Midterm 2

Physics 116A
$3 / 1 / 07$

Make sure to attach this exam to rest of your work.

For each multiple choice question, mark only one answer per question. No partial credit will be given for a wrong answer to one of these, but you must briefly explain your answers.

Below z^{*} denotes the complex conjugate of $z . i$ denotes $\sqrt{-1}$.

1. (15 points) Is $\mathbf{F}(\mathbf{r})=\mathbf{A} \times \mathbf{r}$ (where \mathbf{A} is a given vector) a linear vector function? Prove your conclusion using $\mathbf{F}\left(\mathbf{r}_{1}+\mathbf{r}_{2}\right)=\mathbf{F}\left(\mathbf{r}_{1}\right)+\mathbf{F}\left(\mathbf{r}_{2}\right)$ and $\mathbf{F}(a \mathbf{r})=a \mathbf{F}(\mathbf{r})$.
2. (15 points) Consider the operator that acts on matrices to find their transpose. Is it linear? Use the criteria analogous to the previous problem.

3 .

$$
M=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
-1 & -1 \\
1 & -1
\end{array}\right)
$$

represents an active transformation of vectors in the (x, y) plane (axes fixed, vectors rotated or reflected).
(a) (10 points) Show that M is orthogonal.
(b) (5 points) Find $\operatorname{det}(M)$.
(c) (15 points) Find the angle of rotation or line of reflection.
4. Consider

$$
H=\left(\begin{array}{cc}
1 & 2 i \\
-2 i & -2
\end{array}\right)
$$

(a) (10 points) Show that it is Hermitian.
(b) (20 points) Find its eigenvalues and eigenvectors and write a unitary matrix U which diagonalizes H by a similarity transformation.
5. (15 points) For an $n \times n$ Hermitian matrix H,
(a) $H H^{\dagger}=I$.
(b) $H_{i j}=H_{j i}$
(c) $H_{i j}=-H_{j i}{ }^{*}$
(d) $H_{i j}=H_{j i}{ }^{*}$

6 . (15 points) For an $n \times n$ Hermitian matrix, eigenvalues
(a) are always real.
(b) can never be 0 .
(c) can be complex if the matrix elements are complex.
(d) cannot be degenerate.
problem 5: d problem 6: a

Midterm 2

Physics 116A
$3 / 1 / 07$

Make sure to attach this exam to rest of your work.

For each multiple choice question, mark only one answer per question. No partial credit will be given for a wrong answer to one of these, but you must briefly explain your answers.

Below z^{*} denotes the complex conjugate of $z . i$ denotes $\sqrt{-1}$.

1. (15 points) Is $\mathbf{F}(\mathbf{r})=\mathbf{A} \times \mathbf{r}$ (where \mathbf{A} is a given vector) a linear vector function? Prove your conclusion using $\mathbf{F}\left(\mathbf{r}_{1}+\mathbf{r}_{2}\right)=\mathbf{F}\left(\mathbf{r}_{1}\right)+\mathbf{F}\left(\mathbf{r}_{2}\right)$ and $\mathbf{F}(a \mathbf{r})=a \mathbf{F}(\mathbf{r})$.
2. (15 points) Consider the operator that acts on matrices to find their transpose. Is it linear? Use the criteria analogous to the previous problem.

3 .

$$
M=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
-1 & -1 \\
1 & -1
\end{array}\right)
$$

represents an active transformation of vectors in the (x, y) plane (axes fixed, vectors rotated or reflected).
(a) (10 points) Show that M is orthogonal.
(b) (5 points) Find $\operatorname{det}(M)$.
(c) (15 points) Find the angle of rotation or line of reflection.
4. Consider

$$
H=\left(\begin{array}{cc}
1 & 2 i \\
-2 i & -2
\end{array}\right)
$$

(a) (10 points) Show that it is Hermitian.
(b) (20 points) Find its eigenvalues and eigenvectors and write a unitary matrix U which diagonalizes H by a similarity transformation.
5. (15 points) For an $n \times n$ Hermitian matrix, eigenvalues
(a) cannot be degenerate.
(b) are always real.
(c) can be complex if the matrix elements are complex.
(d) can never be 0 .

6 . (15 points) For an $n \times n$ Hermitian matrix H,
(a) $H_{i j}=H_{j i}$
(b) $H_{i j}=-H_{j i}{ }^{*}$
(c) $H_{i j}=H_{j i}{ }^{*}$
(d) $H H^{\dagger}=I$.
problem 5: b
problem 6: c

Midterm 2

Physics 116A
$3 / 1 / 07$

Make sure to attach this exam to rest of your work.

