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Planck Collaboration: The Planck mission
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Fig. 19. The temperature angular power spectrum of the primary CMB from Planck, showing a precise measurement of seven acoustic peaks, that
are well fit by a simple six-parameter⇤CDM theoretical model (the model plotted is the one labelled [Planck+WP+highL] in Planck Collaboration
XVI (2013)). The shaded area around the best-fit curve represents cosmic variance, including the sky cut used. The error bars on individual points
also include cosmic variance. The horizontal axis is logarithmic up to ` = 50, and linear beyond. The vertical scale is `(`+ 1)Cl/2⇡. The measured
spectrum shown here is exactly the same as the one shown in Fig. 1 of Planck Collaboration XVI (2013), but it has been rebinned to show better
the low-` region.
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Fig. 20. The temperature angular power spectrum of the CMB, esti-
mated from the SMICA Planck map. The model plotted is the one la-
belled [Planck+WP+highL] in Planck Collaboration XVI (2013). The
shaded area around the best-fit curve represents cosmic variance, in-
cluding the sky cut used. The error bars on individual points do not in-
clude cosmic variance. The horizontal axis is logarithmic up to ` = 50,
and linear beyond. The vertical scale is `(` + 1)Cl/2⇡. The binning
scheme is the same as in Fig. 19.

8.1.1. Main catalogue

The Planck Catalogue of Compact Sources (PCCS, Planck
Collaboration XXVIII (2013)) is a list of compact sources de-

tected by Planck over the entire sky, and which therefore con-
tains both Galactic and extragalactic objects. No polarization in-
formation is provided for the sources at this time. The PCCS
di↵ers from the ERCSC in its extraction philosophy: more e↵ort
has been made on the completeness of the catalogue, without re-
ducing notably the reliability of the detected sources, whereas
the ERCSC was built in the spirit of releasing a reliable catalog
suitable for quick follow-up (in particular with the short-lived
Herschel telescope). The greater amount of data, di↵erent selec-
tion process and the improvements in the calibration and map-
making processing (references) help the PCCS to improve the
performance (in depth and numbers) with respect to the previ-
ous ERCSC.

The sources were extracted from the 2013 Planck frequency
maps (Sect. 6), which include data acquired over more than two
sky coverages. This implies that the flux densities of most of
the sources are an average of three or more di↵erent observa-
tions over a period of 15.5 months. The Mexican Hat Wavelet
algorithm (López-Caniego et al. 2006) has been selected as the
baseline method for the production of the PCCS. However, one
additional methods, MTXF (González-Nuevo et al. 2006) was
implemented in order to support the validation and characteriza-
tion of the PCCS.

The source selection for the PCCS is made on the basis of
Signal-to-Noise Ratio (SNR). However, the properties of the
background in the Planck maps vary substantially depending on
frequency and part of the sky. Up to 217 GHz, the CMB is the
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Fig. 10. Planck TT power spectrum. The points in the upper panel show the maximum-likelihood estimates of the primary CMB
spectrum computed as described in the text for the best-fit foreground and nuisance parameters of the Planck+WP+highL fit listed
in Table 5. The red line shows the best-fit base ⇤CDM spectrum. The lower panel shows the residuals with respect to the theoretical
model. The error bars are computed from the full covariance matrix, appropriately weighted across each band (see Eqs. 36a and
36b), and include beam uncertainties and uncertainties in the foreground model parameters.

Fig. 11. Planck T E (left) and EE spectra (right) computed as described in the text. The red lines show the polarization spectra from
the base ⇤CDM Planck+WP+highL model, which is fitted to the TT data only.
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Fig. 7. Maximum posterior CMB intensity map at 50 resolution derived from the joint baseline analysis of Planck, WMAP, and
408 MHz observations. A small strip of the Galactic plane, 1.6 % of the sky, is filled in by a constrained realization that has the same
statistical properties as the rest of the sky.

Fig. 8. Maximum posterior amplitude Stokes Q (left) and U (right) maps derived from Planck observations between 30 and 353 GHz.
These mapS have been highpass-filtered with a cosine-apodized filter between ` = 20 and 40, and the a 17 % region of the Galactic
plane has been replaced with a constrained Gaussian realization (Planck Collaboration IX 2015). From Planck Collaboration X
(2015).

viewed as work in progress. Nonetheless, we find a high level of
consistency in results between the TT and the full TT+TE+EE
likelihoods. Furthermore, the cosmological parameters (which
do not depend strongly on ⌧) derived from the T E spectra have
comparable errors to the TT -derived parameters, and they are
consistent to within typically 0.5� or better.

8.2.2. Number of modes

One way of assessing the constraining power contained in a par-
ticular measurement of CMB anisotropies is to determine the
e↵ective number of a`m modes that have been measured. This
is equivalent to estimating 2 times the square of the total S/N
in the power spectra, a measure that contains all the available
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Fig. 9. The Planck 2015 temperature power spectrum. At multipoles ` � 30 we show the maximum likelihood frequency averaged
temperature spectrum computed from the Plik cross-half-mission likelihood with foreground and other nuisance parameters deter-
mined from the MCMC analysis of the base ⇤CDM cosmology. In the multipole range 2  `  29, we plot the power spectrum
estimates from the Commander component-separation algorithm computed over 94 % of the sky. The best-fit base⇤CDM theoretical
spectrum fitted to the Planck TT+lowP likelihood is plotted in the upper panel. Residuals with respect to this model are shown in
the lower panel. The error bars show ±1� uncertainties. From Planck Collaboration XIII (2015).
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Fig. 10. Frequency-averaged T E (left) and EE (right) spectra (without fitting for T–P leakage). The theoretical T E and EE spectra
plotted in the upper panel of each plot are computed from the best-fit model of Fig. 9. Residuals with respect to this theoretical model
are shown in the lower panel in each plot. The error bars show ±1� errors. The green lines in the lower panels show the best-fit
temperature-to-polarization leakage model, fitted separately to the T E and EE spectra. From Planck Collaboration XIII (2015).

cosmological information if we assume that the anisotropies are
purely Gaussian (and hence ignore all non-Gaussian informa-
tion coming from lensing, the CIB, cross-correlations with other
probes, etc.). Carrying out this procedure for the Planck 2013
TT power spectrum data provided in Planck Collaboration XV
(2014) and Planck Collaboration XVI (2014), yields the number
826 000 (which includes the e↵ects of instrumental noise, cos-
mic variance and masking). The 2015 TT data have increased
this value to 1 114 000, with T E and EE adding a further 60 000

and 96 000 modes, respectively.4 From this perspective the 2015
Planck data constrain approximately 55 % more modes than in
the 2013 release. Of course this is not the whole story, since
some pieces of information are more valuable than others, and
in fact Planck is able to place considerably tighter constraints on
particular parameters (e.g., reionization optical depth or certain

4Here we have used the basic (and conservative) likelihood; more
modes are e↵ectively probed by Planck if one includes larger sky frac-
tions.
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Fig. 9. The Planck 2015 temperature power spectrum. At multipoles ` � 30 we show the maximum likelihood frequency averaged
temperature spectrum computed from the Plik cross-half-mission likelihood with foreground and other nuisance parameters deter-
mined from the MCMC analysis of the base ⇤CDM cosmology. In the multipole range 2  `  29, we plot the power spectrum
estimates from the Commander component-separation algorithm computed over 94 % of the sky. The best-fit base⇤CDM theoretical
spectrum fitted to the Planck TT+lowP likelihood is plotted in the upper panel. Residuals with respect to this model are shown in
the lower panel. The error bars show ±1� uncertainties. From Planck Collaboration XIII (2015).
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Fig. 10. Frequency-averaged T E (left) and EE (right) spectra (without fitting for T–P leakage). The theoretical T E and EE spectra
plotted in the upper panel of each plot are computed from the best-fit model of Fig. 9. Residuals with respect to this theoretical model
are shown in the lower panel in each plot. The error bars show ±1� errors. The green lines in the lower panels show the best-fit
temperature-to-polarization leakage model, fitted separately to the T E and EE spectra. From Planck Collaboration XIII (2015).

cosmological information if we assume that the anisotropies are
purely Gaussian (and hence ignore all non-Gaussian informa-
tion coming from lensing, the CIB, cross-correlations with other
probes, etc.). Carrying out this procedure for the Planck 2013
TT power spectrum data provided in Planck Collaboration XV
(2014) and Planck Collaboration XVI (2014), yields the number
826 000 (which includes the e↵ects of instrumental noise, cos-
mic variance and masking). The 2015 TT data have increased
this value to 1 114 000, with T E and EE adding a further 60 000

and 96 000 modes, respectively.4 From this perspective the 2015
Planck data constrain approximately 55 % more modes than in
the 2013 release. Of course this is not the whole story, since
some pieces of information are more valuable than others, and
in fact Planck is able to place considerably tighter constraints on
particular parameters (e.g., reionization optical depth or certain
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modes are e↵ectively probed by Planck if one includes larger sky frac-
tions.

17

Polarization-Polarization

Double Dark Theory

Released
February 9, 

2015

Agrees with Double Dark Theory!





7

dark matter simulation - expanding with the universe

same simulation - not showing expansionText

Andrey Kravtsov



CONSTRAINED LOCAL UNIVERSE SIMULATION 
Stefan Gottloeber, Anatoly Klypin, Joel Primack 

Visualization: Chris Henze (NASA Ames)
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1.5 million light years

100,000 light years

Milky Way Dark Matter Halo

Milky Way

Aquarius Simulation
Volker Springel





Bolshoi Cosmological Simulation
Anatoly Klypin & Joel Primack

Pleiades Supercomputer at NASA Ames Research Center
8.6x109 particles   1/h kpc resolution

1 Billion Light Years



100 Million Light Years

1 Billion Light Years



100 Million Light Years

How the Halo of the Big Cluster Formed



Bolshoi-Planck
Cosmological Simulation

Merger Tree of a Large Halo

with Peter Behroozi & Christoph Lee



• Starting from the Big Bang, we simulate the evolution 
of a representative part of the universe according to 
the Double Dark theory to see if the end result 
matches what astronomers actually observe.  

• On the large scale the simulations produce a universe 
just like the one we observe.  We’re always looking for 
new phenomena to predict — every one of which tests 
the theory! 

• But the way individual galaxies form is only partly 
understood because it depends on the interactions of 
the ordinary atomic matter as well as the dark matter 
and dark energy to form stars and super-massive 
black holes.  We need help from observations.

Structure Formation Methodology 



Galaxy Stellar Mass - 
Halo Mass Relation

4 BEHROOZI, WECHSLER & CONROY
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FIG. 3.— Left panel: the stellar mass to halo mass ratio at multiple redshifts as derived from observations (Behroozi et al. 2012) compared to a model which
has a time-independent star formation efficiency (SFE). Error bars show 1 -� uncertainties (Behroozi et al. 2012). A time-independent SFE predicts a roughly
time-independent stellar mass to halo mass relationship. Right: the cosmic star formation rate for a compilation of observations (Behroozi et al. 2012) compared
to the best-fit model from a star formation history reconstruction technique (Behroozi et al. 2012) as well as the time-independent SFE model. The latter model
works surprisingly well up to redshifts of z ⇠ 4. However, a model which has a constant efficiency (with mass and time) also reproduces the decline in star
formation well since z ⇠ 2.
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FIG. 4.— Left panel: Star formation rate as a function of halo mass and cosmic time, weighted by the number density of dark matter halos at that time. Contours
show where 50 and 90% of all stars were formed; dashed line shows the median halo mass for star formation as a function of time. Right panel: Star formation
rate as a function of galaxy stellar mass and time, weighted by the number density of galaxies at that time. Contours and dashed line are as in top-left panel;
dotted line shows current minimum stellar masses reached by observations.

characteristic mass is to use a different mass definition. For
example, using M200b (i.e., 200 times the background density)
would cancel some of the evolution from z = 1 to z = 0. How-
ever, this would also raise the mass accretion rate at z = 0,
which would increase evolution in the star formation effi-
ciency’s normalization. Using the maximum circular velocity
(Vcirc) or the velocity dispersion (�) instead would also lead
to more evolution in the SFE (at fixed Vcirc or �): due to the
smaller physical dimensions of the universe at early times,
both these velocities increase with redshift at fixed virial halo
mass.

The nearly-constant characteristic mass scale is robust to
our main assumption that the baryon accretion rate is propor-
tional to the halo mass accretion rate, because this mass scale

is already present in the conditional SFR (Fig. 1). A baryon
accretion rate which scales nonlinearly with the dark matter
accretion rate would change the width of the most efficient
halo mass range, but it would not change the location. How-
ever, as discussed previously, the baryon accretion rate for
small halos (Mh < 1012

M�) can differ from the dark matter
accretion rate through recooling of ejected gas; the changing
virial density threshold can also introduce non-physical evolu-
tion in the halo mass which affects the accretion rate (Diemer
et al. 2012). Properly accounting for these effects may change
the low-mass slope of the star formation efficiency; we will
investigate this in future work.

Note that the level of consistency seen in the star forma-
tion efficiency is not possible to achieve using other common

The stellar mass to halo mass ratio at multiple 
redshifts as derived from observations compared to 
the Bolshoi cosmological simulation. Error bars show 
1σ uncertainties. A time-independent Star Formation 
Efficiency predicts a roughly time-independent stellar 
mass to halo mass (SMHM) relationship.  (Behroozi, 
Wechsler, Conroy, ApJL 2013)

Star-forming Galaxies Lie 
on a “Main Sequence”

Just as the properties of hydrogen-burning stars 
are controlled by their mass, the galaxy star 
formation rate (SFR) is approximately 
proportional to the stellar mass, with ~0.3 dex 
dispersion and with the proportionality constant  
increasing with redshift up to about z = 2.5.  
(Whitaker et al. ApJ 2014)
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Figure 1. Star formation rate as a function of stellar mass for star-forming galaxies. Open circles indicate the UV+IR SFRs from a stacking analysis, with a second-order
polynomial fit above the mass completeness limits (solid vertical lines). Open squares signify measurements below the mass-completeness limits. The running medians
for individually detected objects in MIPS 24 µm imaging with S/N > 3 (shown as a gray-scale density plot in the Panel (a), left) are indicated with filled circles in the
right panel and are color-coded by redshift. The number of star-forming galaxies with S/N > 3 detections in the 24 µm imaging and those with S/N < 3 are indicated
in the bottom right of each panel. The star formation sequence for star-forming galaxies is curved, with a constant slope of unity at log(M⋆/M⊙) < 10 (solid black
line in Panel (b) is linear), whereas the slope at the massive end flattens with α = 0.3–0.6 from z = 0.5 to z = 2.5. We show the SDSS curve (gray dotted line in Panel
(b)) from Brinchmann et al. (2004) as it is one of the few measurements that goes to very low mass, but it is based on another SFR indicator.
(A color version of this figure is available in the online journal.)

