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Matter Distribution Agrees with Double Dark Theory!
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dark matter simulation - expanding with the universe

Billions of years after the Big Bang

Andrey Kravtsov













“Bolshoi Cosmological Simulation Ay
o Anatoly Klypin & Joel Primack - b
8. 6x10° particles |/h kpc resolution

PIelades Supercomputer at NASA Ames Research Center
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How the Halo of the Big Cluster Formed

100 Million Light Years
D —— —————



Bolshoi-Planck

Cosmological Simulation
Merger Tree of a Large Halo

with Peter Behroozi & Christoph Lee



Structure Formation Methodology

o Starting from the Big Bang, we simulate the evolution
of a representative part of the universe according to
the Double Dark theory to see if the end result
matches what astronomers actually observe.

* On the large scale the simulations produce a universe
just like the one we observe. We’re always looking for
new phenomena to predict — every one of which tests
the theory!

» But the way individual galaxies form is only partly
understood because it depends on the interactions of
the ordinary atomic matter as well as the dark matter
and dark energy to form stars and super-massive
black holes. We need help from observations.



Stellar Mass / Halo Mass

Two Key Discoveries About Galaxies

Galaxy Stellar Mass -
Halo Mass Relation
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The stellar mass to halo mass ratio at multiple
redshifts as derived from observations compared to
the Bolshoi cosmological simulation. Error bars show
10 uncertainties. A time-independent Star Formation
Efficiency predicts a roughly time-independent stellar
mass to halo mass (SMHM) relationship. (Behroozi,
Wechsler, Conroy, ApJL 2013)

Star-forming Galaxies Lie
on a “Main Sequence”
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Just as the properties of hydrogen-burning stars
are controlled by their mass, the galaxy star
formation rate (SFR) is approximately
proportional to the stellar mass, with ~0.3 dex
dispersion and with the proportionality constant
increasing with redshift up to about z = 2.5.
(Whitaker et al. ApJ 2014)



Constraining the Galaxy Halo Connection: Star Formation Histories,

Galaxy Mergers, and Structural Properties, by Aldo Rodriguez-Puebla, Joel

Primack, Vladimir Avila-Reese, and Sandra Faber MNRAS 470, 651 (2017)
We use results from the Bolshoi-Planck simulation (Aldo Rodriguez-Puebla, Peter Behroozi,
Joel Primack, Anatoly Klypin, Christoph Lee, Doug Hellinger 2016, MNRAS 462, 893),
including halo and subhalo abundance as a function of redshift and median halo mass growth
for halos of given Myir at z = 0. Our semi-empirical approach uses SubHalo Abundance
Matching (SHAM), which matches the cumulative galaxy stellar mass function (GSMF) to the
cumulative stellar mass function to correlate galaxy stellar mass with (sub)halo mass.
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SubHalo Abundance Matching (SHAM)
Predicts Observed Galaxy Correlation Functions
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Figure 5. Two-point correlation function in five stellar mass bins. The solid lines show the predicted two-point correlation based on our
stellar mass-to-Vmax relation from SHAM, while the circles with error bars show the same but for SDSS DR7 (Yang et al. 2012).

Does the Galaxy-Halo Connection Vary with Environment? R. Dragomir, A. Rodriguez-Puebla, J. Primack, C. Lee, MNRAS 2018
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Figure 7. Left Panel: Comparison between the observed r—band GLF with environmental density in spheres of 8 h~'Mpc, filled circles
with error bars, and the ones predicted based on the BolshoiP simulation from SHAM, shaded regions. The dashed lines show the best
fitting Schechter functions to the r-band GLFs from the GAMA survey (McNaught-Roberts et al. 2014). Right Panel: Similar to the
left panel but for the GSMF with environmental density. Here again the dashed lines are the best fitting Schechter functions.

