Physics 5D - Lecture 3
 Mean Free Path, Internal Energy, Heat

18-6 Mean Free Path

Because of their finite size, molecules in a gas undergo frequent collisions. The average distance a molecule travels between collisions is called the mean free path.

18-6 Mean Free Path

The mean free path can be calculated easily, assuming that only one of the molecules is moving. The mean distance ℓ_{m} before collision is then the distance such that the volume of the cylinder that the moving particle sweeps out $=\pi(2 r)^{2} \ell_{\mathrm{M}}=\mathrm{V} / \mathrm{N}$ = the average volume per molecule.

$$
\ell_{M}=\frac{1}{4 \pi r^{2}(N / V)}
$$

The mean free time is then

$$
t_{M}=\ell_{M} / \bar{v}
$$

18-6 Mean Free Path

The mean free path can be calculated, given the average speed, the density of the gas, the size of the molecules, and the relative speed of the colliding molecules. The result, now including the motion of all the particles, is changed by $\sqrt{2}$:

$$
\ell_{\mathrm{M}}=\frac{1}{4 \pi \sqrt{2} r^{2}(N / V)}
$$

Question: Estimate the mean free path of air molecules at standard temperature and pressure (STP: $0^{\circ} \mathrm{C}, 1 \mathrm{~atm}$). The diameter of O_{2} and N_{2} molecules is about $3 \times 10^{-10} \mathrm{~m}$.
Answer: $\ell_{\mathrm{M}}=\frac{1}{4 \pi \sqrt{2} r^{2}(N / V)}$, and
6.02×10^{23}
$\mathrm{N} / \mathrm{V}=\frac{}{22.4 \times 10^{-3} \mathrm{~m}^{3}}=2.69 \times 10^{25} \mathrm{~m}^{-3}$ $22.4 \times 10^{-3} \mathrm{~m}^{3}$
so $\ell_{M}=\frac{1}{17.7\left(1.5 \times 10^{-10} \mathrm{~m}\right)^{2} 2.69 \times 10^{25} \mathrm{~m}^{-3}}$
$=0.9 \times 10^{-7} \mathrm{~m} \approx 10^{-6} \mathrm{~m}=1 \mu \mathrm{~m}=1 \mathrm{micron}$

How can you increase the mean free path of air molecules in a closed container?

A. Increase the volume V
B. Decrease the temperature T
C. Both A and B

How can you increase the mean free path of air molecules in a closed container?
A. Increase the volume V
B. Decrease the temperature T
C. Both A and B

The mean free path is $\ell_{\mathrm{M}}=\frac{1}{4 \pi \sqrt{2} r^{2}(N / V)}$.
It doesn't depend on temperature, but increasing V increases ℓ_{M}.

18-7 Diffusion

Even without stirring, a few drops of dye in water will gradually spread throughout. This process is called diffusion.

18-7 Diffusion

Diffusion occurs from a region of high concentration to a region of lower concentration.

18-7 Diffusion

The rate of diffusion is given by:

$$
J=D A \frac{d C}{d x}
$$

In this equation, D is the diffusion constant.

Diffusing Molecules	Medium	$D\left(\mathrm{~m}^{2} / \mathrm{s}\right)$
H_{2}	Air	6.3×10^{-5}
O_{2}	Air	1.8×10^{-5}
O_{2}	Water	100×10^{-11}
Blood hemoglobin	Water	6.9×10^{-11}
Glycine (an amino acid)	Water	95×10^{-11}
$\begin{gathered} \text { DNA (mass } \\ \left.6 \times 10^{6} \mathrm{u}\right) \end{gathered}$	Water	0.13×10^{-11}

18-7 Diffusion

Guess how long it might take for ammonia $\left(\mathrm{NH}_{3}\right)$ to be detected 10 cm from a bottle after it is opened, assuming only diffusion is occurring.

A. 1 s
B. 10 s
C. 100 s
D. 1000 s
E. 10,000 s

18-7 Diffusion

Guess how long it might take for ammonia $\left(\mathrm{NH}_{3}\right)$ to be detected 10 cm from a bottle after it is opened, assuming only diffusion is occurring.

A. 1 s
B. 10 s
C. 100 s
D. 1000 s
E. 10,000 s

18-7 Diffusion

Example 18-9: Diffusion of ammonia in air.
Estimate how long it takes for ammonia $\left(\mathrm{NH}_{3}\right)$ to be detected 10 cm from a bottle after it is opened, assuming only diffusion is occurring.

