
Physics 5I     LECTURE  6    November 4, 2011

● More on Special Relativity

Successive Lorentz transformations

Resolution of the Twin Paradox
Rotations and Lorentz transformations

The invariant interval c 2t 2 - x 2  and the Light Cone
Resolution of the Pole and Barn paradox
Special Relativity with 4-vectors

●Next Friday Nov 11- Veterans Day holiday
Friday Nov 18 - Midterm Exam* (page of notes ok)
Friday Nov 25 - Thanksgiving Vacation
Friday Dec 2 - General Relativity and Black Holes

*Note:  No Final Exam for Physics 5I
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The “twin paradox” of Special Relativity
If Albert stays home and his twin sister Berta travels at high speed to a nearby
star and then returns home, Albert will be much older than Berta when he meets 
her at her return.  

But how can this be true?  
Canʼt Berta say that, from 
her point of view, it is 
Albert who traveled at 
high speed, so Albert 
should actually be 
younger?

To clarify why more time 
elapses on Albertʼs clock 
than on Bertaʼs, we can 
use the Einsteinʼs Rocket 
“1-D Space Rally”.

http://physics.ucsc.edu/~snof/er.html
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These transformations preserve the lengths of the vectors (x2 + y2 = xʼ2 + yʼ2) 

since sin2 θ + cos2 θ  = 1 .

Successive rotations by angles θ1 and θ2 correspond to rotation through angle 
θ3 = θ1 + θ2. 
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Fig. 11-2. Two coordinate systems
having different angular orientations.

Recall that a rotation by angle θ in the x-y 
plane is given by

         x =  xʼ cθ - yʼ sθ       y = xʼ sθ + yʼ cθ.

where cθ = cos θ,  sθ = sin θ.  The reverse 
rotation corresponds to θ → -θ:

       xʼ =  x cθ + y sθ       yʼ = - x sθ + y cθ.

Rotations in 2D

From the Feynman Lectures on Physics, vol. 1.
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The Lorentz transformation between inertial 
reference frame (x,t) and the inertial frame 
(xʼ,tʼ) moving at speed v in the x-direction 
when the origins of the reference frames 
coincide at t = tʼ = 0 is 
     x =  xʼ Cθ + ctʼ Sθ     ct = xʼ Sθ + ctʼ Cθ.

where γ = (1-v2/c2)-1/2 = cosh θ = Cθ, γv/c = sinh θ = Sθ, and θ = tanh-1 v/c since
tanh θ = sinh θ / cosh θ = v/c.  The reverse transformation is again θ → -θ:
       xʼ =  x Cθ - ct Sθ     ctʼ = - x Sθ + ct Cθ.

Here  cosh θ = (eθ + e-θ)/2  and  sinh θ = (eθ - e-θ)/2  are the hyperbolic 
functions, and tanh θ = sinh θ / cosh θ.  With the correspondence above 
between θ and v/c, it follows that v/c = tanh θ, so θ = tanh-1 v/c.

Successive Lorentz transformations: The reason the θ approach is useful is that 
the product of two Lorentz transformations that correspond to θ1 and θ2 is θ3 = 
θ1 + θ2, which greatly simplifies things.  It turns out that Lorentz transformations 
form a group that is a generalization of the group of rotations.

Lorentz transformations preserve the space-time interval (c2t2 - x2 = c2tʼ2 - xʼ2) 
because cosh2 θ - sinh2 θ = 1.  

Lorentz transformation
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Lorentz transformations preserve the space-time interval (c 2t 2 - x 2 = c 2tʼ 2 - xʼ 2), as 
they must since that guarantees that the speed of light is c in both frames.
This means that relatively moving observers will agree as to whether the space-time 
interval between two events is negative (space-like ①), positive (time-like ② or ③), 

-u!6po"4JJOJu!od06u!punoJJns
uo!6"J"W!J-,,:>ods"41-8-L1-6!::/

lS'Vd
d

@
01,1
/
t

o/j

CD/
®

o

::mva-H}~ll
3/jnln~

Before relativity, people thought “Now” had 
an invariant meaning.  But we have already 
seen (in the Einsteinʼs Rocket thought-
experiment concerning the flash sent from 
the center to the ends of the rocket) that 
events that one observer says are 
simultaneous will not be so according to an 
observer in relative motion.  Thatʼs also the 
explanation of the pole-and-barn paradox.  
The pole is entirely inside the barn in its 
rest frame, but in the rest frame of the pole 
the barn is much shorter and both doors 
are simultaneously open.

The invariant interval c2t2 - x2 and the Light Cone

or zero (light-like).  If two events are time-like or light-like separated, the earlier one 
can affect the latter one, but if they space-like separated then they can have no 
effect on each other.  The Light Cone separates events into these three different 
classes.
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Pole vaulter Emma travels at speed v and holds a pole. If Emma measures the length of the pole, which is 
stationary in her frame, she measures length L o, which is called the proper length. ('Proper' here means 
characteristic of its own frame, not correct or superior.) According to spectator Eric, Emma is moving so fast that 
he sees her pole to have a relativistic length contraction. He measures its length as L < Lo. 