Does the Galaxy-Halo Connection Vary with Environment? R. Dragomir, A. Rodriguez-Puebla, J. Primack, C. Lee, MNRAS 2018
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Main Sequence Star Formation Reflects Halo Mass Accretion
by Aldo Rodriguez-Puebla, Joel Primack, Peter Behroozi, Sandra Faber MNRAS 2016

Halo mass accretion rates z=0 to 3
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but if the M.—Muyir relation is independent of redshift then the

stellar mass of a central galaxy formed in a halo of mass
Mvir(t) is M. = M.(Mvir(t)) and the second term vanishes.
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star formation rate =

We call this Stellar-Halo Accretion Rate Coevolution
(SHARC) if true halo-by-halo for star-forming galaxies.
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Main Sequence Star Formation Reflects Halo Mass Accretion
by Aldo Rodriguez-Puebla, Joel Primack, Peter Behroozi, Sandra Faber MNRAS 2016

Halo mass accretion rates z=0to 3
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Astronaut Andrew Feustel installing
Wide Field Camera Three

on the last visit to Hubble Space

Telescope in 2009

The infrared capabilities of WFC3
allow us to see the full stellar
populations of forming galaxies



The CANDELS Survey

WFC3
F160W (H)

ACS
F775W [i)

CANDELS: A Cosmic Odyssey

candels.ucolick.org

Emergent Spheroids Emergent Disks Hidden Mergers

(blue 0.4 ym)(1+z) =1.6 ym @ z = 3 (11.5 Gyr ago)
(red 0.7 yum)(1+z) =1.6 pm @ z = 2.3 (10 Gyr ago)

CANDELS is a powerful imaging survey of the distant Universe being carried out with two cameras
on board the Hubble Space Telescope.

e CANDELS is the largest project in the history of Hubble, with 902 assigned orbits of observing time. This

is the equivalent of four months of Hubble time if executed consecutively, but in practice CANDELS will
take three years to complete (2010-2013).

The core of CANDELS is the revolutionary near-infrared WFC3 camera, installed on Hubble in May 2009.
WFC3 is sensitive to longer, redder wavelengths, which permits it to follow the stretching of lightwaves
caused by the expanding Universe. This enables CANDELS to detect and measure objects much farther
out in space and nearer to the Big Bang than before. CANDELS also uses the visible-light ACS camera,
and together the two cameras give unprecedented panchromatic coverage of galaxies from optical
wavelengths to the near-IR.

CANDELS will exploit this new lookback power to construct a "cosmic movie" of galaxy evolution that
follows the life histories of galaxies from infancy to the present time. This work will cap Hubble's
revolutionary series of discoveries on cosmic evolution and bequeath a legacy of precious data to future
generations of astronomers.


http://candels.ucolick.org
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Most astronomers used to think
(1) that galaxies form as disks,

(2) that forming galaxies are pretty smooth, and

(3) that galaxies generally grow in radius as they grow in mass.

But CANDELS and other HST observations show that all these
assumptions were wrong!

(1) The majority of star-forming galaxies at z > 1 apparently have mostly
elongated (prolate) stellar distributions rather than disks or spheroids, and our
simulations may explain why.

(2) A large fraction of star-forming galaxies at redshifts 1 <z < 3 are found to
have massive stellar clumps; these originate from phenomena including mergers
and disk instabilities in our simulations.

(3) These phenomena also help to create compact stellar spheroidal galaxies
(“nuggets”) through galaxy compaction (rapid inflow of gas to galaxy centers,
where it forms stars).



Prolate Galaxies Dominate at High Redshifts & Low Masses
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Our cosmological zoom-in simulations often produce elongated galaxies like observed
ones. The elongated stellar distribution follows the elongated inner dark matter halo.

Prolate DM halo > elongated galaxy

tar
stars face-on

z=2

R,i=70 kpc
M,;=2 101 Mg '
M.~ 10° Mg "

star™

face-on

8

Dark matter halos are elongated, especially

near their centers. Initially stars follow the

gravitationally dominant dark matter, as shown. face-on
But later as the ordinary matter central density

grows and it becomes gravitationally dominant,

the star and dark matter distributions both o
become disky — as observed by Hubble

Space Telescope (van der Wel+ ApJL Sept

2014). face-on




Formation of elongated galaxies with low masses at
high redshift Daniel Ceverino, Joel Primack and Avishai Dekel MNRAS 2015
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Simulated elongated galaxies are
aligned with cosmic web filaments,
become round after compaction
(gas inflow fueling central starburst)



b/a

Compare Observed Galaxies with Simulated Galaxy Images

We convert our VELA galaxy simulations to realistic images using our
Sunrise ray-tracing radiative transfer code to follow evolving starlight
and its scattering and attenuation by dust, taking into account Hubble
Space Telescope resolution (CANDELization). We observe the simulated
galaxies with randomly located cameras, and analyze the images exactly
like the real HST observations, using the GALFIT routine. The HST
prolate galaxies are very similar to the simulated ones:
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»
GAS, Face-on GAS, Edge-on STARS, Face-on STARS, Edge-on