Wuyts et al. 2007; Williams et al. 2009; Bundy et al. 2010;
Cardamone et al. 2010; Whitaker et al. 2011; Brammer et al.
2011; Patel et al. 2012); quiescent galaxies have strong Balmer/
4000 Å breaks, characterized by red rest-frame U–V colors
and relatively blue rest-frame V–J colors. Following the two-
color separations defined in Whitaker et al. (2012a), we select
58,973 star-forming galaxies at 0.5 < z < 2.5 from the 3D-
HST v4.0 catalogs.14 Of these, 39,106 star-forming galaxies are
above the mass-completeness limits (Tal et al. 2014). Among
the UVJ-selected star-forming galaxies with masses above the
completeness limits, 22,253 have S/N > 1 MIPS 24 µm
detections (amongst which 9,015 have S/N > 3) and 35,916 are
undetected in MIPS 24 µm photometry (S/N < 1).15 The full
sample of star-forming galaxies are considered in the stacking
analysis. Although we have not removed sources with X-ray
detections in the following analysis, we estimate the contribution
of active galactic nuclei (AGNs) to the median 24 µm flux
densities in Section 4.2.

3. THE STAR FORMATION SEQUENCE

Figure 1 shows the star formation sequence, log Ψ as a
function of log M⋆, in four redshifts bins from z = 0.5 to
z = 2.5. We use a single SFR indicator, the UV+IR SFRs
described in Section 2.4, probing over two decades in stellar
mass. The gray scale represents the density of points for star-
forming galaxies selected in Section 2.5 with S/N > 3 MIPS

14 Essentially identical to the publicly released catalogs available through
http://3dhst.research.yale.edu/Data.html, with the same catalog identifications
and photometry.
15 Even though the SFR is dominated by the IR contribution, the limiting
factor here is the depth of the Spitzer/MIPS 24 µm imaging.

24 µm detections, totaling 9015 star-forming galaxies over the
full redshift range. Mass completeness limits are indicated by
vertical lines. The GOODS-N and GOODS-S fields have deeper
MIPS imaging (3σ limit of ∼10 µJy) and HST/WFC3 JF125W

and HF160W imaging (5σ ∼ 26.9 mag), whereas the other three
fields have shallower MIPS imaging (3σ limits of ∼20 µJy) and
HST/WFC3 JF125W and HF160W imaging (5σ ∼ 26.3 mag).
The mass completeness limits in Figure 1 correspond to the
90% completeness limits derived by Tal et al. (2014), calculated
by comparing object detection in the CANDELS/deep with a
re-combined subset of the exposures that reach the depth of
the CANDELS/wide fields. Although the mass completeness
in the deeper GOODS-N and GOODS-S fields will extend to
lower stellar masses, we adopt the more conservative limits for
the shallower HST/WFC3 imaging.

First, we look at the measurements for individual galaxies.
The running median of the individual UV+IR measurements
of the SFR are indicated with solid circles when the data are
complete both in stellar mass and SFR (above the shallower
data 3σ MIPS 24 µm detection limit).16 We consider all MIPS
photometry in the median for the individual UV+IR SFRs
measurements (filled circles), even those galaxies intrinsically
faint in the IR. Only 1% of the star-forming galaxies above the
20 µJy limit in each redshift bin have 24 µm photometry with
S/N < 1.

To leverage the additional decade lower in stellar mass
that the CANDELS HST/WFC3 imaging enables us to probe

16 In the case of the 1.0 < z < 1.5 and 1.5 < z < 2.5 bins, the filled circles
representing individual measurements are limited by the 3σ 24 µm
completeness limits (horizontal dotted line, ∼20 µJy), which therefore makes
it appear as though the higher redshift sample extends to lower completeness
limits due to the strongly evolving normalization.
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Figure 1. Star formation rate as a function of stellar mass for star-forming galaxies. Open circles indicate the UV+IR SFRs from a stacking analysis, with a second-order
polynomial fit above the mass completeness limits (solid vertical lines). Open squares signify measurements below the mass-completeness limits. The running medians
for individually detected objects in MIPS 24 µm imaging with S/N > 3 (shown as a gray-scale density plot in the Panel (a), left) are indicated with filled circles in the
right panel and are color-coded by redshift. The number of star-forming galaxies with S/N > 3 detections in the 24 µm imaging and those with S/N < 3 are indicated
in the bottom right of each panel. The star formation sequence for star-forming galaxies is curved, with a constant slope of unity at log(M⋆/M⊙) < 10 (solid black
line in Panel (b) is linear), whereas the slope at the massive end flattens with α = 0.3–0.6 from z = 0.5 to z = 2.5. We show the SDSS curve (gray dotted line in Panel
(b)) from Brinchmann et al. (2004) as it is one of the few measurements that goes to very low mass, but it is based on another SFR indicator.
(A color version of this figure is available in the online journal.)
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of the SFR are indicated with solid circles when the data are
complete both in stellar mass and SFR (above the shallower
data 3σ MIPS 24 µm detection limit).16 We consider all MIPS
photometry in the median for the individual UV+IR SFRs
measurements (filled circles), even those galaxies intrinsically
faint in the IR. Only 1% of the star-forming galaxies above the
20 µJy limit in each redshift bin have 24 µm photometry with
S/N < 1.

To leverage the additional decade lower in stellar mass
that the CANDELS HST/WFC3 imaging enables us to probe

16 In the case of the 1.0 < z < 1.5 and 1.5 < z < 2.5 bins, the filled circles
representing individual measurements are limited by the 3σ 24 µm
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Figure 1. Star formation rate as a function of stellar mass for star-forming galaxies. Open circles indicate the UV+IR SFRs from a stacking analysis, with a second-order
polynomial fit above the mass completeness limits (solid vertical lines). Open squares signify measurements below the mass-completeness limits. The running medians
for individually detected objects in MIPS 24 µm imaging with S/N > 3 (shown as a gray-scale density plot in the Panel (a), left) are indicated with filled circles in the
right panel and are color-coded by redshift. The number of star-forming galaxies with S/N > 3 detections in the 24 µm imaging and those with S/N < 3 are indicated
in the bottom right of each panel. The star formation sequence for star-forming galaxies is curved, with a constant slope of unity at log(M⋆/M⊙) < 10 (solid black
line in Panel (b) is linear), whereas the slope at the massive end flattens with α = 0.3–0.6 from z = 0.5 to z = 2.5. We show the SDSS curve (gray dotted line in Panel
(b)) from Brinchmann et al. (2004) as it is one of the few measurements that goes to very low mass, but it is based on another SFR indicator.
(A color version of this figure is available in the online journal.)

Wuyts et al. 2007; Williams et al. 2009; Bundy et al. 2010;
Cardamone et al. 2010; Whitaker et al. 2011; Brammer et al.
2011; Patel et al. 2012); quiescent galaxies have strong Balmer/
4000 Å breaks, characterized by red rest-frame U–V colors
and relatively blue rest-frame V–J colors. Following the two-
color separations defined in Whitaker et al. (2012a), we select
58,973 star-forming galaxies at 0.5 < z < 2.5 from the 3D-
HST v4.0 catalogs.14 Of these, 39,106 star-forming galaxies are
above the mass-completeness limits (Tal et al. 2014). Among
the UVJ-selected star-forming galaxies with masses above the
completeness limits, 22,253 have S/N > 1 MIPS 24 µm
detections (amongst which 9,015 have S/N > 3) and 35,916 are
undetected in MIPS 24 µm photometry (S/N < 1).15 The full
sample of star-forming galaxies are considered in the stacking
analysis. Although we have not removed sources with X-ray
detections in the following analysis, we estimate the contribution
of active galactic nuclei (AGNs) to the median 24 µm flux
densities in Section 4.2.

3. THE STAR FORMATION SEQUENCE

Figure 1 shows the star formation sequence, log Ψ as a
function of log M⋆, in four redshifts bins from z = 0.5 to
z = 2.5. We use a single SFR indicator, the UV+IR SFRs
described in Section 2.4, probing over two decades in stellar
mass. The gray scale represents the density of points for star-
forming galaxies selected in Section 2.5 with S/N > 3 MIPS

14 Essentially identical to the publicly released catalogs available through
http://3dhst.research.yale.edu/Data.html, with the same catalog identifications
and photometry.
15 Even though the SFR is dominated by the IR contribution, the limiting
factor here is the depth of the Spitzer/MIPS 24 µm imaging.

24 µm detections, totaling 9015 star-forming galaxies over the
full redshift range. Mass completeness limits are indicated by
vertical lines. The GOODS-N and GOODS-S fields have deeper
MIPS imaging (3σ limit of ∼10 µJy) and HST/WFC3 JF125W

and HF160W imaging (5σ ∼ 26.9 mag), whereas the other three
fields have shallower MIPS imaging (3σ limits of ∼20 µJy) and
HST/WFC3 JF125W and HF160W imaging (5σ ∼ 26.3 mag).
The mass completeness limits in Figure 1 correspond to the
90% completeness limits derived by Tal et al. (2014), calculated
by comparing object detection in the CANDELS/deep with a
re-combined subset of the exposures that reach the depth of
the CANDELS/wide fields. Although the mass completeness
in the deeper GOODS-N and GOODS-S fields will extend to
lower stellar masses, we adopt the more conservative limits for
the shallower HST/WFC3 imaging.

First, we look at the measurements for individual galaxies.
The running median of the individual UV+IR measurements
of the SFR are indicated with solid circles when the data are
complete both in stellar mass and SFR (above the shallower
data 3σ MIPS 24 µm detection limit).16 We consider all MIPS
photometry in the median for the individual UV+IR SFRs
measurements (filled circles), even those galaxies intrinsically
faint in the IR. Only 1% of the star-forming galaxies above the
20 µJy limit in each redshift bin have 24 µm photometry with
S/N < 1.

To leverage the additional decade lower in stellar mass
that the CANDELS HST/WFC3 imaging enables us to probe

16 In the case of the 1.0 < z < 1.5 and 1.5 < z < 2.5 bins, the filled circles
representing individual measurements are limited by the 3σ 24 µm
completeness limits (horizontal dotted line, ∼20 µJy), which therefore makes
it appear as though the higher redshift sample extends to lower completeness
limits due to the strongly evolving normalization.

4

Two Key Discoveries About Galaxies

*



Constraining the Galaxy Halo Connection: Star Formation Histories, 
Galaxy Mergers, and Structural Properties, by Aldo Rodriguez-Puebla, Joel 
Primack, Vladimir Avila-Reese, and Sandra Faber

We use results from the Bolshoi-Planck simulation (Aldo Rodriguez-Puebla, Peter Behroozi, 
Joel Primack, Anatoly Klypin, Christoph Lee, Doug Hellinger 2016, MNRAS 462, 893), 
including halo and subhalo abundance as a function of redshift and median halo mass growth 
for halos of given Mvir at z = 0.  Our semi-empirical approach uses SubHalo Abundance 
Matching (SHAM), which matches the cumulative galaxy stellar mass function (GSMF) to the 
cumulative stellar mass function to correlate galaxy stellar mass with (sub)halo mass. 

Assumption: every halo hosts a galaxy

MNRAS 470, 651 (2017)
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Figure 5. Two-point correlation function in five stellar mass bins. The solid lines show the predicted two-point correlation based on our
stellar mass-to-Vmax relation from SHAM, while the circles with error bars show the same but for SDSS DR7 (Yang et al. 2012).

mass projected two point correlation functions. In the case
of r-band, we compared to Zehavi et al. (2011) who used
r-band magnitudes at z = 0.1. We transformed our r-band
magnitudes to z = 0.1 by finding the correlation between
model magnitudes at z = 0 and at z = 0.1 from the tables
of the NYU-VAGC9. For the projected two point correlation
function in stellar mass bins we compare with Yang et al.
(2012).

3.3 Measurements of the mock ugriz GLFs and
the GSMF as a function of environment

Our mock galaxy catalog is a volume complete sample down
to halos of maximum circular velocity Vmax ⇠ 55 kms�1,
corresponding to galaxies brighter than Mr �5 log h ⇠ �14,
see Figure 3. This magnitude completeness is well above the
completeness of the SDSS DR7. Thus, galaxies selected in
the absolute magnitude range �21.8 < Mr�5 log h < �20.1
define a volume-limited DDP sample. In other words, in-
completeness is not a problem for our mock galaxy cata-
logue. Overdensity and density contrast measurements for
each mock galaxy in the BolshoiP simulation are obtained
as described in Section 2.3.3.

We estimate the dependence of the ugriz GLFs with
environment in our mock galaxy catalog as

�X(MX |�8) =
1

�MXfBP(�8)L3
BP

NX

i=1

!i(MX±�MX/2).(14)

9 Specifically, we found that Mr(z = 0.1) = 0.992 ⇥ Mr(z =
0) + 0.041 with a Pearson correlation coe�cient of r = 0.998.

Here, !i = 1 if a galaxy is within the interval MX±�MX/2,
otherwise it is 0. Again, MX refers to Mu, Mg, Mr, Mi, Mz

and logM⇤. The function fBP(�8) is the fraction of e↵ective
volume by a given overdensity bin for the BolshoiP simu-
lation. In order to determine fBP(�8), we create a random
catalog of Nr ⇠ 1⇥ 106 points in a box of side length iden-
tical to the BolshoiP simulation, i.e., LBP = 250 h�1Mpc.
Using Equation (10) allows us to calculate fBP(�8).

4 RESULTS ON ENVIRONMENTAL DENSITY
DEPENDENCE

In this section we present our determinations for the envi-
ronmental density dependence of the ugriz GLFs and the
GSMF from the SDSS DR7 and the BolshoiP. Here, we
will investigate how well the assumption that the statisti-
cal properties of galaxies are fully determined by Vmax can
predict the dependence of the ugriz GLFs and GSMF with
environment. We will show that predictions from SHAM are
in remarkable agreement with the data from the SDSS DR7,
especially for the longer wavelength bands. Finally, we show
that SHAM also reproduces the correct dependence on en-
vironmental density of both the r-band GLFs and GSMF
for centrals and satellites, although it fails to reproduce the
observed relationship between environment and color.

4.1 SDSS DR7

Figure 6 shows the dependence of the SDSS DR7 ugriz
GLFs as well as the GSMF with environmental density mea-
sured in spheres of radius 8 h�1Mpc. For the sake of the

c� 20?? RAS, MNRAS 000, 1–17
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Figure 6. Comparison between the observed SDSS DR7 ugriz GLFs and GSMF, filled circles with error bars, and the ones predicted
based on the BolshoiP simulation from SHAM, shaded regions, at four environmental densities in spheres of radius 8 h�1Mpc. We also
reproduce the best fitting Schechter functions to the r-band GLFs from the GAMA survey (McNaught-Roberts et al. 2014). Observe
that SHAM predictions are in excellent agreement with observations, especially for the longest wavelength bands.