Answer: The diffusion rate $J=\#$ molecules N crossing area A in time t, i.e. $J=N / t$, so $t=N / J$.
Using $J=D A \Delta C / \Delta x, t=(N / D A)(\Delta x / \Delta C)$. Ammonia is between H_{2} and O_{2} in size, so $D \approx 4 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$. Here $N=($ average concentration $\bar{C}) / V=\bar{C} / A \Delta x$. $\bar{C}=1 / 2 C$ and $\Delta C=C$. Then $t=(C / \Delta C)(\Delta x)^{2} / D$ or $t=1 / 2(\Delta x)^{2} / D=1 / 2(0.1 \mathrm{~m})^{2} /\left(4 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}\right)=125 \mathrm{~s}$.

18-7 Diffusion

We just found that the time for diffusion is related to the distance by $t=1 / 2(\Delta x)^{2} / D$, or equivalently $\Delta x \propto t^{\prime / 2}$. Why should diffusion work this way?
Consider the 1-dimensional example of a particle that can move one step right or left per unit time:

After t time intervals, it has gone

19-1 Heat as Energy Transfer

We often speak of heat as though it were a material that flows from one object to another; it is not. Rather, it is a form of energy transfer.
Unit of heat: calorie (cal)
1 cal is the amount of heat necessary to raise the temperature of 1 g of water by 1 Celsius degree.
Don't be fooled-the calories on our food labels are really kilocalories (kcal or Calories), the heat necessary to raise 1 kg of water by 1 Celsius degree.

19-1 Heat as Energy Transfer

If heat is a form of energy, it ought to be possible to equate it to other forms. The experiment below found the mechanical equivalent of heat by using the falling weight to heat the water:

19-1 Heat as Energy Transfer

Definition of heat:

Heat is energy transferred from one object to another because of a difference in temperature.

The realization that heat is a form of energy, and that energy is conserved, is largely due to Joule and two Germans who trained as physicians, Julius von Mayer and Herman von Helmholz, 1841-7.

Suppose you throw caution to the wind and eat too much ice cream and cake on the order of 500 Calories. To compensate, you want to do an equivalent amount of work climbing stairs or a mountain. How much total height must you climb?
A. 30 m
B. 300 m
C. 3 km
D. 30 km

Suppose you throw caution to the wind and eat too much ice cream and cake on the order of 500 Calories. To compensate, you want to do an equivalent amount of work climbing stairs or a mountain. How much total height must you climb?
A. 30 m
B. 300 m
C. 3 km
D. 30 km

$$
\begin{aligned}
500 & \text { Calories }=500(4186 \mathrm{~J}) \\
& \approx 2 \times 10^{6} \mathrm{~J}=\mathrm{mgh} \\
& =(70 \mathrm{~kg})\left(10 \mathrm{~m} / \mathrm{s}^{2}\right) \mathrm{h} \\
\mathrm{~h} & =2 \times 10^{6} \mathrm{~J} /\left(700 \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}\right) \\
& \approx 3 \times 10^{3} \mathrm{~m}=3 \mathrm{~km}
\end{aligned}
$$

Note: Your brain, 2\% of your body weight, uses about 20\% of your energy, ~ 500 Calories per day.

19-2 Internal Energy

The sum total of all the energy of all the molecules in a substance is its internal (or thermal) energy.

Temperature: measures molecules' average kinetic energy

Internal energy: total energy of all molecules Heat: transfer of energy due to difference in temperature

19-2 Internal Energy

Internal energy of an ideal monatomic gas:

$$
E_{\mathrm{int}}=N\left(\frac{1}{2} m \overline{v^{2}}\right)
$$

But since we know the average kinetic energy in terms of the temperature, we can write:

$$
E_{\text {int }}=\frac{3}{2} N k T .
$$

19-2 Internal Energy

> If the gas is molecular rather than atomic, then rotational and vibrational kinetic energy need to be taken into account as well. (We'll come back to this next week.)