Simulated Clumpy Galaxies Compared with Observed Galaxies

Figure 1: Violently unstable disks in ~ 10'*Mg halos with ~ 10°Mg clumps at z = 2.3: (a) face-on,
(b) edge-on (Ceverino et al. 2009, resolution 70 pc, images 10 kpc across). RGB color images of the same
simulated galaxy through dust using Sunrise: (c) face-on, (d) edge-on, illustrating how the clumps can be
reddened and obscured when viewed edge-on.
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Clumps have radial variation of their
UV-optical colors:
- outer clumps are bluer &

About 60% of star-forming galaxies
are clumpy at z ~ 2.5.

:I'he evolution of the Clump fraction - central c|umps are redder,
Is mass-dependent. as clump radial migration predicts.
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Simulated long lived clumps (LLCs)
have age decreasing with radius

Observed clumps have age decreasing

because of clump radial migration.
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with radius, different from the underlying
disk, as clump radial migration predicts.
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Barro+14a
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log SSFR [Gyr ']

analyzed by Zolotov, Dekel,
Tweed, Mandelker, Ceverino,
& Primack MNRAS 2015

Ceverino+ RP simulations

Barro+ (CANDELS) 2013

| I I I l
Size growth

< 5

(minor mergers?)

= 7~e
o5
&5
- = 3
_ N oo
- n S
cSFGs formutlon f
GAS-RICH - major merge &‘
- dynamical instabilities Q
| | I | ol | 1
85 9 9.5 10 10?5 11 11.5
log Z, .M solarch ]

COMPACTION —>

[®] minor merger
] major merger

log sSFR[Gyr”']

log sSFR [Gyr™]

-1.57]

-1.0}

&
S &

an

: VELA12-RP

[ Quisscent

z= 1

-
-
-
“
—
“
“
“
“
—
“
“

VELA11 RP

b

o

1.0

o
Ll L

ot
&l

0 —— - ——

w

O —— 0 ———

70 75 80 85 90 _95 100
log Zg, [Mfkpc']

70 7.5 8.0 85 80 95 100
log Xy, [Mkpc]

Zolotov+2015



Compaction and Quenching in the Inner 1 kpc

diffuse cot:'npacﬁion quenching

Avishai Dekel hme based on Zolotov+2015

dif fuse (_o:inpuc.'éion quenching

time
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Evolution of Galaxies about the Star-Forming Main Sequence

Tacchella+2016b The Confinement of Star-Forming Galaxies into a Main
Sequence through Gas Compaction, Depletion and Quenching

Variety of triggers
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Simulated and Observed Galaxies Are Very Similar

Stellar Mass/Halo Mass Stellar Mass Profiles
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Most astronomers used to think

(1) that galaxies form as disks,

(2) that forming galaxies are pretty smooth, and

(3) that galaxies generally grow in radius as they grow in mass.

But CANDELS and other HST observations show that all these
assumptions were wrong!

(1) The majority of star-forming galaxies at z > 1 apparently have mostly
elongated (prolate) stellar distributions rather than disks or spheroids, and our
simulations may explain why.

(2) A large fraction of star-forming galaxies at redshifts 1 <z < 3 are found to
have massive stellar clumps; these originate from phenomena including mergers
and disk instabilities in our simulations.

(3) These phenomena also help to create compact stellar spheroidal galaxies
(“nuggets”) through galaxy compaction (rapid inflow of gas to galaxy centers
where it forms stars in our simulations).

Our VELA galaxy simulations have been sufficiently successful in
explaining these phenomena that we want to use the mock image
plus simulation metadata as a deep learning training set, to see if
a trained DL can determine compaction status from observations.



w10y model of a neuron: “perceptron”

Simplify the neuron to a sum over weighted inputs
and a nonlinear activation function.
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The perceptron: a probabilistic model for information storage and organization in the brain.
F Rosenblatt (1958)

“During the late 1950s and early 1960s ... Rosenblatt and Minsky
debated on the floors of scientific conferences the value of
biologically inspired computation, Rosenblatt arquing that his neural
networks could do almost anything and Minsky countering that they
could do little.”