Figure 7. Left Panel: Comparison between the observed r�band GLF with environmental density in spheres of 8 h�1Mpc, filled circles
with error bars, and the ones predicted based on the BolshoiP simulation from SHAM, shaded regions. The dashed lines show the best
fitting Schechter functions to the r-band GLFs from the GAMA survey (McNaught-Roberts et al. 2014). Right Panel: Similar to the
left panel but for the GSMF with environmental density. Here again the dashed lines are the best fitting Schechter functions.

simplicity, we present only four overdensity bins in Figure
6. In Figure 7 we show the determinations in nine density
bins for the r-band GLFs and GSMF. In order to compare
with recent observational results we use identical environ-
ment density bins as in McNaught-Roberts et al. (2014),
who used galaxies from the GAMA survey to measure the

dependence of the r-band GLF on environment over the red-
shift range 0.04 < z < 0.26 in spheres of radius of 8 h�1Mpc.

The r�band panel of Figure 6 shows that our determi-
nations are in good agreement with results from the GAMA
survey. In the g-band panel of the same Figure, we present
a comparison with the previously published results by Cro-

c� 20?? RAS, MNRAS 000, 1–17
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SubHalo Abundance Matching (SHAM) Predicts 
Density Dependence of Galaxy Luminosity and Mass 
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Figure 5. sSFRs using Eq. 4.

Figure 6. Scatter of the SFRs using Eq. 3.

c⃝ 20?? RAS, MNRAS 000, 1–??

but if the M∗–Mvir relation is independent of redshift then the 
stellar mass of a central galaxy formed in a halo of mass 
Mvir(t) is M∗ = M∗(Mvir(t)) and the second term vanishes.  

We call this Stellar-Halo Accretion Rate Coevolution 
(SHARC) if true halo-by-halo for star-forming galaxies.

Scatter of halo mass accretion rates

Halo mass accretion rates z=0 to 3

Implied scatter of star formation rates
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different, especially at lower masses where satellites tend to
have more stellar mass compared to centrals of the same halo
mass (for a more general discussion see Rodŕıguez-Puebla,
Drory & Avila-Reese 2012; Rodŕıguez-Puebla, Avila-Reese
& Drory 2013; Reddick et al. 2013; Watson & Conroy 2013;
Wetzel et al. 2013). Since we are interested in studying the
connection between halo mass accretion and star formation
in central galaxies, for our analysis we derive the SHMR for
central galaxies only.

We model the GSMF of central galaxies by defining
P (M∗|Mvir) as the probability distribution function that a
distinct halo of mass Mvir hosts a central galaxy of stellar
mass M∗. Then the GSMF for central galaxies as a function
of stellar mass is given by

φ∗,cen(M∗) =

Z

∞

0

P (M∗|Mvir)φh(Mvir)dMvir. (2)

Here, φh(Mvir) is the halo mass function and P (M∗|Mvir)
is a log-normal distribution assumed to have a scatter of
σc = 0.15 dex independent of halo mass. Such a value is
supported by the analysis of large group catalogs (Yang,
Mo & van den Bosch 2009; Reddick et al. 2013), studies of
the kinematics of satellite galaxies (More et al. 2011), as well
as clustering analysis of large samples of galaxies (Shankar
et al. 2014; Rodŕıguez-Puebla et al. 2015). Note that this
scatter, σc, consists of an intrinsic component and a mea-
surement error component. At z = 0, most of the scatter
appears to be intrinsic, but that becomes less and less true
at higher redshifts (see, e.g., Behroozi, Conroy & Wechsler
2010; Behroozi, Wechsler & Conroy 2013b; Leauthaud et al.
2012; Tinker et al. 2013). Here, we do not deconvolve to re-
move measurement error, as most of the observations that
we will compare to include these errors in their measure-
ments.

As regards the GSMF of central galaxies, we here use
the results reported in Rodŕıguez-Puebla et al. (2015). In a
recent analysis of the SDSS DR7, Rodŕıguez-Puebla et al.
(2015) derived the total, central, and satellite GSMF for stel-
lar masses from M∗ = 109M⊙ to M∗ = 1012M⊙ based on the
NYU-VAGC (Blanton et al. 2005) and using the 1/Vmax es-
timator. The membership (central/satellite) for each galaxy
was obtained from an updated version of the Yang et al.
(2007) group catalog presented in Yang et al. (2012). The
corresponding SHMR is shown as the black curve in Fig-
ure 3, and the SHMR for all galaxies from Behroozi, Wech-
sler & Conroy (2013a) is shown as the red curve. The dif-
ference between the two curves for halo masses lower than
Mvir ∼ 1012M⊙ reflects the fact that the SHMR of cen-
trals and satellite galaxies are slightly different as mentioned
above. At halo masses higher than Mvir ∼ 1012M⊙ , this
difference is primarily due to the differences between the
GSMFs used to derive these SHMRs, Behroozi et al. 2013
used (Moustakas et al. 2013). When comparing both GSMFs
we find that the high mass-end from Rodŕıguez-Puebla et al.
(2015) is significantly different to the one derive in (Mous-
takas et al. 2013). In contrast, when comparing Rodŕıguez-
Puebla et al. (2015) GSMF with Bernardi et al. (2010) we
find an excellent agreement, for a more general discussion
see Rodŕıguez-Puebla et al. (2015). In less degree, we also
find that the different values employed for the scatter of the
SHMR explain these differences.

2.3 Inferring Star Formation Rates From Halo
Mass Accretion Rates

A number of recent studies exploring the SHMR at differ-
ent redshifts have found that it evolves only slowly with
time (see, e.g., Leauthaud et al. 2012; Hudson et al. 2013;
Behroozi, Wechsler & Conroy 2013b, and references therein).
For example, based on the observed evolution of the GSMF,
the star formation rate SFR, and the cosmic star formation
rate, Behroozi, Wechsler & Conroy (2013b) showed that this
is the case at least up to z = 4 (cf. possible increased evolu-
tion at z > 4; Behroozi & Silk 2015; Finkelstein et al. 2015).
Moreover, Behroozi, Wechsler & Conroy (2013a) showed
that assuming a time-independent ratio of galaxy specific
star formation rate (sSFR) to host halo specific mass accre-
tion rate (sMAR), defined as the star formation efficiency ϵ,
simply explains the cosmic star formation rate since z = 4.
If we assume a time-independent SHMR, the star formation
efficiency is the slope of the SHMR,

ϵ =
Ṁ∗/M∗

Ṁvir/Mvir

=
∂ log M∗

∂ log Mvir
. (3)

This equation simply relates galaxy SFRs to their host
halo MARs without requiring knowledge of the underlying
physics. (This is the main difference between the equilibrium
solution we present below and previous “bathtub” models.)
Our primary motivation here is to understand whether halo
MARs are responsible for the mass and redshift dependence
of the SFR main sequence and its scatter. Similar models
have been explored in the past for different purposes, includ-
ing generating mock catalogs (Taghizadeh-Popp et al. 2015)
and understanding the different clustering of quenched and
star-forming galaxies (Becker 2015).

Using halo MARs, we operationally infer galaxy SFRs
as follows. Let M∗ = M∗(Mvir(t), t) be the stellar mass of a
central galaxy formed in a halo of mass Mvir(t) at time t.
In a time-independent SHMR, the above reduces to M∗ =
M∗(Mvir(t)). From this relation the change of stellar mass
in time is simply

dM∗

dt
= f∗

∂ log M∗

∂ log Mvir

dMvir

dt
, (4)

where f∗ = M∗/Mvir is the stellar-to-halo mass ratio.
Equation (4) implies stellar-halo accretion rate coevolution,
SHARC. The left panel of Figure 4 shows the resulting
stellar-to-halo mass ratio, f∗, derived for SDSS central galax-
ies (see Section 2.2). Consistent with previous studies, we
find that f∗ has a maximum of ∼ 0.03 at Mvir ∼ 1012M⊙,
and it decreases at both higher and lower halo masses. The
product f∗ × ϵ = dM∗/dMvir will be shown as the black
curves in Figure 5 below.

In the more general case M∗ = M∗(Mvir(t), z), equation
(4) generalizes to

dM∗

dt
=

∂M∗(Mvir(t), z)
∂Mvir

dMvir

dt
+

∂M∗(Mvir(t), z)
∂z

dz
dt

, (5)

where the first term is the contribution to the SFR from
halo MAR and the second term is the change in the SHMR
with redshift. Although in this paper we assume a constant
SHMR, the formalism that we describe below applies to this
more general case.

The relation between stellar mass growth and observed
star formation rate is given by

c⃝ 0000 RAS, MNRAS 000, 000–000
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Table 1. List of acronyms used in this paper.

ART Adaptive refinement tree (simulation code).
CSFR Cosmic star formation rate.
IMF Initial mass function.
ISM Interstellar medium.
GSMF Galaxy stellar mass function.
MAR Mass accretion rate, Ṁvir.
SHARC Stellar halo accretion rate coevolution.
E+SHARC Equilibrium+SHARC.
SDSS Sloan digital sky survey.
SFR Star formation rate.
SHMR Stellar-to-halo mass relation.
sMAR Specific mass accretion rate, Ṁvir/Mvir.
sSFR specific star formation rate, SFR/M∗.

the spherical overdensity criterion of Bryan & Norman (1998). We
also assume a Chabrier (2003) IMF. Finally, Table 1 lists all the
acronyms used in this paper.

2 ST E L L A R H A L O AC C R E T I O N R AT E
C O E VO L U T I O N ( S H A R C )

2.1 The simulation

We generate our mock galaxy catalogues based on the N-body
Bolshoi–Planck simulation (Klypin et al. 2014). The Bolshoi–
Planck simulation is based on the !CDM cosmology with param-
eters consistent with the latest results from the Planck Collabora-
tion (Planck Collaboration XIII 2015) and run using the ART code
(Kravtsov, Klypin & Khokhlov 1997; Gottloeber & Klypin 2008).
The Bolshoi–Planck simulation has a volume of (250 h− 1Mpc)3 and
contains 20483 particles of mass 1.9 × 108 M⊙. Haloes/subhaloes
and their merger trees were calculated with the phase-space tempo-

ral halo finder ROCKSTAR (Behroozi, Wechsler & Wu 2013b; Behroozi
et al. 2013c). Halo masses were defined using spherical overden-
sities according to the redshift-dependent virial overdensity "vir(z)
given by the spherical collapse model (Bryan & Norman 1998),
with "vir = 178 for large z and "vir = 333 at z = 0 with our
#M. Like the Bolshoi simulation (Klypin et al. 2011), Bolshoi–
Planck is complete down to haloes of maximum circular velocity
vmax ∼ 55 km s− 1.

In this paper, we calculate instantaneous halo MARs from the
Bolshoi–Planck simulation, as well as halo MARs averaged over
the dynamical time (Ṁvir,dyn), defined as
〈 dMvir

dt

〉

dyn
= Mvir(t) − Mvir(t − tdyn)

tdyn
. (1)

The dynamical time of the halo is tdyn(z) = [G"vir(z)ρm]− 1/2, which
is ∼20 per cent of the Hubble time. Simulations (e.g. Dekel et al.
2009) suggest that most star formation results from cold gas flowing
inward at about the virial velocity – i.e. roughly a dynamical time
after the gas enters. As instantaneous accretion rates for distinct
haloes near clusters can also be negative (Behroozi et al. 2014),
using time-averaged accretion rates allows galaxies in these haloes
to continue forming stars.

Fig. 1 shows the instantaneous and the dynamical-time-averaged
halo MARs as a function of halo mass and redshift, and Fig. 2 shows
their respective scatters. Even before converting halo accretion rates
into SFRs (Section 2.3), it is evident that both the slope and disper-
sion in halo MARs are already very similar to that of galaxy SFRs
on the main sequence.

2.2 Connecting galaxies to haloes

The abundance matching technique is a simple and powerful statis-
tical approach to connecting galaxies to haloes. In its most simple

Figure 1. Halo MARs from z = 0 to 3, from the Bolshoi–Planck simulation. The instantaneous rate is shown in black, and the dynamically time averaged rate
in red. The grey band is the 1σ (68 per cent) range of the instantaneous MARs. All the slopes are approximately the same ∼1.1 both for Ṁvir and Ṁvir,dyn.
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Figure 2. Scatter of halo MARs from z = 0 to 3 from the Bolshoi–Planck
simulation. As in Fig. 1, scatter for the instantaneous rate is shown in black,
and that for the dynamically time averaged rate in red.

form, the cumulative halo and subhalo mass function1 and the cu-
mulative GSMF are matched in order to determine the mass relation
between haloes and galaxies. In order to assign galaxies to haloes
in the Bolshoi–Planck simulation, in this paper we use a more gen-
eral procedure for abundance matching. Recent studies have shown
that the mean SHMRs of central and satellite galaxies are slightly
different, especially at lower masses where satellites tend to have
more stellar mass compared to centrals of the same halo mass (for
a more general discussion see Rodrı́guez-Puebla et al. 2012, 2013;
Reddick et al. 2013; Watson & Conroy 2013; Wetzel et al. 2013).
Since we are interested in studying the connection between halo
mass accretion and star formation in central galaxies, for our anal-
ysis we derive the SHMR for central galaxies only.

We model the GSMF of central galaxies by defining P (M∗|Mvir)
as the probability distribution function that a distinct halo of mass
Mvir hosts a central galaxy of stellar mass M∗. Then the GSMF for
central galaxies as a function of stellar mass is given by

φ∗,cen(M∗) =
∫ ∞

0
P (M∗|Mvir)φh(Mvir) dMvir. (2)

Here, φh(Mvir) is the halo mass function and P (M∗|Mvir) is a log-
normal distribution assumed to have a scatter of σ c = 0.15 dex
independent of halo mass. Such a value is supported by the anal-
ysis of large group catalogues (Yang, Mo & van den Bosch 2009;
Reddick et al. 2013), studies of the kinematics of satellite galaxies
(More et al. 2011), as well as clustering analysis of large samples
of galaxies (Shankar et al. 2014; Rodrı́guez-Puebla et al. 2015).
Note that this scatter, σ c, consists of an intrinsic component and a
measurement error component. At z = 0, most of the scatter ap-
pears to be intrinsic, but that becomes less and less true at higher
redshifts (see e.g. Behroozi, Conroy & Wechsler 2010; Leauthaud
et al. 2012; Behroozi et al. 2013d; Tinker et al. 2013). Here, we
do not deconvolve to remove measurement error, as most of the
observations that we will compare to include these errors in their
measurements.

