Midterm 1
 2/1/07
 Physics 116A

Note: Throughout this test the symbol i denotes $\sqrt{-1}$.

1. Test the following series for convergence or divergence. Decide for yourself which test is easiest to use.
(a) (10 points)

$$
\sum_{n=1}^{\infty} \frac{n^{5}}{5^{n}}
$$

(b) (10 points)

$$
\sum_{n=2}^{\infty} \frac{1}{n^{2}-n}
$$

2. Use series to calculate
(a) (10 points)

$$
\frac{d^{4}}{d x^{4}} \ln \left(1+x^{3}\right) \text { at } x=0
$$

(b) (10 points)

$$
\frac{d^{10}}{d x^{10}}\left(x^{8} \tan ^{2} x\right) \text { at } x=0
$$

3. (10 points) Find the following limit using Maclaurin series.

$$
\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{e^{x}-1}\right)
$$

Hint: First combine fractions. Then find the first term of the denominator series and the first term of the numerator series.
4. (20 points) Using $\exp i \theta=\cos \theta+i \sin \theta$, prove that

$$
\cos \theta+\cos 3 \theta+\cos 5 \theta+\ldots+\cos (2 n-1) \theta=\frac{\sin 2 n \theta}{2 \sin \theta}
$$

Hint: For a complex number z,

$$
\sum_{k=0}^{n-1} z^{k}=\frac{1-z^{n}}{1-z}
$$

5. (15 points) Find all values of $\sqrt[3]{-1}$.
6. (15 points) Find the disk of convergence of the series $\sum_{n=1}^{\infty}(z-2 i)^{n} / n$.
7. (10 points) Calculate the determinant

$$
\left|\begin{array}{cc}
\cos \theta & i \sin \theta \\
i \sin \theta & \cos \theta
\end{array}\right|
$$