Marvin I\/Iinsky Web version of The Quest for Artificial Intelligence by Nils Nilsson, nicely covers Minsky
and Rosenblatt (as well as a lot of other relevant Al material).
1927-2016



http://ai.stanford.edu/~nilsson/QAI/qai.pdf

During the 1960s, neural net researchers employed various methods for changing a
network’s adjustable weights so that the entire network made appropriate output
responses to a set of “training” inputs. For example, Frank Rosenblatt at Cornell
adjusted weight values in the final layer of what he called the three-layer alpha-
perceptron. But what stymied us all was how to change weights in more than one layer
of multilayer networks...

That problem was solved in the mid-1980s by the invention of a technique called “back
propagation” (backprop for short) introduced by David Rumelhart, Geoffrey E.
Hinton, and Ronald J. Williams. In response to an error in the network’s output,
backprop makes small adjustments in all of the weights so as to reduce that error. It
can be regarded as a hill-descending method — searching for low values of error over
the landscape of weights. Backprop uses calculus to precompute the best set of weight
changes. Starting in 2012, deep learning methods on powerful GPUs have
outperformed all traditional Al methods.

FromThe Quest for Artificial THINKING
See also  yACHINES

THE QUEST FOR
ARTIFICIAL
INTELLIGENCE
A HISTORY OF IDEAS AND ACHIEVEMENTS
SRRy N

Intelligence by Nils Nilsson,
Chapter 29.
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Deep convolutional neural networks
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ImageNet Classification with Deep Convolutional Neural Networks
A Krizhevsky | Sutskever, G Hinton (2012)

 Multi-layer perceptron trained with back-propagation
are ideas known since the 1980’s.

e The success of deep learning in the past 6 years is
due to more powerful computers (GPUs) and better
code.



Sander Dieleman used a deep learning code to predict Galaxy Zoo’s nearby galaxy
iImage classifications with high accuracy, winning the 2014 Kaggle competition
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The Galaxy Zoo 2 decision tree. Reproduced from fig.1 in . . . .
Willett et al. (2013). Krizhevsky-style diagram of the architecture of the best performing network.

Dieleman, Willett, Dambre 2015, Rotation-invariant convolutional neural networks for
galaxy morphology prediction, MNRAS

From the Abstract: We present a deep neural network model for galaxy morphology
classification which exploits translational and rotational symmetry. For images with
high agreement among the Galaxy Zoo participants, our model is able to reproduce
their consensus with near-perfect accuracy (>99 per cent) for most questions.


http://benanne.github.io/2014/04/05/galaxy-zoo.html

Marc Huertas-Company used Dieleman’s code to classify CANDELS galaxy images

H-C et al. 2015, Catalog of Visual-like Morphologies in 5 CANDELS Fields Using Deep Learning

In this work, we mimic human perception with deep learning using convolutional neural networks
(ConvNets). The ConvNet is trained to reproduce the CANDELS visual morphological classification
based on the efforts of 65 individual classifiers who contributed to the visual inspection of the ~8000
galaxies in the GOODS-S field. It was then applied to the other four CANDELS fields. The galaxy
classification data was then released to the astronomical community.
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Configuration of the Convolutional Neural Network used in this paper,
based on the one used by Dieleman et al. (2015) on SDSS galaxies. It
is made of 5 convolutional layers followed by 2 fully connected
perceptron layers.

Following the approach in CANDELS, we
associate five real numbers with each galaxy
corresponding to the frequency at which
expert classifiers flagged a galaxy as having
a bulge, having a disk, presenting an
irregularity, being compact or point-source,
and being unclassifiable. Galaxy images are
interpolated to a fixed size, rotated, and
randomly perturbed before feeding the
network to (i) avoid over-fitting and (ii) reach
a comparable ratio of background versus
galaxy pixels in all images. ConvNets are
able to predict the votes of expert classifiers
with a <10% bias and a ~10% scatter. This

makes the classification almost equivalent to
a visual-based classification. The training
took 10 days on a GPU and the classification
is performed at a rate of 1000 galaxies/hour.

H-C et al. 2016, Mass assembly and morphological transformations since z ~ 3 from CANDELS

We quantify the evolution of star-forming and quiescent galaxies as a function of morphology from z ~ 3 to
the present. Our main results are: 1) Atz ~ 2, 80% of the stellar mass density of star-forming galaxies is in

irregular systems. However, by z - 0.5, irregular objects only dominate at stellar masses below 109Mo.