As regards the GSMF of central galaxies, we here use the results
reported in Rodrı́guez-Puebla et al. (2015). In a recent analysis of
the SDSS DR7, Rodrı́guez-Puebla et al. (2015) derived the total,
central, and satellite GSMF for stellar masses from M∗ = 109 M⊙

1 Typically defined at the time of subhalo accretion.

Figure 3. Upper panel: SHMR for SDSS galaxies. The red curve is for all
SDSS galaxies, from Behroozi et al. (2013d) abundance matching using the
Bolshoi simulation. The black curve is for SDSS central galaxies, using the
abundance matching method of Rodrı́guez-Puebla, Avila-Reese & Drory
(2013) applied to the Bolshoi–Planck simulation. The latter is what we
use in this paper, where we restrict attention to central galaxies. Bottom
Panel: halo-to-stellar mass relations. The dotted vertical line and the blue
arrow indicate that galaxies below M∗ = 1010.5 M⊙ are considered as main
sequence galaxies, while some higher mass galaxies are not on the main
sequence.

to 1012 M⊙ based on the NYU-VAGC (Blanton et al. 2005) and
using the 1/Vmax estimator. The membership (central/satellite) for
each galaxy was obtained from an updated version of the Yang
et al. (2007) group catalogue presented in Yang et al. (2012). The
corresponding SHMR is shown as the black curve in Fig. 3, and
the SHMR for all galaxies from Behroozi et al. (2013a) is shown
as the red curve. The difference between the two curves for halo
masses lower than Mvir ∼ 1012 M⊙ reflects the fact that the SHMR
of centrals and satellite galaxies are slightly different as mentioned
above. At halo masses higher than Mvir ∼ 1012 M⊙, this difference
is primarily due to the differences between the GSMFs used to derive
these SHMRs, Behroozi et al. (2013c) used Moustakas et al. (2013).
When comparing both GSMFs, we find that the high-mass end from
Rodrı́guez-Puebla et al. (2015) is significantly different to the one
derive in Moustakas et al. (2013). In contrast, when comparing
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but if the M∗–Mvir relation is independent of redshift then the 
stellar mass of a central galaxy formed in a halo of mass 
Mvir(t) is M∗ = M∗(Mvir(t)) and the second term vanishes.  

We call this Stellar-Halo Accretion Rate Coevolution 
(SHARC) if true halo-by-halo for star-forming galaxies.
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different, especially at lower masses where satellites tend to
have more stellar mass compared to centrals of the same halo
mass (for a more general discussion see Rodŕıguez-Puebla,
Drory & Avila-Reese 2012; Rodŕıguez-Puebla, Avila-Reese
& Drory 2013; Reddick et al. 2013; Watson & Conroy 2013;
Wetzel et al. 2013). Since we are interested in studying the
connection between halo mass accretion and star formation
in central galaxies, for our analysis we derive the SHMR for
central galaxies only.

We model the GSMF of central galaxies by defining
P (M∗|Mvir) as the probability distribution function that a
distinct halo of mass Mvir hosts a central galaxy of stellar
mass M∗. Then the GSMF for central galaxies as a function
of stellar mass is given by

φ∗,cen(M∗) =

Z

∞

0

P (M∗|Mvir)φh(Mvir)dMvir. (2)

Here, φh(Mvir) is the halo mass function and P (M∗|Mvir)
is a log-normal distribution assumed to have a scatter of
σc = 0.15 dex independent of halo mass. Such a value is
supported by the analysis of large group catalogs (Yang,
Mo & van den Bosch 2009; Reddick et al. 2013), studies of
the kinematics of satellite galaxies (More et al. 2011), as well
as clustering analysis of large samples of galaxies (Shankar
et al. 2014; Rodŕıguez-Puebla et al. 2015). Note that this
scatter, σc, consists of an intrinsic component and a mea-
surement error component. At z = 0, most of the scatter
appears to be intrinsic, but that becomes less and less true
at higher redshifts (see, e.g., Behroozi, Conroy & Wechsler
2010; Behroozi, Wechsler & Conroy 2013b; Leauthaud et al.
2012; Tinker et al. 2013). Here, we do not deconvolve to re-
move measurement error, as most of the observations that
we will compare to include these errors in their measure-
ments.

As regards the GSMF of central galaxies, we here use
the results reported in Rodŕıguez-Puebla et al. (2015). In a
recent analysis of the SDSS DR7, Rodŕıguez-Puebla et al.
(2015) derived the total, central, and satellite GSMF for stel-
lar masses from M∗ = 109M⊙ to M∗ = 1012M⊙ based on the
NYU-VAGC (Blanton et al. 2005) and using the 1/Vmax es-
timator. The membership (central/satellite) for each galaxy
was obtained from an updated version of the Yang et al.
(2007) group catalog presented in Yang et al. (2012). The
corresponding SHMR is shown as the black curve in Fig-
ure 3, and the SHMR for all galaxies from Behroozi, Wech-
sler & Conroy (2013a) is shown as the red curve. The dif-
ference between the two curves for halo masses lower than
Mvir ∼ 1012M⊙ reflects the fact that the SHMR of cen-
trals and satellite galaxies are slightly different as mentioned
above. At halo masses higher than Mvir ∼ 1012M⊙ , this
difference is primarily due to the differences between the
GSMFs used to derive these SHMRs, Behroozi et al. 2013
used (Moustakas et al. 2013). When comparing both GSMFs
we find that the high mass-end from Rodŕıguez-Puebla et al.
(2015) is significantly different to the one derive in (Mous-
takas et al. 2013). In contrast, when comparing Rodŕıguez-
Puebla et al. (2015) GSMF with Bernardi et al. (2010) we
find an excellent agreement, for a more general discussion
see Rodŕıguez-Puebla et al. (2015). In less degree, we also
find that the different values employed for the scatter of the
SHMR explain these differences.

2.3 Inferring Star Formation Rates From Halo
Mass Accretion Rates

A number of recent studies exploring the SHMR at differ-
ent redshifts have found that it evolves only slowly with
time (see, e.g., Leauthaud et al. 2012; Hudson et al. 2013;
Behroozi, Wechsler & Conroy 2013b, and references therein).
For example, based on the observed evolution of the GSMF,
the star formation rate SFR, and the cosmic star formation
rate, Behroozi, Wechsler & Conroy (2013b) showed that this
is the case at least up to z = 4 (cf. possible increased evolu-
tion at z > 4; Behroozi & Silk 2015; Finkelstein et al. 2015).
Moreover, Behroozi, Wechsler & Conroy (2013a) showed
that assuming a time-independent ratio of galaxy specific
star formation rate (sSFR) to host halo specific mass accre-
tion rate (sMAR), defined as the star formation efficiency ϵ,
simply explains the cosmic star formation rate since z = 4.
If we assume a time-independent SHMR, the star formation
efficiency is the slope of the SHMR,

ϵ =
Ṁ∗/M∗

Ṁvir/Mvir

=
∂ log M∗

∂ log Mvir
. (3)

This equation simply relates galaxy SFRs to their host
halo MARs without requiring knowledge of the underlying
physics. (This is the main difference between the equilibrium
solution we present below and previous “bathtub” models.)
Our primary motivation here is to understand whether halo
MARs are responsible for the mass and redshift dependence
of the SFR main sequence and its scatter. Similar models
have been explored in the past for different purposes, includ-
ing generating mock catalogs (Taghizadeh-Popp et al. 2015)
and understanding the different clustering of quenched and
star-forming galaxies (Becker 2015).

Using halo MARs, we operationally infer galaxy SFRs
as follows. Let M∗ = M∗(Mvir(t), t) be the stellar mass of a
central galaxy formed in a halo of mass Mvir(t) at time t.
In a time-independent SHMR, the above reduces to M∗ =
M∗(Mvir(t)). From this relation the change of stellar mass
in time is simply

dM∗

dt
= f∗

∂ log M∗

∂ log Mvir

dMvir

dt
, (4)

where f∗ = M∗/Mvir is the stellar-to-halo mass ratio.
Equation (4) implies stellar-halo accretion rate coevolution,
SHARC. The left panel of Figure 4 shows the resulting
stellar-to-halo mass ratio, f∗, derived for SDSS central galax-
ies (see Section 2.2). Consistent with previous studies, we
find that f∗ has a maximum of ∼ 0.03 at Mvir ∼ 1012M⊙,
and it decreases at both higher and lower halo masses. The
product f∗ × ϵ = dM∗/dMvir will be shown as the black
curves in Figure 5 below.

In the more general case M∗ = M∗(Mvir(t), z), equation
(4) generalizes to

dM∗

dt
=

∂M∗(Mvir(t), z)
∂Mvir

dMvir

dt
+

∂M∗(Mvir(t), z)
∂z

dz
dt

, (5)

where the first term is the contribution to the SFR from
halo MAR and the second term is the change in the SHMR
with redshift. Although in this paper we assume a constant
SHMR, the formalism that we describe below applies to this
more general case.

The relation between stellar mass growth and observed
star formation rate is given by
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Table 1. List of acronyms used in this paper.

ART Adaptive refinement tree (simulation code).
CSFR Cosmic star formation rate.
IMF Initial mass function.
ISM Interstellar medium.
GSMF Galaxy stellar mass function.
MAR Mass accretion rate, Ṁvir.
SHARC Stellar halo accretion rate coevolution.
E+SHARC Equilibrium+SHARC.
SDSS Sloan digital sky survey.
SFR Star formation rate.
SHMR Stellar-to-halo mass relation.
sMAR Specific mass accretion rate, Ṁvir/Mvir.
sSFR specific star formation rate, SFR/M∗.

the spherical overdensity criterion of Bryan & Norman (1998). We
also assume a Chabrier (2003) IMF. Finally, Table 1 lists all the
acronyms used in this paper.

2 ST E L L A R H A L O AC C R E T I O N R AT E
C O E VO L U T I O N ( S H A R C )

2.1 The simulation

We generate our mock galaxy catalogues based on the N-body
Bolshoi–Planck simulation (Klypin et al. 2014). The Bolshoi–
Planck simulation is based on the !CDM cosmology with param-
eters consistent with the latest results from the Planck Collabora-
tion (Planck Collaboration XIII 2015) and run using the ART code
(Kravtsov, Klypin & Khokhlov 1997; Gottloeber & Klypin 2008).
The Bolshoi–Planck simulation has a volume of (250 h− 1Mpc)3 and
contains 20483 particles of mass 1.9 × 108 M⊙. Haloes/subhaloes
and their merger trees were calculated with the phase-space tempo-

ral halo finder ROCKSTAR (Behroozi, Wechsler & Wu 2013b; Behroozi
et al. 2013c). Halo masses were defined using spherical overden-
sities according to the redshift-dependent virial overdensity "vir(z)
given by the spherical collapse model (Bryan & Norman 1998),
with "vir = 178 for large z and "vir = 333 at z = 0 with our
#M. Like the Bolshoi simulation (Klypin et al. 2011), Bolshoi–
Planck is complete down to haloes of maximum circular velocity
vmax ∼ 55 km s− 1.

In this paper, we calculate instantaneous halo MARs from the
Bolshoi–Planck simulation, as well as halo MARs averaged over
the dynamical time (Ṁvir,dyn), defined as
〈 dMvir

dt

〉

dyn
= Mvir(t) − Mvir(t − tdyn)

tdyn
. (1)

The dynamical time of the halo is tdyn(z) = [G"vir(z)ρm]− 1/2, which
is ∼20 per cent of the Hubble time. Simulations (e.g. Dekel et al.
2009) suggest that most star formation results from cold gas flowing
inward at about the virial velocity – i.e. roughly a dynamical time
after the gas enters. As instantaneous accretion rates for distinct
haloes near clusters can also be negative (Behroozi et al. 2014),
using time-averaged accretion rates allows galaxies in these haloes
to continue forming stars.

Fig. 1 shows the instantaneous and the dynamical-time-averaged
halo MARs as a function of halo mass and redshift, and Fig. 2 shows
their respective scatters. Even before converting halo accretion rates
into SFRs (Section 2.3), it is evident that both the slope and disper-
sion in halo MARs are already very similar to that of galaxy SFRs
on the main sequence.

2.2 Connecting galaxies to haloes

The abundance matching technique is a simple and powerful statis-
tical approach to connecting galaxies to haloes. In its most simple

Figure 1. Halo MARs from z = 0 to 3, from the Bolshoi–Planck simulation. The instantaneous rate is shown in black, and the dynamically time averaged rate
in red. The grey band is the 1σ (68 per cent) range of the instantaneous MARs. All the slopes are approximately the same ∼1.1 both for Ṁvir and Ṁvir,dyn.
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Figure 8. Specific star formation rates as a function of redshift z for stellar masses M∗ = 109, 109.5, 1010 and 1010.5M⊙ from time-
independent SHMR model. The red and black curves are the sSFRs, from both dynamically-time-averaged and instantaneous mass
accretion rates, respectively, with the gray band representing the dispersion in the latter. Both are corrected for mergers. The orange
curve is the Speagle et al. (2014) summary of observed sSFRs on the main sequence. Observations from Whitaker et al. (2014), Ilbert
et al. (2015) and Schreiber et al. (2015) are also included.

esting to discuss these differences in the light of the constant
SHMR model.

First, the observed sSFRs of galaxies at z > 4 are sys-
tematically lower than the time independent SHMR model
predictions. These differences increase at z = 6. The dis-
agreement between the constant SHMR predicted SFRs and
the observations implies that the changing SHMR must be
used, as in equation (5), at least at high redshift.

Between z = 4 and z = 3 the observed star-forming
sequence is consistent with the SHARC predictions. Between
z = 2 and z = 0.5, the observed sSFRs are slightly above
the SHARC predictions. This departure occurs at the time
of the peak value of the cosmic star formation rate.

After the compilation carried out by Speagle et al.
(2014), new determinations of the sSFR have been pub-
lished, particularly for redshifts z < 2.5. In Figures 7 and 8,
we reproduce new data published in Whitaker et al. (2014);
Ilbert et al. (2015) and Schreiber et al. (2015). This new
set of data agrees better with our model between z = 2
and z = 0.5, implying that the time-independent SHMR
(SHARC assumption) may be nearly valid across the wide
redshift range from z ∼ 4 to z ∼ 0, a remarkable result.
However, it is not clear whether this is valid since the newer
observations have not been recalibrated as in Speagle et al.
(2014).

Figure 9. Scatter of the sSFR for main-sequence galaxies pre-
dicted in our model.

4.2 Scatter of the sSFR Main Sequence

We now turn our discussion to the scatter of the star-forming
main sequence, displayed in Figure 9. When using Ṁvir, the
scatter is nearly independent of redshift and it increases
very slowly with mass for z < 2. The value of the scat-

c⃝ 0000 RAS, MNRAS 000, 000–000
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FIG. 3.— Left panel: the stellar mass to halo mass ratio at multiple redshifts as derived from observations (Behroozi et al. 2012) compared to a model which
has a time-independent star formation efficiency (SFE). Error bars show 1 -� uncertainties (Behroozi et al. 2012). A time-independent SFE predicts a roughly
time-independent stellar mass to halo mass relationship. Right: the cosmic star formation rate for a compilation of observations (Behroozi et al. 2012) compared
to the best-fit model from a star formation history reconstruction technique (Behroozi et al. 2012) as well as the time-independent SFE model. The latter model
works surprisingly well up to redshifts of z ⇠ 4. However, a model which has a constant efficiency (with mass and time) also reproduces the decline in star
formation well since z ⇠ 2.
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FIG. 4.— Left panel: Star formation rate as a function of halo mass and cosmic time, weighted by the number density of dark matter halos at that time. Contours
show where 50 and 90% of all stars were formed; dashed line shows the median halo mass for star formation as a function of time. Right panel: Star formation
rate as a function of galaxy stellar mass and time, weighted by the number density of galaxies at that time. Contours and dashed line are as in top-left panel;
dotted line shows current minimum stellar masses reached by observations.

characteristic mass is to use a different mass definition. For
example, using M200b (i.e., 200 times the background density)
would cancel some of the evolution from z = 1 to z = 0. How-
ever, this would also raise the mass accretion rate at z = 0,
which would increase evolution in the star formation effi-
ciency’s normalization. Using the maximum circular velocity
(Vcirc) or the velocity dispersion (�) instead would also lead
to more evolution in the SFE (at fixed Vcirc or �): due to the
smaller physical dimensions of the universe at early times,
both these velocities increase with redshift at fixed virial halo
mass.

