =
(

6π
t

tmax

)1/3

. (38)

In the next iteration we insert θ(0) on the right-hand side of (36):

θ3
(1) = 6π

t

tmax
+

1

20

(

6π
t

tmax

)5/3

= 6π
t

tmax

[

1 +
1

20

(

6π
t

tmax

)2/3
]

, (39)

so that

θ(1) =
(

6π
t

tmax

)1/3
[

1 +
1

20

(

6π
t

tmax

)2/3
]1/3

. (40)

We are interested in the limit where x ≡ 6πt/tmax is a small quanitity, so we
can expand equation (39) and get

θ(1) ≈ x1/3
(

1 +
1

60
x2/3

)

= x1/3 +
1

60
x, (41)

We can now insert this in the expression for Rp:

Rp

Rmax
p

=
1

4
θ2
(1) −

1

48
θ4
(1)

=
1

4
x2/3

(

1 +
1

60
x2/3

)2

−
1

48
x4/3

(

1 +
1

60
x2/3

)4

≈
1

4
x2/3

(

1 +
1

30
x2/3

)

−
1

48
x4/3

=
1

4
x2/3

(

1 −
1

20
x2/3

)

. (42)
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Inserting for x we get

Rp

Rmax
p

=
1

4

(

6π
t

tmax

)2/3
[

1 −
1

20

(

6π
t

tmax

)2/3
]

≡ Rlin. (43)

The first factor is the background evolution, and the second describes the
linear evolution of the perturbation. Both the perturbation and the outside
universe are matter-dominated, so in both the density varies as the inverse
cube of the scale factor. Writing the density of the blob in linear perturbation
theory as ρ = ρbg(1 + δlin), we have

1 + δlin =
(

a

Rlin

)3

, (44)

so
Rlin

a
= (1 + δlin)−1/3 ≈ 1 −

1

3
δ. (45)

Since a = 1
4
(6πt/tmax)

2/3, we have

Rlin

Rmax
p

=
1

4

(

6π
t

tmax

)2/3 (

1 −
1

3
δ
)

(46)

and combaring this to equation (43) we find

δ =
3

20

(

6π
t

tmax

)2/3

. (47)

We can now find out what really happens, at least within this simplified
model, when we extrapolate linear perturbation theory. For example, at
when the spherical region starts to collapse, at t = tmax, linear perturbation
theory predicts that δturn

lin = 3(6π)2/3/20 ≈ 1.06. You may recall that the
exact calculation gave that the density of the sphere was 5.55 times as dense
as the background universe at this point Phrased in a different way, when
linear perturbation theory gives a density contrast of 1.06, the structure has
in reality began to collapse to form a bound object. Taking virialization to
occur at t = 2tmax, the linear density contrast has at this point increased to

δvir
lin ≡ δc =

3

20

(

6π
2tmax

tmax

)2/3

≈ 1.686. (48)

Thus, a linear-theory density contrast of 1.686 corresponds to the time of
complete gravitational collapse of a spherical perturbation. This value is
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used in analytical treatments of the growth of structure in the universe,
such as the Press-Schechter formalism. The actual (in this model) non-linear
density contrast at t = 2tmax we found to be

1 + δvir
nl ≈ 178. (49)

Virialization with Λ

Since redshifts of around 0.5 the universe has been accelerating, possibly
because of the cosmological constant. This is not too far away from the
time when clusters virialized according to the spherical collapse model, and
it therefore makes sense to investigate the effect of Λ on virialization. We will
follow the approach of Lahav, Lilje, Primack & Rees, MNRAS 251 (1991)
128.

The cosmological constant can be treated in Newtonian theory as an
additional contribution to the potential energy. For a spherical shell of radius
R enclosing a mass m, the energy per unit mass is given by

E =
1

2
Ṙ2

−
Gm

R
−

1

6
ΛR2. (50)

This expression can now be integrated to find the potential energy of a mas-
sive sphere. For a uniform sphere with density ρ and mass M = 4πR3ρ/3 we
have already found the contribution from the standard graviational potential,
and it is equal to

Ep,G = −
3GM2

5R
. (51)

For the Λ term the contribution from a shell of radius x and thickness dx is

dEp,Λ = −
1

6
Λx2 × 4πx2ρdx = −

2πρ

3
Λx4dx, (52)

and integrating from 0 to R we find

Ep,Λ = −
2πρΛ

3

∫ R

0
x4dx = −

2πρΛ

3

1

5
R5 = −

1

10
ΛMR2. (53)

For a collapsing sphere of radius R and mass M we have Ṙ = 0 at
turnaround, and denoting the maximum value of R by Rt we can write the
total energy, which is conserved, as

E = Ep,G,t + Ep,Λ,t = −
3GM2

5Rt
−

1

10
ΛMR2

t . (54)
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It can be shown that for a potential energy Ep ∝ Rn, a generalization of the
virial theorem states that Ek = n

2
Ep. Thus, in the final, virialized state our

sphere satisfies

Ek,f = −
1

2
Ep,G,f + Ep,Λ,f . (55)

Conservation of energy gives

Ek,f + Ep,G,f + Ep,Λ,f = Ep,G,t + Ep,Λ,t. (56)

We use equation (55) to eliminate Ek,f and find

1

2
Ep,G,f + 2Ep,Λ,f = Ep,G,t + Ep,Λ,t, (57)

and when we use (51) and (53) we find

3GM

Rf

+ 2ΛR2
f =

6GM

Rt

+ ΛR2
t , (58)

where Rf is the radius of the sphere at virialization. Introducing the dimen-
sionless variable x = Rf/Rt, we can write equation (58) as

3GM

xRt
+ 2Λx2R2

t =
6GM

Rt
+ ΛR2

t , (59)

that is,

1 + 2
ΛR3

t

3GM
x3 = 2x +

ΛR3
t

3GM
x. (60)

The density of the sphere at turnaround is ρt = 3M/4πR3
t , and we use this

to introduce yet another dimensionless parameter:

η =
ΛR3

t

3GM
=

Λ

4πGρt
. (61)

For realistic physical parameters, η turns out to be a small number. We can
now write equation (60) as

1 + 2ηx3 = 2x + ηx, (62)

so we get the cubic equation

2ηx3 − (2 + η)x + 1 = 0. (63)
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For Λ = 0 we know that x = 1/2 (the radius at virialization was one half the
maximum radius when the background was EdS.) We only expect Λ to give
a small correction to this result, so we write

x =
1

2
+ ǫ, (64)

where ǫ ≪ 1, insert in (63) and expand to linear order in ǫ. We then find
the linear equation

−ǫ
(

2 −
1

2
η
)

=
1

4
η, (65)

with the solution

ǫ = −

1
4
η

2 − 1
2
η
, (66)

and

x =
1

2
+ ǫ =

1 − 1
2
η

2 − 1
2
η
, (67)

and finally
Rf

Rt
=

1 − 1
2
η

2 − 1
2
η
. (68)

For 0 < η < 1 this ratio is < 1
2
, which means that the perturbation collapses

to a smaller radius when Λ is present, The reason is that spherical shells will
have to fall further in to acquire the velocity which will bring the system to
an equilibrium.
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