2) Quenching: We confirm that galaxies reaching a stellar mass M ~ 1010.8M¢ tend to quench. Also,
quenching implies the presence of a bulge: the abundance of massive red disks is negligible at all redshifts




Detecting wet compaction at high redshift with deep learning
Marc Huertas-Company, Joel Primack, Avishai Dekel, David Koo, et al. - in prep. 2018

ABSTRACT

We explore a new approach to classify galaxy images from deep surveys oriented towards
detecting astrophysical processes calibrated on cosmological hydrodynamic galaxy simulations.
To illustrate the methodology we focus on wet compaction. Recent theoretical and observational
works have suggested that compact bulges at high redshift might be formed through gas inflows
(wet compaction events) before quenching. We train a simple Convolutional Neural Network
(CNN) with mock CANDELized images from our VELA zoom-in simulations that are selected for
being in a wet-compaction phase according to the assembly history extracted from the simulation.
We show that the CNN is able to retrieve a galaxy in the compaction phase within a time window
of £0.3 Hubble times based only on the pixels distribution. We then use the trained network to
classify real galaxies from the CANDELS survey into three classes (pre-compaction, compaction
and post-compaction). We find that compaction typically occurs at a characteristic stellar mass of
~ 109-5-10 solar masses all redshifts, as in the VELA simulations. The galaxies that are
experiencing compaction in the CANDELS redshift range (1 < z < 3) are therefore typically the
progenitors of ~ 10105 solar mass galaxies at z ~ 0, like the Milky Way. The presented technique
can be generalized to other processes and could constitute an alternative way of classifying
galaxies in the era of massive imaging surveys and cosmological simulations, to help improve the
comparison between theory and observations.



Examples of CANDELIized simulated galaxy images
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Architecture of the deep network used for classification in this
work. The network is a standard and simple CNN configuration
made of 3 convolutional layers followed by pooling and dropout.



Log(M+/M )

Simulated galaxy with single compaction event
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Testing the Trained Deep Learning Code
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Observability of the compaction event with the calibrated classifier. The
histograms show the distributions of time (relative to the Hubble time at the time
of compaction). The dashed vertical lines show the average values for each class
with the same color code. Despite some overlap, the classifier is able to establish
temporal constraints on the different phases. Integrated gradient method shows
that the classifier is using relevant pixels, not noise.



Integrated gradients output of the model. The left column is the original image and the other
columns show the integrated gradients for the different wavelength filters. The network automatically
detects the pixels belonging to the galaxy and used all of them to make the decisions.
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Applying the Trained Deep Learning Code to CANDELS Galaxies
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Stellar mass
distributions of HST
CANDELS galaxies in
pre-compaction,
compaction, and post-
compaction phases in
different redshift bins.
The DL code correctly
shows the temporal
evolution. Galaxies in
the compaction phase
typically peak at stellar

masses 109.9-10 Mgy
at all redshifts, as in the
VELA simulations.
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JWST: bigger mirror,

IR imaging &
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HST: most productive
telescope ever!

]

MIRI: Mid Infrared
g [ Nstrument, 5-28 pm
<9 NIRCam: Near Infrared
8 Camera, 0.6 - 5 um

\

NIRISS: Near-InfraRed
Imager/SSpectrograph
NIRSpec: Near Infrared
Spectrograph, 0.6-5 pm

L2 |




1.5

stars

10 kpc



Computer vision and deep learning applied
to simulations and imaging
of galaxies and the evolving universe

Joel Primack
University of California, Santa Cruz

Large-scale simulations track the evolution of structure in the universe of dark energy and cold
dark matter on scales of billions of light years

Cosmological zoom-in simulations model how individual galaxies evolve through the interaction
of atomic matter, dark matter, and dark energy

Our VELA galaxy simulations agree with HST CANDELS observations that most galaxies start
prolate, becoming spheroids or disks after compaction events

A deep learning code was trained with VELA galaxy images plus metadata describing whether
they are pre-compaction, compaction, or post-compaction

The trained deep learning code was able to identify the compaction and post-compaction phases
in CANDELized images

The trained deep learning code was also able to identify these phases in real HST CANDELS
observations, finding that compaction occurred for stellar mass 109-5-10 Mgy, as in the
simulations — and James Webb Space Telescope will allow us to do even better