The nearly-constant characteristic mass scale is robust to
our main assumption that the baryon accretion rate is propor-
tional to the halo mass accretion rate, because this mass scale

is already present in the conditional SFR (Fig. 1). A baryon
accretion rate which scales nonlinearly with the dark matter
accretion rate would change the width of the most efficient
halo mass range, but it would not change the location. How-
ever, as discussed previously, the baryon accretion rate for
small halos (Mh < 1012

M�) can differ from the dark matter
accretion rate through recooling of ejected gas; the changing
virial density threshold can also introduce non-physical evolu-
tion in the halo mass which affects the accretion rate (Diemer
et al. 2012). Properly accounting for these effects may change
the low-mass slope of the star formation efficiency; we will
investigate this in future work.

Note that the level of consistency seen in the star forma-
tion efficiency is not possible to achieve using other common

Galaxy Stellar Mass - Halo Mass Relation



Astronaut Andrew Feustel installing 
Wide Field Camera Three 

on the last visit to Hubble Space 
Telescope in 2009

The infrared capabilities of WFC3 
allow us to see the full stellar 

populations of forming galaxies
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At the present day, only a few galaxies lie between the 
peaks of the blue and red galaxies, in the so-called “green 
valley” (so named because green wavelengths are midway 
between red and blue in the spectrum). A blue galaxy that 
is vigorously forming stars will become green within a 
few hundred million years if star formation is suddenly 
quenched. On the other hand, a galaxy that has lots of old 
stars and a few young ones can also be green just through 
the combination of the blue colors of its young stars and 
the red colors of the old ones. The Milky Way probably 
falls in this latter category, but the many elliptical galaxies 
around us today probably made the transition from blue 
to red via a rapid quenching of star formation. CANDELS 
lets us look back at this history. 

Most galaxies of interest to astronomers working on 
CANDELS have a look-back time of at least 10 billion 
years, when the universe was only a few billion years old. 
Because the most distant galaxies were relatively young at 
the time we observe them, we thought few of them would 
have shut off star formation. So we expected that red gal-
axies would be rare in the early universe. But an impor-
tant surprise from CANDELS is that red galaxies with the 
same elliptical shapes as nearby red galaxies were already 
common only 3 billion years after the Big Bang — right 
in the middle of cosmic high noon. 

Puzzlingly, however, elliptical galaxies from only 
about 3 billion years after the Big Bang are only one-
third the size of typical elliptical galaxies with the same 
stellar mass today. Clearly, elliptical galaxies in the early 
universe must have subsequently grown in a way that 
increased their sizes without greatly increasing the num-
ber of stars or redistributing the stars in a way that would 
change their shapes. Many astronomers suspect that the 

present-day red ellipticals with old stars grew in size by 
“dry” mergers — mergers between galaxies having older 
red stars but precious little star-forming cold gas. But 
the jury is still out on whether this mechanism works in 
detail to explain the observations. 

The Case of the Chaotic Blue Galaxies
Ever since Hubble’s first spectacular images of distant 
galaxies, an enduring puzzle has been why early star-
forming galaxies look much more irregular and jumbled 
than nearby blue galaxies. Nearby blue galaxies are 
relatively smooth. The most beautiful ones are elegant 
“grand-design” spirals with lanes of stars and gas, such as 
M51. Smaller, irregular dwarf galaxies are also often blue.

But at cosmic high noon, when stars were blazing 
into existence at peak rates, many galaxies look distorted 
or misshapen, as if galaxies of similar size are colliding. 
Even the calmer-looking galaxies are often clumpy and 
irregular. Instead of having smooth disks or spiral arms, 
early galaxies are dotted with bright blue clumps of very 
active star formation. Some of these clumps are over 100 
times more luminous than the Tarantula Nebula in the 
Large Magellanic Cloud, one of the biggest star-forming 
regions in the nearby universe. How did the chaotic, dis-
ordered galaxies from earlier epochs evolve to become the 
familiar present-day spiral and elliptical galaxies? 

Because early galaxies appear highly distorted, astro-
physicists had hypothesized that major mergers — that is, 
collisions of galaxies of roughly equal mass — played an 
important role in the evolution of many galaxies. Merg-
ers can redistribute the stars, turning two disk galaxies 
into a single elliptical galaxy. A merger can also drive gas 
toward a galaxy’s center, where it can funnel into a black 
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STARBIRTH RATE  Using data from many surveys, including CANDELS, 
astronomers have plotted the rate of star formation through cosmic history. 
The rate climbed rapidly at cosmic dawn and peaked at cosmic high noon.

COSMIC WEB  This frame from the Bolshoi supercom-
puter simulation depicts the distribution of matter at 
redshift 3. Clusters of galaxies lie along the bright filaments. 
Dark matter and cold gas flow along the filaments to supply 
galaxies with the material they need to form stars.
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Most astronomers used to think 

(1) that galaxies form as disks, 

(2) that forming galaxies are pretty smooth, and

(3) that galaxies generally grow in radius as they grow in mass. 

But CANDELS and other HST observations show that all these 
assumptions were wrong!  

(1) The majority of star-forming galaxies at z > 1 apparently have mostly 
elongated (prolate) stellar distributions rather than disks or spheroids, and our 
simulations may explain why.  

(2) A large fraction of star-forming galaxies at redshifts 1 < z < 3 are found to 
have massive stellar clumps; these originate from phenomena including mergers 
and disk instabilities in our simulations. 

(3) These phenomena also help to create compact stellar spheroidal galaxies 
(“nuggets”) through galaxy compaction (rapid inflow of gas to galaxy centers, 
where it forms stars). 
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Figure 3. Reconstructed intrinsic shape distributions of star-forming galaxies in our 3D-HST/CANDELS sample in four stellar mass bins and five redshift bins. The
model ellipticity and triaxiality distributions are assumed to be Gaussian, with the mean indicated by the filled squares, and the standard deviation indicated by the
open vertical bars. The 1σ uncertainties on the mean and scatter are indicated by the error bars. Essentially all present-day galaxies have large ellipticities, and small
triaxialities—they are almost all fairly thin disks. Toward higher redshifts low-mass galaxies become progressively more triaxial. High-mass galaxies always have
rather low triaxialities, but they become thicker at z ∼ 2.
(A color version of this figure is available in the online journal.)

Figure 4. Color bars indicate the fraction of the different types of shape defined in Figure 2 as a function of redshift and stellar mass. The negative redshift bins
represent the SDSS results for z < 0.1; the other bins are from 3D-HST/CANDELS.
(A color version of this figure is available in the online journal.)

Letter allows us to generalize this conclusion to include earlier
epochs.

At least since z ∼ 2 most star formation is accounted for by
!1010 M⊙ galaxies (e.g., Karim et al. 2011). Figures 3 and 4
show that such galaxies have disk-like geometries over the same
redshift range. Given that 90% of stars in the universe formed
over that time span, it follows that the majority of all stars in the
universe formed in disk galaxies. Combined with the evidence
that star formation is spatially extended, and not, for example,
concentrated in galaxy centers (e.g., Nelson et al. 2012; Wuyts
et al. 2012) this implies that the vast majority of stars formed in
disks.

Despite this universal dominance of disks, the elongatedness
of many low-mass galaxies at z ! 1 implies that the shape of
a galaxy generally differs from that of a disk at early stages
in its evolution. According to our results, an elongated, low-
mass galaxy at z ∼ 1.5 will evolve into a disk at later times, or,
reversing the argument, disk galaxies in the present-day universe
do not initially start out disks.13

As can be seen in Figure 3, the transition from elongated
to disky is gradual for the population. This is not necessarily

13 This evolutionary path is potentially interrupted by the removal of gas and
cessation of star formation.
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Prolate
Spheroidal
Oblate

See also Morphological Survey of Galaxies z=1.5-3.6  Law, Steidel+ ApJ 2012
               When Did Round Disk Galaxies Form?  T. M. Takeuchi+ ApJ 2015

Prolate Galaxies Dominate at High Redshifts & Low Masses
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Dark matter halos are elongated, especially !
near their centers.  Initially stars follow the !
gravitationally dominant dark matter, as shown.!
But later as the ordinary matter central density 
grows and it becomes gravitationally dominant, 
the star and dark matter distributions both 
become disky — as observed by Hubble 
Space Telescope  (van der Wel+ ApJL Sept 
2014).!

Our cosmological zoom-in simulations often produce elongated galaxies like observed 
ones.  The elongated stellar distribution follows the elongated inner dark matter halo.

Nearby large galaxies are mostly disks and spheroids — but they start out looking more like pickles.



In hydro sims, dark-matter dominated galaxies are 
prolateCeverino, Primack, Dekel

M* <1010 M☉ at z=2Stars

Dark matter

20 kpc

MNRAS 453, 408 (2015)

Formation of elongated galaxies with low masses at 
high redshift

Also Tomassetti et al. 2016 MNRAS

Daniel Ceverino, Joel Primack and Avishai Dekel MNRAS 2015

Simulated elongated galaxies are 
aligned with cosmic web filaments, 
become round after compaction 
(gas inflow fueling central starburst)
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(a) CANDELS galaxy (b) VELA galaxy

Figure 13. Panel (a): an example of large and elongated galaxies
in CANDELS. This galaxy has a z = 2.27 and log

�
M⇤/MJ�

.
Panel (b): an image of the galaxy VELA05.

4.5. The Most Massive Galaxies

As is pointed out, the numbers of galaxies in the most
massive bins are too small to be modeled robustly. Nev-
ertheless some qualitative comments can still be made.
Firstly we can clearly see that the curved boundary

gets less and less pronounced as time goes by. There are
two compatible explanations to this phenomenon: It can
be either due to the fact that the number of prolate galax-
ies decreases with time, and the oblate disks gets more
and more prevalent, thus the curved boundary, which is a
natural outcome of dominant prolate populations, grad-
ually fade out, and a flat distribution over a large b/a

range takes its place. Alternatively, it can be due to the
disappearance of the blue “nuggets”, which are small and
round star-forming galaxies. They start to quench and
consequently drop out of the star-forming sample with
time, leaving the upper left corner of the b/a� logSMA
diagram less and less populated.
The second trend is that the correlation between AV

values and b/a improves with time and mass. At high
redshift, there’s barely a systematic trend of AV value
with b/a, while as we move to lower redshift bins, the
correlation gets more and more significant. at the lowest
redshift and the most massive bin (0.5 < z < 1.0 and
10 < log

�
M⇤/M

J�
< 10.5), the negative correlation

between AV and b/a is the most pronounced. This evo-
lution of the negative correlation is consistent with the
picture that the oblateness grows with time and mass,
and the reason is explained in Section 4.1.

5. DISCUSSION

5.1. Comparison with VELA simulation images

We’ve pointed out that our results show growing
oblateness of star-forming galaxies with time and stellar
mass, which is also seen in VELA simulations. However,
Ceverino et al. (2015) and Tomassetti et al. (2015) inves-
tigate the evolution of the mass profiles of VELA galax-
ies, while what we’ve modeled were the distributions of
b/a and logSMA measured from the light profiles of the
galaxies. Therefore a more direct comparison between
the light profiles from real observation and the simula-
tion is needed.
Firstly to support the argument that we really find

intrinsically prolate galaxies in many redshift and mass
bins (mostly at the lower right corner of the b/a�logSMA
diagram), we compare the multi-waveband images of
CANDELS galaxies in that corner and those of prolate
galaxies in VELA. Fig. 13 shows two of such images.
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Figure 14. Panel (a): the b/a � logSMA distribution of CAN-
DELS star-forming galaxies with 2.0 < z < 2.5 and 9 <
log

�
M⇤/MJ�

< 9.5. Panel (b): The same distribution of pro-
late galaxies from the VELA simulation.

Fig. 13 (a) is a typical galaxy located at the lower right
corner of the b/a � logSMA diagram from CANDELS,
and Fig. 13 (b) is a galaxy in its prolate phase in the
VELA simulation, named VELA05. We can see the two
galaxies share some common features: a brighter centroid
with symmetric and extended structure. Given the sim-
ilarity between the morphologies of these two galaxies,
it’s quite plausible that many galaxies in that corner are
indeed prolate, and pure visual inspection on the images
is not su�cient to tell prolate objects from disks because
they can be very similar in their projected light profiles.
Besides totally qualitative comparisons based on the

visual inspections on the images, we also compare the
b/a � logSMA distributions of the galaxies from CAN-
DELS and those that are prolate from the VELA simu-
lation. Fig. 14 (a) shows the distribution of CANDELS
galaxies with 2.0 < z < 2.5 and 9 < log

�
M⇤/M

J�
< 9.5,

and Fig. 14 (b) shows that of the prolate galaxies in the
VELA simulation. We put all the prolate galaxies in Fig.
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Figure 13. Panel (a): an example of large and elongated galaxies
in CANDELS. This galaxy has a z = 2.27 and log

�
M⇤/MJ�

.
Panel (b): an image of the galaxy VELA05.

4.5. The Most Massive Galaxies

As is pointed out, the numbers of galaxies in the most
massive bins are too small to be modeled robustly. Nev-
ertheless some qualitative comments can still be made.
Firstly we can clearly see that the curved boundary

gets less and less pronounced as time goes by. There are
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be either due to the fact that the number of prolate galax-
ies decreases with time, and the oblate disks gets more
and more prevalent, thus the curved boundary, which is a
natural outcome of dominant prolate populations, grad-
ually fade out, and a flat distribution over a large b/a

range takes its place. Alternatively, it can be due to the
disappearance of the blue “nuggets”, which are small and
round star-forming galaxies. They start to quench and
consequently drop out of the star-forming sample with
time, leaving the upper left corner of the b/a� logSMA
diagram less and less populated.
The second trend is that the correlation between AV

values and b/a improves with time and mass. At high
redshift, there’s barely a systematic trend of AV value
with b/a, while as we move to lower redshift bins, the
correlation gets more and more significant. at the lowest
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�
M⇤/M

J�
< 10.5), the negative correlation

between AV and b/a is the most pronounced. This evo-
lution of the negative correlation is consistent with the
picture that the oblateness grows with time and mass,
and the reason is explained in Section 4.1.
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Firstly to support the argument that we really find

intrinsically prolate galaxies in many redshift and mass
bins (mostly at the lower right corner of the b/a�logSMA
diagram), we compare the multi-waveband images of
CANDELS galaxies in that corner and those of prolate
galaxies in VELA. Fig. 13 shows two of such images.