Eric organises this experiment: he builds a barn which is just as long as Emma's moving pole, as he measures it. 
The barn has a door at either end. Emma, with her contracted pole, will run into the barn and he will shut both 
doors just when her pole fits inside. For an instant at least, Emma's pole will be entirely inside the barn and he will 
have proved that her pole has shrunk. 

The experiment is run and Eric thinks that it is conclusive (first diagram).

Emma differs, however. Here is how she saw it:

"You cheated," she says "you closed the back door when my pole had already poked through the front door! My pole 
was always longer than your barn." Their disagreement is now about the timing of the closing of the doors. Did two 
distant events happen simultaneously or not?

Resolution of the pole and barn paradox
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Now Eric expects that Emma will receive the flash from the front before the one from behind, because he sees her moving 
to the left. No problem for him. Emma also receives the light from the left before she gets the light from the right - and this 
is the basis for her charge of cheating. For her, light travels at the speed c, she receives the light from the left first. Hence 
her claim that Eric fired this flash first. Simultaneity is relative: one consequence of the theory of relativity is that two 
observers may disagree on whether or not two events are simultaneous. (Indeed, if the two events are a long distance D 
apart, but close together Δt in time (if D/Δt >c), they can even disagree upon which happened first.)
Their respective points of view are shown below in what are called space-time diagrams. This means that we plot time on 
the vertical axis as a function of the position of events. Because the two characters disagree over time and length, we must 
give them two separate diagrams (below) and, to convert between the (x,t) and the (x',t') frames, we need to use the Lorentz 
transform equations. In this figure, the bold lines are the ends of Emma's pole, the dashed bold lines are the ends of Eric's 
shed, and the fine lines are the flashes of light.

So they try again, and this time Eric sets off a flash bulb simultaneously when the 
doors are closed. Here is his view of events, with the flash bulbs represented by 
white circles. It just so happens that, according to Eric, Emma was at the midpoint 
of the shed when the flash bulbs went off.

Note that the two flashes are simultaneous to Eric, but 
not to Emma. This paradox is set up by the incautious 
use of the word 'when', which is italicised above for 
that reason. In its normal use in speech, absolute 
simultaneity is assumed: English grammar does not 
require a clause specifying the frame of reference in 
which the simultaneity implied by 'when' is observed. 
In discussing relativity, such a qualification is 
required.

Pole Front

Barn Front

Moment when Pole is inside Barn
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The Train and Tunnel have equal lengths d=5. When 
the train and the tunnel have constant speed 0.6 c relative 
to each other. The train's nose (at its x=0, t=0) 
synchronizes with the left entrance of the tunnel (at its 
x=0, t=0).

When the Tunnel is Stationary... 
From the point of view of the (stationary) tunnel with at-
rest length d = 5 , the train's length is observed to be 0.8 d 
= 4. 

The moving train's clocks run at 80% the rate of the 
tunnel's clocks. (Check the reading of the moving train's 
nose clock against the stationary tunnel clocks .)

When the Train is Stationary... 
From the point of view of the (stationary) train with at-
rest length d = 5, the tunnel's length is observed to be 0.8 
d = 4. 

The moving tunnel's clocks run at 80% the rate of the 
train's clocks. (Check the reading of the moving tunnel's 
entrance clock against the stationary train clocks.)

This animation is based on a section of the (forthcoming) book, SPECIAL RELATIVITY ILLUSTRATED, by John de Pillis.

http://math.ucr.edu/~jdp/Relativity/Main_Train_Tunnel.html

Animation of the train and tunnel paradox
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Special Relativity with 4-Vectors
An quantity that transforms the same way as (ct,x) is called a 4-vector.  It turns out
that the combination (γ, γv/c) = γ(1,v/c)  where v is the velocity, is a 4-vector, 
called the velocity 4-vector.  Its invariant length-squared is γ2 (1-v2/c2) = 1.  

Multiply the rest mass of a particle m by its velocity 4-vector and you get its 
momentum 4-vector:

                                   P = (E, pc) = mc2 γ(1,v/c)   

Its invariant length-squared is m2c4 γ2 (1-v2/c2) = m2c4 = E2 - p2c2.  

For a particle of mass m, this says that E2 = p2c2 + m2c4.  

For the special case of a massless particle like the photon, this says that  E2 = p2c2 

or E = |p|c.  The momentum carried by a photon of energy E is p = E/c. 

As students become more familiar with formulas like these, itʼs convenient to stop 
writing the speed of light c and just understand that powers of c are included as 
needed to get the right units.  Then the energy-momentum-mass relation becomes  
E2 = p2 + m2.  We often measure mass in energy units, for example we say that the 
mass me of the electron is 0.511 MeV, even though what we really mean is that 
mec2 = 0.511 MeV.  And of course we measure distances in time units: light-years.
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