For each multiple choice question, mark only one answer per question. No partial credit will be given for a wrong answer to one of these, but you must briefly explain your answers.

Below z^{*} denotes the complex conjugate of $z . i$ denotes $\sqrt{-1}$.

1. (15 points) Is $\mathbf{F}(\mathbf{r})=\mathbf{A} \times \mathbf{r}$ (where \mathbf{A} is a given vector) a linear vector function? Prove your conclusion using $\mathbf{F}\left(\mathbf{r}_{1}+\mathbf{r}_{2}\right)=\mathbf{F}\left(\mathbf{r}_{1}\right)+\mathbf{F}\left(\mathbf{r}_{2}\right)$ and $\mathbf{F}(a \mathbf{r})=a \mathbf{F}(\mathbf{r})$.
2. (15 points) Consider the operator that acts on matrices to find their transpose. Is it linear? Use the criteria analogous to the previous problem.

3 .

$$
M=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
-1 & -1 \\
1 & -1
\end{array}\right)
$$

represents an active transformation of vectors in the (x, y) plane (axes fixed, vectors rotated or reflected).
(a) (10 points) Show that M is orthogonal.
(b) (5 points) Find $\operatorname{det}(M)$.
(c) (15 points) Find the angle of rotation or line of reflection.
4. Consider

$$
H=\left(\begin{array}{cc}
1 & 2 i \\
-2 i & -2
\end{array}\right)
$$

(a) (10 points) Show that it is Hermitian.
(b) (20 points) Find its eigenvalues and eigenvectors and write a unitary matrix U which diagonalizes H by a similarity transformation.
5. (15 points) For an $n \times n$ Hermitian matrix, eigenvalues
(a) are always real.
(b) cannot be degenerate.
(c) can be complex if the matrix elements are complex.
(d) can never be 0 .

6 . (15 points) For an $n \times n$ Hermitian matrix H,
(a) $H_{i j}=H_{j i}{ }^{*}$
(b) $H H^{\dagger}=I$.
(c) $H_{i j}=-H_{j i}{ }^{*}$
(d) $H_{i j}=H_{j i}$
problem 5: a
problem 6: a

Midterm 2

Physics 116A
$3 / 1 / 07$

Make sure to attach this exam to rest of your work.

For each multiple choice question, mark only one answer per question. No partial credit will be given for a wrong answer to one of these, but you must briefly explain your answers.

Below z^{*} denotes the complex conjugate of $z . i$ denotes $\sqrt{-1}$.

1. (15 points) Is $\mathbf{F}(\mathbf{r})=\mathbf{A} \times \mathbf{r}$ (where \mathbf{A} is a given vector) a linear vector function? Prove your conclusion using $\mathbf{F}\left(\mathbf{r}_{1}+\mathbf{r}_{2}\right)=\mathbf{F}\left(\mathbf{r}_{1}\right)+\mathbf{F}\left(\mathbf{r}_{2}\right)$ and $\mathbf{F}(a \mathbf{r})=a \mathbf{F}(\mathbf{r})$.
2. (15 points) Consider the operator that acts on matrices to find their transpose. Is it linear? Use the criteria analogous to the previous problem.

3 .

$$
M=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
-1 & -1 \\
1 & -1
\end{array}\right)
$$

represents an active transformation of vectors in the (x, y) plane (axes fixed, vectors rotated or reflected).
(a) (10 points) Show that M is orthogonal.
(b) (5 points) Find $\operatorname{det}(M)$.
(c) (15 points) Find the angle of rotation or line of reflection.
4. Consider

$$
H=\left(\begin{array}{cc}
1 & 2 i \\
-2 i & -2
\end{array}\right)
$$

(a) (10 points) Show that it is Hermitian.
(b) (20 points) Find its eigenvalues and eigenvectors and write a unitary matrix U which diagonalizes H by a similarity transformation.
5. (15 points) For an $n \times n$ Hermitian matrix H,
(a) $H H^{\dagger}=I$.
(b) $H_{i j}=H_{j i}{ }^{*}$
(c) $H_{i j}=-H_{j i}{ }^{*}$
(d) $H_{i j}=H_{j i}$

6 . (15 points) For an $n \times n$ Hermitian matrix, eigenvalues
(a) can be complex if the matrix elements are complex.
(b) cannot be degenerate.
(c) can never be 0 .
(d) are always real.
problem 5: b problem 6: d