(a) CANDELS galaxies

(b) VELA galaxies

Figure 14. Panel (a): the b/a � logSMA distribution of CAN-
DELS star-forming galaxies with 2.0 < z < 2.5 and 9 <
log

�
M⇤/MJ�

< 9.5. Panel (b): The same distribution of pro-
late galaxies from the VELA simulation.

Fig. 13 (a) is a typical galaxy located at the lower right
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and Fig. 13 (b) is a galaxy in its prolate phase in the
VELA simulation, named VELA05. We can see the two
galaxies share some common features: a brighter centroid
with symmetric and extended structure. Given the sim-
ilarity between the morphologies of these two galaxies,
it’s quite plausible that many galaxies in that corner are
indeed prolate, and pure visual inspection on the images
is not su�cient to tell prolate objects from disks because
they can be very similar in their projected light profiles.
Besides totally qualitative comparisons based on the

visual inspections on the images, we also compare the
b/a � logSMA distributions of the galaxies from CAN-
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Compare Observed Galaxies with Simulated Galaxy Images

We convert our VELA galaxy simulations to realistic images using our 
Sunrise ray-tracing radiative transfer code to follow evolving starlight 
and its scattering and attenuation by dust, taking into account Hubble 
Space Telescope resolution (CANDELization).  We observe the simulated 
galaxies with randomly located cameras, and analyze the images exactly 
like the real HST observations, using the GALFIT routine.  The HST 
prolate galaxies are very similar to the simulated ones: 
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About 60% of star-forming galaxies
are clumpy at z ~ 2.5.
The evolution of the clump fraction
is mass-dependent.

Clumps have radial variation of their 
UV-optical colors:
   - outer clumps are bluer &
   - central clumps are redder,
as clump radial migration predicts.
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Figure 4. Examples of visually clumpy galaxies and blobs detected by our automated blob finder. The first three rows show the composite RGB images made by
the F435W, F606W, and F850LP images of the galaxies. The last three rows show the same galaxies in the images used to detect blobs. The detected blobs are
shown by circles. The color of each circle shows the fractional luminosity (FL = Lblob/Lgalaxy) of the blob: magenta, FL > 0.1; blue, 0.05 < FL < 0.1; green,
0.01 < FL < 0.05; and cyan, FL < 0.01. The redshift and M∗ of each galaxy are labeled. For each row, the M∗ increases from the left to the right, while the redshift
increases from the top to the bottom row. In order to show as many as possible examples of blobs, these galaxies are intentionally chosen to have very high clumpiness
from the CANDELS visual classification in the CANDELS/GOODS-S field (see Appendix). Note that the image scales of the first three rows are different from those
of the last three rows.

3.3. Completeness of the Blob Finder

We evaluate the completeness of our blob finder by recovering
fake blobs. For each galaxy in our sample, regardless of whether
it contains detected blobs, we insert one fake blob into its image
in the detection band and re-run our blob finder on it. We use
point sources to mimic the blobs. This simplification is validated
by the fact that the light profile of blobs can be well described
by the PSF of the detection bands (Figure 5). The fluxes of fake
blobs are randomly selected from a uniform distribution between
1% and 20% of the flux of their galaxies. The fake blobs are
only added into the segmentation areas of the galaxies. For each
galaxy, we repeat the process 30 times to improve the statistics.
Comparing with the method of adding arbitrary numbers of
blobs to fake model galaxies (e.g., Sérsic models), our method
largely preserves the distributions of the size, magnitude, surface
brightness profile, and blob crowdedness of real galaxies, which
are all important to the blob detection probability.

The detection probability, i.e., the successful rate of recov-
ering fake blobs, depends on the properties of both galaxies
and blobs. More specifically, it depends on redshift (z), the

magnitude of galaxies (magg), the size of galaxies (re), the mag-
nitude of blobs (magb), the location of blobs (the distance to
the center of the galaxies, db), and the number of blobs in the
galaxies (nb). For each of the real blobs, we assign a detection
probability to it based on its values of the above parameters,
P (z, magg, re, magb, db, nb), if we have at least five detected
fake blobs in the (z, magg, re, magb, db, nb) bin. Otherwise, we
determine its probability by interpolating the marginalized de-
tection probability as a function of the FL of the blobs (the sec-
ond row of Figure 6). In fact, using the probability–magb relation
(the first row of Figure 6) also provides a good approximation for
blobs in the under-sampled bins, but using the probability–FL
relation makes our later analyses easy because we are measuring
the FLF instead of the absolute luminosity function. Only �10%
of our blobs fall in the under-sampled (z, magg, re, magb, db, nb)
bins. Using the interpolated marginalized detection probability
would not affect our later results.

In order to avoid possible contamination from bulges, which
usually stand out in the filtered images (Panel 3 of Figure 3
and hence almost always are detected as blobs, we also exclude
blobs that are within db < 0.5 × re. For example, we only count
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Figure 15. Gradients of clump properties with galactocentric distance. In each panel, the x-axis is the distance from the galaxy centre normalized by the disc
radius, d/Rd and the y-axis refers to a different clump property. Top left: mass-weighted mean stellar age; top centre: baryonic clump mass normalized to the
disc mass; top right: gas fraction; bottom left: clump SFR normalized to the disc SFR; bottom centre: clump sSFR normalized to the disc sSFR; bottom right:
clump metallicity normalized to the mean disc metallicity. Lines and symbols are the same as in Fig. 10. The medians were calculated in equally spaced bins
of 0.15 dex in log(d/Rd). There are hardly any SLCs within ∼0.5Rd while LLCs can be found at ∼0.1Rd at the end of migration. LLCs have a strong mass
gradient, gaining a factor of ∼2 to 3 in mass during migration, while SLCs show no such gradient. LLCs also exhibit a steep age gradient, where clumps closer
to the disc centre have older stellar ages, while the corresponding gradient for SLCs is much shallower. SLCs have much higher gas fractions than LLCs which
rapidly turn an order of unity fraction of their mass into stars. While there is no strong trend of SFR with distance, the sSFR of LLCs steadily declines during
migration while the SLCs have a roughly constant value. LLCs have a shallower metallicity gradient and higher metallicity values than SLCs. Ex situ clumps
are much older, more massive and appear concentrated near the outer disc, though they are similar to LLCs in other properties.

star-forming ring where clumps are formed. After ∼4tdyn, there is
a clear radial migration, and the median distance scales as d ∝ t−α

with α ∼ 0.5. We do not identify any LLCs older than ∼30tdyn ∼
4–5torb, comparable to the expected migration time, tmig ≃ δ−2tdyn

(Dekel et al. 2009), where δ ∼ 0.15 in our simulations. At this
time, LLCs are typically found at ∼0.3–0.4Rd, but can be found
as close to the centre as ∼0.1Rd. We do not find any SLCs at such
small distances, showing that clump formation is limited to the ex-
ternal disc, and the existence of clumps at such small radii is a clear
sign of migration. This is a consequence of limiting our analysis
to massive post-compaction discs. These have developed a central
bulge and begun to stabilize in their centres, while VDI and clump
formation is limited to a star-forming ring at radii 0.5–1 × Rd. At
higher redshifts, in pre-compaction discs that lack a central mass
concentration, our simulations do show clump formation at smaller
radii. It is possible that these clumps may behave differently to the
ones studied here, but as stated previously, this is beyond the scope
of the current analysis. Observations of clumpy unstable discs at
z ∼ 2 show similar unstable rings around stable centres (Genzel
et al. 2014), and our predictions should be compared to such sys-
tems.

Fig. 15 shows gradients of clump properties for all clumps in
our clean sample. In each panel, the x-axis shows the galactocentric

distance normalized by the disc radius, X ≡ d/Rd, and the y-axis
shows different clump properties. We show points for individual
clumps as well as the median value in equally spaced bins of dis-
tance. For each property discussed below, we quote the logarithmic
slope of the radial dependence of the median values, i.e. α where
y ∝ Xα .

Stellar age: the top left panel shows stellar age. For SLCs, the
clump time and age are, by construction, the same, so this can be
easily compared with Fig. 14. Exterior to ∼0.8Rd, the median SLC
ages have a slope of α ∼ −0.6, though the scatter about this relation
is very large, and interior to 0.8Rd, there is no radial trend. The LLC
profile is steeper, the median ages exhibiting a slope of α ∼ −1,
very similar to the slope found by M14 in simulations with weaker
feedback. We conclude that an age gradient in the outer disc is not
by itself an evidence of clump migration, but migration causes a
steeper age gradient which extends to smaller radii in the disc. Ex
situ clumps have much older ages than in situ clumps, comparable
to the mean stellar age of the disc, and show no systematic gradient.
This is consistent with them being mergers and consistent with the
results of M14.

Mass: the top centre panel shows clump baryonic mass normal-
ized by the disc mass. The mass range of SLCs is roughly 1 dex
with a median at ∼0.1 per cent of the disc mass and no appreciable
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Figure 15. Gradients of clump properties with galactocentric distance. In each panel, the x-axis is the distance from the galaxy centre normalized by the disc
radius, d/Rd and the y-axis refers to a different clump property. Top left: mass-weighted mean stellar age; top centre: baryonic clump mass normalized to the
disc mass; top right: gas fraction; bottom left: clump SFR normalized to the disc SFR; bottom centre: clump sSFR normalized to the disc sSFR; bottom right:
clump metallicity normalized to the mean disc metallicity. Lines and symbols are the same as in Fig. 10. The medians were calculated in equally spaced bins
of 0.15 dex in log(d/Rd). There are hardly any SLCs within ∼0.5Rd while LLCs can be found at ∼0.1Rd at the end of migration. LLCs have a strong mass
gradient, gaining a factor of ∼2 to 3 in mass during migration, while SLCs show no such gradient. LLCs also exhibit a steep age gradient, where clumps closer
to the disc centre have older stellar ages, while the corresponding gradient for SLCs is much shallower. SLCs have much higher gas fractions than LLCs which
rapidly turn an order of unity fraction of their mass into stars. While there is no strong trend of SFR with distance, the sSFR of LLCs steadily declines during
migration while the SLCs have a roughly constant value. LLCs have a shallower metallicity gradient and higher metallicity values than SLCs. Ex situ clumps
are much older, more massive and appear concentrated near the outer disc, though they are similar to LLCs in other properties.
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time, LLCs are typically found at ∼0.3–0.4Rd, but can be found
as close to the centre as ∼0.1Rd. We do not find any SLCs at such
small distances, showing that clump formation is limited to the ex-
ternal disc, and the existence of clumps at such small radii is a clear
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bulge and begun to stabilize in their centres, while VDI and clump
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concentration, our simulations do show clump formation at smaller
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of the current analysis. Observations of clumpy unstable discs at
z ∼ 2 show similar unstable rings around stable centres (Genzel
et al. 2014), and our predictions should be compared to such sys-
tems.
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tance. For each property discussed below, we quote the logarithmic
slope of the radial dependence of the median values, i.e. α where
y ∝ Xα .
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clump time and age are, by construction, the same, so this can be
easily compared with Fig. 14. Exterior to ∼0.8Rd, the median SLC
ages have a slope of α ∼ −0.6, though the scatter about this relation
is very large, and interior to 0.8Rd, there is no radial trend. The LLC
profile is steeper, the median ages exhibiting a slope of α ∼ −1,
very similar to the slope found by M14 in simulations with weaker
feedback. We conclude that an age gradient in the outer disc is not
by itself an evidence of clump migration, but migration causes a
steeper age gradient which extends to smaller radii in the disc. Ex
situ clumps have much older ages than in situ clumps, comparable
to the mean stellar age of the disc, and show no systematic gradient.
This is consistent with them being mergers and consistent with the
results of M14.

Mass: the top centre panel shows clump baryonic mass normal-
ized by the disc mass. The mass range of SLCs is roughly 1 dex
with a median at ∼0.1 per cent of the disc mass and no appreciable
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(b) (d)(c) (e)

Figure 3: (a) Face-on Sunrise images of simulated galaxy VELA27RP at z = 1.9. Full resolution RGB
composite image in the upper left, with CANDELized views of the same through dust in V, J, and H bands.
(b) Clumps (triangles) found by Collaborator Yicheng Guo’s automated method on CANDELized V-band
image (bottom), and the same clumps plotted (middle) on the V-band image before CANDELization and
(top) on the projected gas map, showing that clumps detected on HST images are composites of clumps
in higher resolution images or the 3D gas distribution (Moody et al. 2014). (c) Predicted clump age vs.
galactocentric radius (in units of disk scale length Rd) for long-lived clumps (LLC, those that survive longer
than 20 free-fall times), short-lived clumps (SLC), and ex-situ clumps, from our hydroART simulations with
radiative pressure feedback (Mandelker et al. 2017). (d) HST observations of clumpy galaxies at z =
0.65, 1.1, 2.2 from top to bottom (Guo et al. 2015). (e) Points are clump stellar age vs. galactocentric
radius (in units of effective radius Re) as a function of redshift and galaxy stellar mass, from CANDELS
observations, while curves are the same for the underlying disk (Yicheng Guo et al. 2017, submitted.).

oriented in different directions at each scale factor. In addition to the central galaxies, all nearby galaxies
are also simulated at full resolution and imaged. Full resolution images are stored with no dust effects and
also with the full dust treatment. All images are then degraded by convolving with the appropriate PSFs,
adding realistic noise, and re-pixelizing, so that they can be directly compared with HST and future JWST
images (see Fig. 3(ab) and Fig. 5 Left). For HST we call this ”CANDELization.”

In addition to images, in Sunrise each ray carries hundreds to thousands of wavelengths. Thus Sunrise

can produce detailed spectra including full chemical and kinematic information as well as the effects
of dust. Collaborators Greg Snyder and Raymond Simmons have recently created an improved Sunrise

pipeline on NASA’s Pleiades supercomputer to generate many such slit and IFU spectra (e.g., Fig. 5 Center
and Right). We propose to use these Sunrise spectra to make detailed comparisons with galaxy observa-
tions including 3D-HST grim spectra, JWST imaging and MSA/IFU spectroscopy (e.g., Fig. 5 Bottom), as
well as 1D and IFU data from ground-based telescopes (e.g., KMOS – see Fig. 5 Top Center and Right).

All his has now been done for all of our gen3 simulations (VELA01RP through VELA35RP, with super-
nova thermal & radiative UV feedback). With 35 simulations x 41 timesteps x 19 orientations x 11 HST
wavebands, this amounts to 300,000 CANDELized images, plus even more mock JWST images and IFU
data cubes. Our group is now finishing assembling very complete gen3 simulation metadata including ac-
cretion, stellar mass and star formation, gas inflows and outflows, metallicity, and satellite galaxies including
major and minor galaxy mergers and flybys. We propose to run additional simulation sets through the same
pipeline including our new gen6 VELAs plus the set of 30 simulations with AGN feedback by Collaborators
Ena Choi and Rachel Somerville, and additional simulations in years 2 and 3. All these simulation outputs
will be made public when our associated papers are published.

