Physics 5K Lecture 5 - Friday May 4, 2012

Physics Department UCSC

Giancoli FIGURE 31-12

The Electromagnetic Spectrum

(a) Energy states of the hydrogen atom

(b) Visible emission spectrum from hydrogen

(d) Emission spectra for helium, argon, neon and sodium

Each element has a characteristic spectrum

Brief History of Atomic Theory

1904 Joseph J. Thomson's "Plum Pudding" model of the atom:

a. Atoms consist of a large sphere of uniform positive charge embedded with smaller negatively charged particles (electrons).

b. The total positive charge of the sphere equals the total negative charge of the electrons.

1911 Ernest Rutherford: nuclear model of the atom

- a. very small positively charged nucleus containing most of the mass of the atom
- b. a very large volume around the nucleus in which electrons move
- c. a nucleus containing positively charged protons
- d. a number of protons equal to the number of electrons

1913 Niels Bohr's "planetary" model for the hydrogen atom:

- a. Electrons move around the nucleus in fixed orbits.
- b. Electrons can only exist in certain discrete energy levels.
- c. An electron in a particular orbit has constant energy.
- d. An electron can absorb energy and move to a higher energy orbit of larger radius.
- e. An excited electron can fall back to its original orbit by emitting energy as radiation.

1926- Quantum Mechanical Model of the Atom

- a. Electrons occupy orbitals, volumes of space around the nucleus with a high probability of finding the electron.
- b. Energy levels are made up of energy sublevels.
- c. Each sublevel contains a set of orbitals.
- d. No orbital can contain more than 2 electrons (Pauli Exclusion Principle).

Fermions are particles that have half-integer spin (spin 1/2, 3/2, ...) and therefore are constrained by the Pauli exclusion principle. Fermions incude electrons, protons, neutrons. Particles with integer spin are called bosons, and they behave very differently.

Pauli Exclusion Principle Applications

Periodic Table of the Elements[§]

Group I	Group II	p Transition Elements											Group IV	Group V	Group VI	Group VII	Group VIII
H 1 1.00794 111																	He 2 4002502 1/ ²
Li 3	Be 4	le 4 Symbol Cl 17 Atomic Number												N 7	O 8	F 9	Ne 10
6.941 2el	9.012182		AU	omic Ma	ss ² 3	5.4.53 N	10.811 2al	12.0107	14.0067	15.9994	18.9984032	20.1797					
Na 11	Mg 12				1	r	AL 13	Si 14	P 15	S 16	-r CL 17	Ar 18					
2298976928	24.3050												28.0855	30.973762	32065	35458	39948
3.s ¹	3.02												3.p ²	3p ³	3p4	3p ⁵	3 <i>p</i> 6
K 19	Ca 20	Sc 21	Ti 22	V 23	Cr 24	Mn 25	Fe 26	Co 27	Ni 28	Cu 29	Zn 30	Ga 31	Ge 32	As 33	Se 34	Br 35	Kr 36
39.0983	40.078	44.955912	47.867	50.941.5	51.9961	54.938045	55.845	58.933195	58.6934	63.546	65.409	69.723	72.64	74.92160	78.96	79.904	83.798
454	452	3d ⁴ 4s ²	3d ² 45 ²	3d ^e 4s ²	345451	3d ⁵ 45 ²	349452	3d ⁷ 4s ²	3d ⁴ 4s ²	3410.454	3410.452	4pl	4p ²	4p ³	4p ⁴	4p ⁵	4p ⁶
Rb 37	Sr 38	¥ 39	Zr 40	Nb 41	Mo 42	Tc 43	Ru 44	Rh 45	Pd 46	Ag 47	Cd 48	In 49	Sn 50	Sb 51	Te 52	I 53	Xe 54
854678	87.62	88.90585	91.224	9290538	9594	(98)	101.07	102.90550	105.42	107.8682	112411	114.818	118710	121760	127.60	125.90447	131.298
5.51	5.92	4d ¹ 5s ²	4d ² 5s ²	4d4551	4d3551	4d ³ 5s ²	4d ¹ 5s ¹	4d ⁸ .5s ¹	4d10550	4d ¹⁰ 5s ¹	4d105s2	5p1	5p ²	5p ³	5p4	5p ³	5p ⁶
Cs 55	Ba 56	57-71*	Hf 72	Ta 73	W 74	Re 75	Os 76	Ir 77	Pt 78	Au 79	Hg 80	TI 81	Pb 82	Bi 83	Po 84	At 85	Rn 86
132,9054519	137.327		178.49	130.94788	183.84	186207	19023	192217	195.084	196.966569	20059	2043833	207.2	208,98040	(209)	(210)	(222)
65 ⁴	652		5d ² 65 ²	5d ³ 65 ²	5d*652	5d ⁵ 65 ²	54652	5d ⁹ 65 ²	5d ⁹ 65 ¹	5ato 651	5d ¹⁰ 652	6p1	6p ²	6p ³	6 5 4	6p ⁵	6 7 5
Fr 87	Ra 88	89-103‡	Rf 104	Db 105	Sg 106	Bh 107	Hs 108	Mt 109	Ds 110	Rg 111	112						
(223)	(226)		(267)	(268)	(271)	(272)	(277)	(276)	(281)	(280)	(285)						
7 <i>s</i> 1	7 <i>s</i> ¹		6d ²⁷ 5 ²	6d ³⁷ 5 ²	6d47s2	6d ⁹ 7s ¹	6d ⁶⁷ 5 ²	6d ¹⁷ 5 ²	6d97s1	6d ¹⁰ 7s ¹	6d ¹⁰⁷ 5 ¹						
			La 57	Ce 58	Pr 59	Nd 60	Pm 61	Sm 62	Eu 63	Gd 64	Tb 65	Dy 66	Ho 67	Er 68	Tm 69	Yb 70	Lu 71
[†] Lanthanide Series			138.90647	140116	140.90765	144.242	(145)	15036	151.964	157.25	158,92535	162,500	16493082	167.259	168.93421	173.04	174.967
			54 652	4f ¹ 5d ¹ 6s ²	453549652	4f ⁴ 5d ⁰ 6s ²	4f ⁵ 5d ⁹ 6s ²	4f ⁶ 5d ⁰ 6s ²	4f ⁷ 5d ⁹ 6s ²	4f ⁷ 5d ⁴ 6s ²	45°5¢°652	4f 105dP652	4f 11 5d 0652	4f125d9652	4f ¹³ 5d ⁰ 6s ²	45145d0652	45ª1652