19-3 Specific Heat

TABLE 19-1 Specific Heats

 (at 1 atm constant pressure and $20^{\circ} \mathrm{C}$ unless otherwise stated)| Substance $\quad \underset{\text { (}}{ }$ | Specific Heat, c | |
| :---: | :---: | :---: |
| | $\begin{aligned} & 1 / \mathrm{kg} \cdot \mathbf{C}^{\circ} \\ & \left.\mathrm{al} / \mathrm{g} \cdot \mathbf{C}^{\circ}\right) \end{aligned}$ | $\mathrm{J} / \mathrm{kg} \cdot \mathrm{C}^{\circ}$ |
| Aluminum | 0.22 | 900 |
| Alcohol (ethyl) | 0.58 | 2400 |
| Copper | 0.093 | 390 |
| Glass | 0.20 | 840 |
| Iron or steel | 0.11 | 450 |
| Lead | 0.031 | 130 |
| Marble | 0.21 | 860 |
| Mercury | 0.033 | 140 |
| Silver | 0.056 | 230 |
| Wood | 0.4 | 1700 |
| Water | | |
| Ice ($-5^{\circ} \mathrm{C}$) | 0.50 | 2100 |
| Liquid ($15^{\circ} \mathrm{C}$) | 1.00 | 4186 |
| Steam ($110^{\circ} \mathrm{C}$) | 0.48 | 2010 |
| Human body (average) | 0.83 | 3470 |
| Protein | 0.4 | 1700 |

> The amount of heat required to change the temperature of a material is proportional to the mass and to the temperature change:

$$
Q=m c \Delta T .
$$

The specific heat, c, is characteristic of the material. Some values are listed at left. Liquid water's specific heat is the highest in the table.

Water has one of the highest specific heats of common substances. That means for a given input of heat, the temperature of a certain amount of water changes
A. more than
B. less than
C. the same as
the same amount of most other substances.

Water has one of the highest specific heats of common substances. That means for a given input of heat, the temperature of a certain amount of water changes
A. more than
B. less than

$$
Q=m c \Delta T
$$

C. the same as
the same amount of most other substances.

The specific heat of concrete is greater than that of soil. A baseball field (with real soil) and the surrounding concrete parking lot are warmed up during a sunny day. Which would you expect to cool off faster in the evening when the sun goes down?
A. the concrete parking lot
B. the baseball field
C. both cool off equally fast

The specific heat of concrete is greater than that of soil. A baseball field (with real soil) and the surrounding concrete parking lot are warmed up during a sunny day. Which would you expect to cool off faster in the evening when the sun goes down?
A. the concrete parking lot
B. the baseball field $\quad Q=m c \Delta T$.
C. both cool off equally fast

The baseball field, with the lower specific heat, will change temperature more readily, so it will cool off faster. The high specific heat of concrete allows it to "retain heat" better and so it will not cool off so quickly - it has a higher "thermal inertia."

Water has a higher specific heat than sand. Therefore, on the beach at daytime, breezes would blow:
A. from the ocean to the beach
B. from the beach to the ocean
C. either way, makes no difference

Water has a higher specific heat than sand. Therefore, on the beach at daytime, breezes would blow:
A. from the ocean to the beach
B. from the beach to the ocean
C. either way, makes no difference

The sun heats both the beach and the water
» beach heats up faster
» warmer air above beach rises
» cooler air from ocean moves in underneath
» breeze blows ocean \rightarrow land

How much heat is needed to raise the temperature of an empty $20-\mathrm{kg}$ iron vat (c=0.11 kcal/ ${ }^{\circ} \mathrm{C} / \mathrm{kg}$) from $10^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$?

Answer:
$Q=m c \Delta T=(20 \mathrm{~kg})\left(0.11 \mathrm{kcal} /{ }^{\circ} \mathrm{C} / \mathrm{kg}\right)\left(80^{\circ} \mathrm{C}\right)$
$=176 \mathrm{kcal}$

How much heat is needed to raise the temperature of an empty $20-\mathrm{kg}$ iron vat (c=0.11 kcal/ ${ }^{\circ} \mathrm{C} / \mathrm{kg}$) from $10^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$?

Answer:
$Q=m c \Delta T=(20 \mathrm{~kg})\left(0.11 \mathrm{kcal} /{ }^{\circ} \mathrm{C} / \mathrm{kg}\right)\left(80^{\circ} \mathrm{C}\right)$
$=176 \mathrm{kcal}$
What if the vat is filled with 20 kg of water?
Additional heat required
$\Delta Q=m c \Delta T=(20 \mathrm{~kg})\left(1.0 \mathrm{kcal} /{ }^{\circ} \mathrm{C} / \mathrm{kg}\right)\left(80^{\circ} \mathrm{C}\right)$
$=1600 \mathrm{kcal}$, so total heat needed is
$Q=1776 \mathrm{kcal}$

Coming up next week:

- Calorimetry—Measuring Specific Heats
- Latent Heat
- The First Law of Thermodynamics
- Calculating the Work Done by a Gas
- Specific Heats of Real Gases
- Adiabatic Expansion of Gases