5 Morphological Comparisons of Observed and Simulated Galaxies

Deep learning (reviewed in Lecun et al. 2015) has turned out to be a very powerful approach for face
recognition and many other challenging tasks. The winner of a Kaggle competition in the machine learning
community to best reproduce the Galaxy Zoo classification of SDSS galaxy images was a deep learning
algorithm (Dieleman et al. 2015). Sander Dieleman, now at Google DeepMind in London, and other Google
machine learning experts are helping us. Collaborator Marc Huertas-Company (Paris Observatory) led an
effort that used Dieleman’s deep learning algorithm to classify ⇠50,000 CANDELS galaxy images (Huertas-
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Observed clumps have age decreasing 
with radius, different from the underlying 
disk, as clump radial migration predicts.

Yicheng Guo+2017

Simulated long lived clumps (LLCs)
have age decreasing with radius 
because of clump radial migration.

Nir Mandelker+2017
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2017). We propose to analyze these new simulations and run them through our Sunrise pipeline to com-
pare them with observations using the procedures described in §4 and §5 including using deep learning to
compare images and spectra with observations.

Figure 2: (a) Ratio of stellar mass M⇤ to halo mass Mh vs. halo mass for gen2 (no radiation pressure (RP)
feedback, blue points), gen3 (with RP feedback, red points), and gen6 (with RP and clustered supernova
feedback, purple squares) at redshift z = 2 compared with abundance matching from Behroozi et al. (2013a)
(black curve, with dashed black curves representing 1� scatter) and Moster et al. (2017) (orange curves).
The stellar mass is reduced at z ⇠ 2 by a factor of ⇠ 2 from gen2 to gen3 simulations, and by another
factor of ⇠ 2 from gen3 to gen6. The gen6 simulations are a bit above Behroozi et al. (2013a), but in better
agreement with the new Emerge abundance matching (Moster et al. 2017). Although the gen3 simulations
are a factor of ⇠ 3 above the abundance matching curve at z = 2, they are in good agreement with the
median and 1� scatter (green curves) from 359 observed bright star forming galaxies (SFGs) (Genzel et al.
2015; Burkert et al. 2016). (b) Comparison of stacked profiles from our gen3 simulations with observations
of SFGs (Tacchella et al. 2015a), showing good agreement over four orders of magnitude in surface density
(from Tacchella et al. 2016a). (c) Depletion time as a function of distance above the Main Sequence �MS

(gen3 simulation points color coded by stellar mass) compared with (Genzel et al. 2015) observations (red
dashed line and band showing the uncertainty) (from Tacchella et al. 2016b). (d) Sketch of self-regulated
evolution along the Main Sequence of galaxy formation in our simulations (Tacchella et al. 2016b).

4 Sunrise Mock Images and Spectra with Simulation Metadata

Our public Monte-Carlo radiative-transfer code Sunrise calculates the effects of stellar population aging,
emission lines, kinematics, and dust scattering and absorption. To propagate the light of all stars in a given
time step through the dusty interstellar medium of the simulated galaxies, Sunrise uses a polychromatic
algorithm (Jonsson 2006), where every Monte-Carlo ray samples every wavelength. Sunrise uses sub-grid
models of star-forming regions from the photoionization/dust code MAPPINGS-III (Jonsson et al. 2010)
to generate realistic emission spectra. Emission from diffuse dust is calculated self-consistently from the
local radiation field, allowing calculation of spectral energy distributions out to the far-IR for comparison with
WISE, Spitzer, Herschel, and sub-mm data (e.g., Hayward et al. 2013a,b).

Collaborators Greg Snyder and Raymond Simons have created an efficient pipeline and generated
Sunrise images (stored as fits files) in all HST and JWST UV-optical-IR wavebands for every simulated
galaxy in many different orientations from our gen3 VELA simulations using PI Primack’s large allocation
of NASA Pleiades supercomputer time. This was done at each scale factor a = (1 + z)�1 starting at
a = 0.10 (z = 9) with �a = 0.01, corresponding to about 100 Myr intervals. Additional images can easily
be generated from intermediate timesteps if needed. Each galaxy is surrounded by 19 ‘cameras,’ viewing
it from many different orientations. Camera 00 is face-on (i.e., in the angular momentum direction), camera
01 is edge-on, cameras 02 and 03 are in the opposite directions from cameras 00 and 01, camera 04 is
at 45 degrees and cameras 05-07 are also fixed with respect to the galaxy angular momentum, cameras
08-11 are fixed in random directions with respect to the simulation axes, and cameras 12-18 are randomly
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Simulated and Observed Galaxies Are Very Similar
Stellar Mass/Halo Mass Stellar Mass Profiles

Depletion Time vs. ΔMainSequence

Tacchella+2016a 



Most astronomers used to think 
(1) that galaxies form as disks, 
(2) that forming galaxies are pretty smooth, and
(3) that galaxies generally grow in radius as they grow in mass. 

But CANDELS and other HST observations show that all these 
assumptions were wrong!  
(1) The majority of star-forming galaxies at z > 1 apparently have mostly 
elongated (prolate) stellar distributions rather than disks or spheroids, and our 
simulations may explain why.  
(2) A large fraction of star-forming galaxies at redshifts 1 < z < 3 are found to 
have massive stellar clumps; these originate from phenomena including mergers 
and disk instabilities in our simulations. 
(3) These phenomena also help to create compact stellar spheroidal galaxies 
(“nuggets”) through galaxy compaction (rapid inflow of gas to galaxy centers 
where it forms stars in our simulations). 

Our VELA galaxy simulations have been sufficiently successful in 
explaining these phenomena that we want to use the mock image 
plus simulation metadata as a deep learning training set, to see if 
a trained DL can determine compaction status from observations.



A toy model of a neuron: “perceptron”

The perceptron: a probabilistic model for information storage and organization in the brain.
F Rosenblatt (1958)

• no spikes 

• no recurrence or feedback * 

• no dynamics or state * 

• no biophysics

y = f(
X

i

wixi + b)

Simplify the neuron to a sum over weighted inputs 
and a nonlinear activation function.

f(z) = max(0, z)

Marvin Minsky 
1927-2016

Frank Rosenblatt 
1928-1971

vs.

“During the late 1950s and early 1960s … Rosenblatt and Minsky 
debated on the floors of scientific conferences the value of 
biologically inspired computation, Rosenblatt arguing that his neural 
networks could do almost anything and Minsky countering that they 
could do little.”

Web version of The Quest for Artificial Intelligence by Nils Nilsson, nicely covers Minsky 
and Rosenblatt (as well as a lot of other relevant AI material).

http://ai.stanford.edu/~nilsson/QAI/qai.pdf


During the 1960s, neural net researchers employed various methods for changing a 
network’s adjustable weights so that the entire network made appropriate output 
responses to a set of “training” inputs. For example, Frank Rosenblatt at Cornell 
adjusted weight values in the final layer of what he called the three-layer alpha-
perceptron. But what stymied us all was how to change weights in more than one layer 
of multilayer networks…

FromThe Quest for Artificial 
Intelligence by Nils Nilsson, 
Chapter 29.

See also

That problem was solved in the mid-1980s by the invention of a technique called “back 
propagation” (backprop for short) introduced by David Rumelhart, Geoffrey E. 
Hinton, and Ronald J. Williams.  In response to an error in the network’s output, 
backprop makes small adjustments in all of the weights so as to reduce that error. It 
can be regarded as a hill-descending method – searching for low values of error over 
the landscape of weights. Backprop uses calculus to precompute the best set of weight 
changes.  Starting in 2012, deep learning methods on powerful GPUs have 
outperformed all traditional AI methods.



• Multi-layer perceptron trained with back-propagation 
are ideas known since the 1980’s.

Deep convolutional neural networks

ImageNet Classification with Deep Convolutional Neural Networks 
A Krizhevsky I Sutskever, G Hinton (2012) 

Backpropagation applied to handwritten zip code recognition
Y LeCun et al (1990)

The success of deep learning in the past 6 years is 
due to more powerful computers (GPUs) and better 
code.

•



Sander Dieleman used a deep learning code to predict Galaxy Zoo’s nearby galaxy 
image classifications with high accuracy, winning the 2014 Kaggle competition

Dieleman, Willett, Dambre 2015, Rotation-invariant convolutional neural networks for 
galaxy morphology prediction, MNRAS 

http://benanne.github.io/2014/04/05/galaxy-zoo.html

Krizhevsky-style	diagram	of	the	architecture	of	the	best	performing	network.

From the Abstract: We present a deep neural network model for galaxy morphology 
classification which exploits translational and rotational symmetry. For images with 
high agreement among the Galaxy Zoo participants, our model is able to reproduce 
their consensus with near-perfect accuracy (>99 per cent) for most questions.

The Galaxy Zoo 2 decision tree. Reproduced from fig.1 in 
Willett et al. (2013). 

http://benanne.github.io/2014/04/05/galaxy-zoo.html


Marc Huertas-Company used Dieleman’s code to classify CANDELS galaxy images
H-C et al. 2015, Catalog of  Visual-like Morphologies in 5 CANDELS Fields Using Deep Learning

H-C et al. 2016, Mass assembly and morphological transformations since z ~ 3 from CANDELS

In this work, we mimic human perception with deep learning using convolutional neural networks 
(ConvNets). The ConvNet is trained to reproduce the CANDELS visual morphological classification 
based on the efforts of  65 individual classifiers who contributed to the visual inspection of  the ~8000 
galaxies in the GOODS-S field.  It was then applied to the other four CANDELS fields.  The galaxy 
classification data was then released to the astronomical community. 

ConvNets have been proven to perform extremely well in
image recognition tasks. For example, they have achieved an
error rate of 0.23% for the MNIST database, which is a
collection of manuscript numbers considered as a standard
test for all new machine learning algorithms (Ciresan
et al. 2012). When applied to facial recognition, they achieve
a 97.6% recognition rate on 5600 images of more than 10
subjects (Matusugu et al. 2003). The ImageNet Large Scale
Visual Recognition Challenge is a benchmark in object
classification and detection, with millions of images and
hundreds of object classes. In Krizhevsky et al. (2012),
ConvNets were able to achieve an error rate of 15.3%

compared to the rate of 26.2% achieved by the second best
competitors (non-deep). Also, the performance of convolu-
tional neural networks on the ImageNet tests is now close
to a purely human-based classification (Russakovsky
et al. 2014).
ConvNets were first applied to galaxy morphological

classification earlier this year in the framework of the Galaxy
Zoo Challenge on the Kaggle platform.13 The goal of the
challenge was to find an algorithm able to predict the 37 votes
of the Galaxy Zoo 2 release. The winner of the competition

Figure 2. Configuration of the Convolutional Neural Network used in this paper. The Network is based on the one used by Dieleman et al. (2015) on SDSS galaxies. It
is made of 5 convolutional layers followed by 2 fully connected perceptron layers. In the convolutional part there are also 3 max-pooling steps of different sizes. The
input are SDDSized CANDELS galaxies as explained in the text and the output (for this paper) is made of 5 real values corresponding to the fractions defined in the
CANDELS classification scheme.

Figure 3. CANDELS Main Morphology visual classification scheme as described in Kartaltepe et al. (2014). Each classifier (3–5 per galaxy on average) is asked to
provide 5 flags for each galaxy corresponding to the main morphological properties of the galaxy as labeled in the figure. The flags are then combined to produce the
fractions of people that voted for a given feature.

13 https://www.kaggle.com/c/galaxy-zoo-the-galaxy-challenge
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Configuration of  the Convolutional Neural Network used in this paper, 
based on the one used by Dieleman et al. (2015) on SDSS galaxies. It 
is made of  5 convolutional layers followed by 2 fully connected 
perceptron layers. 

Following the approach in CANDELS, we 
associate five real numbers with each galaxy 
corresponding to the frequency at which 
expert classifiers flagged a galaxy as having 
a bulge, having a disk, presenting an 
irregularity, being compact or point-source, 
and being unclassifiable. Galaxy images are 
interpolated to a fixed size, rotated, and 
randomly perturbed before feeding the 
network to (i) avoid over-fitting and (ii) reach 
a comparable ratio of  background versus 
galaxy pixels in all images. ConvNets are 
able to predict the votes of  expert classifiers 
with a <10% bias and a ∼10% scatter. This 
makes the classification almost equivalent to 
a visual-based classification. The training 
took 10 days on a GPU and the classification 
is performed at a rate of  1000 galaxies/hour. 

We quantify the evolution of  star-forming and quiescent galaxies as a function of  morphology from z ~ 3 to 
the present. Our main results are: 1) At z ~ 2, 80% of  the stellar mass density of  star-forming galaxies is in 
irregular systems. However, by z ∼ 0.5, irregular objects only dominate at stellar masses below 109M⊙.       

2) Quenching: We confirm that galaxies reaching a stellar mass M∗ ~ 1010.8M⊙ tend to quench. Also, 
quenching implies the presence of  a bulge: the abundance of  massive red disks is negligible at all redshifts 



Detecting wet compaction at high redshift with deep learning 
Marc Huertas-Company, Joel Primack, Avishai Dekel, David Koo, et al. - in prep. 2018 

ABSTRACT 

We explore a new approach to classify galaxy images from deep surveys oriented towards 
detecting astrophysical processes calibrated on cosmological hydrodynamic galaxy simulations. 
To illustrate the methodology we focus on wet compaction. Recent theoretical and observational 
works have suggested that compact bulges at high redshift might be formed through gas inflows 
(wet compaction events) before quenching. We train a simple Convolutional Neural Network 
(CNN) with mock CANDELized images from our VELA zoom-in simulations that are selected for 
being in a wet-compaction phase according to the assembly history extracted from the simulation. 
We show that the CNN is able to retrieve a galaxy in the compaction phase within a time window 
of ±0.3 Hubble times based only on the pixels distribution. We then use the trained network to 
classify real galaxies from the CANDELS survey into three classes (pre-compaction, compaction 
and post-compaction). We find that compaction typically occurs at a characteristic stellar mass of 
∼ 109.5−10 solar masses all redshifts, as in the VELA simulations. The galaxies that are 
experiencing compaction in the CANDELS redshift range (1 < z < 3) are therefore typically the 
progenitors of ∼ 1010.5 solar mass galaxies at z ∼ 0, like the Milky Way. The presented technique 
can be generalized to other processes and could constitute an alternative way of classifying 
galaxies in the era of massive imaging surveys and cosmological simulations, to help improve the 
comparison between theory and observations. 
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Figure 2. Random example of simulated Candelized images in the 3 phases discussed in this work. The top row shows pre-compaction galaxies, the middle
row are galaxies in the process of compaction and the bottom row are post-compaction objects.

Figure 3. Architecture of the deep network used for classification in this work. The network is a standard and simple CNN configuration made of 3 convolutional
layers followed by pooling and dropout.