	Ac 89	Th 90	Pa 91	U 92	Np 93	Pu 94	Am 95	Cm 96	Bk 97	Cf 98	Es 99	Fm 100	Md 101	No 102	Lr 103
[‡] Actinide Series	(227)	23203806	23103588	238.0289	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)
	6d ³ 71 ²	6d ² 71 ²	5f 26d 7r 2	5f ³ 6d ³ 71 ²	5f46d712	5f 6d 712	55 ⁷ 6d ¹³ 12	51 8d 712	5f 16d 1712	5f "6d "71 2	5f ¹ 6d ¹ 71 ²	5f ¹² 6d ¹ 7r ²	5f ¹³ 6d ¹ 71 ²	5f ¹⁴ 6d ¹ 71 ²	55 ¹⁴ 6d 71 ³

Atoms

The various kinds of atoms have different origins. Hydrogen and helium, the two lightest kinds, were made in the first few minutes of the universe after the Big Bang. A little more helium was made in stars by fusion, as we discussed in connection with barrier penetration.

After stars fuse the hydrogen in their cores, they start to fuse helium in their cores and they become red giant stars. Stars like the sun makes elements like carbon and nitrogen in this phase, but then they run out of fuel, eject their outer material, and become white dwarf stars surrounded briefly by their ejected outer material. These often beautiful objects are called planetary nebulae.

Big stars that start out with at least 8 times the mass of the sun have much more violent ends. They fuse much of the carbon and nitrogen into still heavier elements, like oxygen, sodium, magnesium, aluminum, and silicon. But pretty soon they can't make any more energy by fusion, their cores collapse into either neutron stars or black holes, and much of their material is ejected in spectacular supernovae. During the supernova process, the really heavy elements are made, all the way up to thorium and uranium. Such core collapse supernovas are called Type II supernovas.

Sometimes the white dwarf stars just fade slowly into black dwarfs. But roughly half of all stars are in binary systems, and if a white dwarf star has a close companion star that becomes a red giant, the white dwarf can accrete material from its companion by gravity until it becomes so massive that the entire star explodes as a thermonuclear bomb, turning much of its mass into elements like cobalt, nickel, and iron. This is called a Type 1a supernova.

CRAB NEBULA

Supernova Remnant Core Collapse (Type II)

Tycho's Supernova Remnant

White Dwarf SN (Type Ia)

apod.nasa.gov

Friday, May 4, 12

The progenitor of a Type Ia supernova

Atoms

The various kinds of atoms have different origins. Hydrogen and helium, the two lightest kinds, were made in the first few minutes of the universe after the Big Bang. A little more helium was made in stars by fusion, as we discussed in connection with barrier penetration.

After stars fuse the hydrogen in their cores, they start to fuse helium in their cores and they become red giant stars. Stars like the sun makes elements like carbon and nitrogen in this phase, but then they run out of fuel, eject their outer material, and become white dwarf stars surrounded briefly by their ejected outer material. These often beautiful objects are called planetary nebulae.

Big stars that start out with at least 8 times the mass of the sun have much more violent ends. They fuse much of the carbon and nitrogen into still heavier elements, like oxygen, sodium, magnesium, aluminum, and silicon. But pretty soon they can't make any more energy by fusion, their cores collapse into either neutron stars or black holes, and much of their material is ejected in spectacular supernovae. During the supernova process, the really heavy elements are made, all the way up to thorium and uranium. Such core collapse supernovas are called Type II supernovas.

Sometimes the white dwarf stars just fade slowly into black dwarfs. But roughly half of all stars are in binary systems, and if a white dwarf star has a close companion star that becomes a red giant, the white dwarf can accrete material from its companion by gravity until it becomes so massive that the entire star explodes as a thermonuclear bomb, turning much of its mass into elements like cobalt, nickel, and iron. This is called a Type 1a supernova.

Planetary Nebulae

Hubble Space Telescope photographs of planetary nebulae. In 4.5 billion years, our Sun will become a planetary, and then become a white dwarf star. http: //hubblesite.org/

Friday, May 4, 12

BUTTERFLY PLANETARY NEBULA NGC 6302

Ring Nebula

PN M2-9

Helix Nebula NGC 7293 - Infrared Image

Friday, May 4, 12

Distant worlds may be wildly different from Earth, but there are things that must be true of them all, simply because of the nature of stardust. For example, on any planet in the Galaxy, wherever you find watery seas and land, there will be sandy beaches. This is because oxygen and silicon are two of the most abundant heavy atoms produced before a star explodes in a supernova. Free-floating in space, they combine with each other and the hydrogen that is everywhere, making H2O and SiO2—water and sand—that travel together and become incorporated into new worlds.