Figure 4. Learning history resulting form the strategy described in the text.
The blue solid line shows the accuracy on the training set and the red solid
line is the accuracy for the validation set. Every 50 epochs the validation
and training datasets are modified which explains the discontinuities. The
accuracy on the validation is generally unstable because it is only made of 2
galaxies. See text for details.

5.3 Inside the network

An important caveat of the machine learning approach presented
above is that it somehow behaves as a black box. It is thus di�cult

Figure 5. Normalized confusion matrix of the 3-label classification on a test
dataset not used for training nor validation. The y-axis shows the true class
from the simulation metadata, the x-axis is the predicted class.

to precisely determine what are the features the machine is using
to decide the output classification. This is a general problem for all
deep-learning applications. However, there exist more and more net-
work interrogation techniques which allow to identify the pixels that
most contributed to the final classification among the input image.
One recent method is called integrated gradients (Sundararajan et
al. 2017). It is based on the measurement of the di�erences between
gradients computed by the network in an input image as compared

MNRAS 000, 1–?? (2017)
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Architecture of the deep network used for classification in this 
work. The network is a standard and simple CNN configuration 
made of 3 convolutional layers followed by pooling and dropout. 

Examples of CANDELized simulated galaxy images

pre-compaction

compaction

post-compaction
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Figure 6. Examples of predictions on a test sample. The left column shows the probability of being in pre-compaction (blue solid line), compaction (green
solid line) and post-compaction(red solid line) predicted by the CNN. The right column shows the input simulation metadata used to define the phases. The red,
green and orange shaded regions show the primary, secondary and tertiary compaction events as defined from the gas and stellar masses (see text for details).
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Figure 6. Examples of predictions on a test sample. The left column shows the probability of being in pre-compaction (blue solid line), compaction (green
solid line) and post-compaction(red solid line) predicted by the CNN. The right column shows the input simulation metadata used to define the phases. The red,
green and orange shaded regions show the primary, secondary and tertiary compaction events as defined from the gas and stellar masses (see text for details).
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Simulated galaxy with single compaction event

Simulated galaxy with multiple compaction events
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Figure 7. Observability of the compaction event with the calibrated classi-
fier. The histograms show the distributions of time (relative to the Hubble
time at the time of compaction). The blue, green and red histograms show
the pre-compaction, compaction and post-compaction phases. The dashed
vertical lines show the average values for each class with the same color code.
Despite some overlap, the classifier is able to establish temporal constraints
on the di�erent phases.

to a test image (usually a blank image with only zeros). We tested
this method in our model and computed the integrated gradients for
some of the galaxies. Figure 8 shows one example for each class.
The interpretation is not straightforward. However some useful in-
formation can be extracted from this exercise. It is interesting to see
that the model automatically segments all the pixels belonging to
the galaxy and takes the decision based on all the galaxy. It also
means it understood there is no information in the noise and con-
firms the model is not over-fitting on the noise pattern. Also, as
pointed out in previous works, after the compaction event a disk
is rebuilt in the simulations. The bottom line of the figure shows
clearly that the machine detects the di�use disk component even if
faint and probably uses this information to make the decision. For
the compaction galaxies, the relevant pixels are more concentrated
in the center since the galaxies are generally more compact. It is
also worth noticing that the gradient tends to have values of di�erent
sign in the center and in the outskirts as if the machine was using
di�erence in flux between the center and the outskirts to classify.
This is somehow expected since the compaction event is by defini-
tion accompanied by a burst of central star-formation. The model is
capturing all these correlations automatically. This is the strength
of the presented methodology. Although the information that can
be extracted from integrated gradients is quite limited at this stage,
it is reasonable to think that interrogation techniques will become
more advanced, and therefore there is potentially information that
can be learned from a post-processing of the model outputs in the
future.

6 APPLICATION TO REAL DATA: ARE BLUE
NUGGETS IN THE PROCESS OF COMPACTION?

We now apply the model to the real HST/CANDELS sample
presented in section 3. We simply cut stamps around the selected
galaxies in the three infrared filters (F160W , F125W , F105W )
and classify them into three classes using the trained models. Since
10 models were produced (see section 4), we use each of them to
classify all galaxies. Each real galaxy has therefore 10 di�erent
classifications using slightly di�erent models. We then compute the

average probability to increase the robustness of the classification.
We stress that there is a general good agreement between the
di�erent models which confirms that the classification does not
strongly depend on the specific subset of simulated galaxies used
for training. The typical scatter in the probability values is of the
order of ⇠ 0.1.

The first thing to notice is that the classification applied to real
data returns objects with high probability values in the 3 classes.
The fraction of galaxies with all probabilities lower than 0.5 is only
2% of the total sample. It means that the model found galaxies that
resemble the galaxies in the simulation with high confidence.This is
obviously not a proof that compaction happens in real galaxies but
reflects that the simulated galaxies are fairly similar to the observed
ones. It is not obvious to establish what would happen if galaxies
from the training are real datasets were very di�erent though. This
will be definitely explored in future work. A possibility is that the
probability values would be very unstable between models and/or
very low in all classes. Also if only one class was dominant over
the others, that would reflect that some of the features learned to
identify the di�erent phases from the simulations are not present in
the data. This is not the case at least at first order which allows us
to push the analysis a bit further.

In figure 9 we first look at the stellar mass distributions of
galaxies in the three di�erent phases. Recall that the simulations
used for training stop at z ⇠ 1, so the classification in the low
redshift bin should be considered an extrapolation. It is shown
here for consistency but should not probably be considered very
seriously. The most interesting result from the figure is that the
mass distributions of the di�erent phases are rather di�erent. Pre-
compaction galaxies tend to be more abundant at low stellar masses
(M⇤/M� < 109�9.5) and post-compaction galaxies dominate at
large stellar masses (M⇤/M� > 1010.5). Compaction galaxies are
most frequent at intermediate masses and peak at ⇠ 109.5�10. In-
terestingly this seems to be relatively independent of redshift. This
characteristic mass for compaction is expected as reported in Tac-
chella et al. (2016) and also reflected in table 1. It again confirms
that the network is automatically extracting the correlations existing
in the simulations. One could wonder at this stage if the network
is only using the luminosity as main proxy for the classification.
We think it is unlikely since a galaxy of the same mass has very
di�erent luminosities in the redshift range probed. Also, as shown
in the figure 8, the full pixel distribution is used by the network. We
then explore in figure 10 the redshift evolution of the fractions of
galaxies in the 3 phases at fixed stellar mass. Both plots are com-
plementary. As expected the redshift evolutions strongly depend on
stellar mass. The galaxies that are more frequently experiencing
compaction in the CANDELS redshift range are in the stellar mass
range of 109 < M⇤/M� < 109.5, and are typically the progeni-
tors of sub-M

⇤ - M
⇤ galaxies according to abundance matching

(Rodriguez-Puebla et al. 2017). More massive galaxies tend to be
in the post-compaction phase at all redshifts. This means that if one
wants to observe the progenitors of these most massive galaxies in
the process of compaction, it is required to probe ⇠ 109 solar mass
galaxies at z > 3. It will be straightforward with JWST.

Therefore, most of the observed massive galaxies (M⇤/M� >
10.3) in CANDELS are in a post-compaction phase according to our
classification based on numerical simulations. What about the so-
called blue-nuggets defined observationally? In figure 11 we show
the fraction of observationally defined blue nuggets in the di�erent
phases. We select compact star-forming galaxies as objects in the
main sequence (�SFR > �0.5) and in the ridge ridge-lineline of

MNRAS 000, 1–?? (2017)

pre-compaction

compaction

post-compaction

Observability of the compaction event with the calibrated classifier. The 
histograms show the distributions of time (relative to the Hubble time at the time 
of compaction). The dashed vertical lines show the average values for each class 
with the same color code. Despite some overlap, the classifier is able to establish 
temporal constraints on the different phases. Integrated gradient method shows 
that the classifier is using relevant pixels, not noise.

Testing the Trained Deep Learning Code 
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Figure 8. Integrated gradients output of the model. Each row shows a galaxy in a di�erent stage (Pre-compaction, Compaction, Post-Compaction). The left
column is the original image and the second, third and fourth columns show the integrated gradients for the di�erent filters. The network automatically detects
the pixels belonging to the galaxy and used all of them to make the decisions.

quiescent galaxies in the ⌃1 � M⇤ plane as defined by Barro et al.
(2017), i.e. �0.3 < �⌃1Q < 0.3 with �SFR and �⌃1Q defined as:

�SFR = LogSFR � [µ(z) ⇥ (LogM⇤/M� � 10.5) + logC(z)]

�⌃1Q = Log⌃1 � [�Q (z) ⇥ (LogM⇤/M� � 10.5) + LogBQ (z)]

�Q (z), BQ (z), µ(z) and C(z) are the best fit values of the
M⇤ � ⌃1 and M⇤ � SFR relations for quiescent and star-forming
galaxies respectively taken from Barro et al. (2017). The figure
shows that ⇠ 70% of the compact star-forming galaxies are in a
post-compaction phase while only ⇠ 30% are compactifying. This
suggests that the compact star-forming galaxies selected in pre-
vious works are preferentially selected at t > 0.5/H (t) after the
compaction phase and not during compaction phase as previously
claimed. However, we also show in the figure, the same quantity
for red-nuggets (�SFR < �0.5). Practically all compact quiescent
galaxies (⇠ 90%) are in the post-compaction phase as expected.
There is therefore evidence that the fraction of compaction is larger
in blue than in red nuggets even if not dominant. If we take into ac-
count the observability constraints, it suggests that at least some of
the blue nuggets are progenitors of the quiescent compact galaxies
and are in the process of compaction.

In order to further investigate if compaction is one of the
mechanisms responsible of building up the galaxy cores, we ex-
plore the position of galaxies classified in di�erent phases in the

�SFR � �⌃1Q plane. Instead of selecting galaxies at fixed stellar
mass, we use here the average mass growth tracks from Rodriguez-
Puebla et al. (2017) inferred from abundance matching. We focus
on the progenitors of ⇠ 1013 solar mass halos at z ⇠ 0 which are
the galaxies that typically have ⇠ 109.5 solar masses at z ⇠ 2 as
shown in the figure 12. Therefore these galaxies are most proba-
bly in a compaction phase in the CANDELS dataset as deduced
from the results from figures 9 and 10. Galaxies are selected at
each redshift bin within a stellar mass interval of 0.6 dex centered
on the average stellar mass at that redshift from the curve of the
figure 12. We then analyze the positions of galaxies in the di�er-
ent classes (pre-compaction, compaction, post-compaction) in the
�SFR � �⌃1Q plane in figure 13. We observe that the majority
of compaction events for the progenitors of ⇠ 1010.5 solar mass
galaxies take place at z > 1.5 while galaxies are still on the main
sequence. Below this redshift most of the galaxies are already in
a post-compaction phase as shown by the two top panels of the
figure. It is interesting to notice that all dense galaxies as inferred
by ⌃1 are most probably classified as post-compaction. However a
majority of post-compaction galaxies still sit on the main-sequence
and would not be classified as compact. The results suggest that
while compaction can move galaxies towards high ⌃1 values, most
of the post-compaction never reach such high values and remain in
the main-sequence.
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Integrated gradients output of the model. The left column is the original image and the other 
columns show the integrated gradients for the different wavelength filters. The network automatically 
detects the pixels belonging to the galaxy and used all of them to make the decisions. 
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Figure 9. Stellar mass distributions of galaxies in pre-compaction (blue lines), compaction (green lines) and post-compaction (red lines) for di�erent redshift
bins as labelled. Galaxies in the compaction phase typically peak at stellar masses of 109.5�10 at all redshifts.

7 SUMMARY AND CONCLUSIONS

We have explored a new approach to classify galaxy images us-
ing deep-learning calibrated on numerical simulations. The general
methodology consists first in generating mock images of galaxies
reproducing the observing conditions from hydro cosmological sim-
ulations which are then labelled with the known assembly history
from the simulation. The images are then fed to an unsupervised
feature learning machine that learns the features to detect a given
assembly process. We have applied the method for detecting wet
compaction which has been put forward recently as a plausible
mechanism to grow bulges at high redshift. We have used to that
purpose a suite of high resolution hydro numerical simulations of
intermediate mass galaxies in the redshift range 1 < z < 3. We have
shown that a simple CNN is able to detect galaxies in the process of
compaction within a time window of ±0.2 Hubble times. We have

then applied the trained model to real galaxies from the CANDELS
survey observed with the HST in the same redshift range and clas-
sify them in three main classes: pre-compaction, compaction and
post-compaction. The network finds galaxies with high probability
of being in the three classes indicating significant similarity be-
tween simulated and observed galaxies. The classification naturally
recovers a characteristic stellar mass for compaction of ⇠ 109.5�10

solar masses independent of redshift. Hence, the typical galaxies
experiencing compaction in the CANDELS redshift range are the
progenitors of sub M

⇤ galaxies (1010.5
M⇤/M�) at z = 0. More

massive compact galaxies are found to be preferentially in the post-
compaction class, so they are compatible with having experienced
compaction more than 0.5 Hubble times before the time of obser-
vation. The presented methodology can be easily adapted to other
physical processes captured in simulations. It can constitute a use-
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Stellar mass 
distributions of HST 
CANDELS galaxies in 
pre-compaction, 
compaction, and post-
compaction phases in 
different redshift bins. 
The DL code correctly 
shows the temporal 
evolution.  Galaxies in 
the compaction phase 
typically peak at stellar 
masses 109.5−10 Msun 
at all redshifts, as in the 
VELA simulations.

these redshifts)
(not trained for

Applying the Trained Deep Learning Code to CANDELS Galaxies



MIRI: Mid Infrared 
Instrument, 5-28 μm 
NIRCam: Near Infrared 
Camera, 0.6 - 5 μm 
NIRISS: Near-InfraRed 
Imager/SSpectrograph 
NIRSpec: Near Infrared 
Spectrograph, 0.6-5 μm

JWST: bigger mirror,
IR imaging & 
spectroscopy

HST: most productive
telescope ever!

Next: Apply Deep Learning to James Webb Space Telescope

JWST launch: spring 2019





Computer vision and deep learning applied  
to simulations and imaging  

of galaxies and the evolving universe
Joel Primack  

University of California, Santa Cruz

Large-scale simulations track the evolution of structure in the universe of dark energy and cold 
dark matter on scales of billions of light years

Cosmological zoom-in simulations model how individual galaxies evolve through the interaction 
of atomic matter, dark matter, and dark energy

Our VELA galaxy simulations agree with HST CANDELS observations that most galaxies start 
prolate, becoming spheroids or disks after compaction events

A deep learning code was trained with VELA galaxy images plus metadata describing whether 
they are pre-compaction, compaction, or post-compaction

The trained deep learning code was able to identify the compaction and post-compaction phases 
in CANDELized images

The trained deep learning code was also able to identify these phases in real HST CANDELS 
observations, finding that compaction occurred for stellar mass 109.5 -10 Msun, as in the 
simulations — and James Webb Space Telescope will allow us to do even better


