Physics 116C
 Homework 4 due 10/25/07

1. Find the general solution to the equation

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+x y=0 \tag{1}
\end{equation*}
$$

using the method of power series solution, section 12.1 of Boas.
2. Boas Chapter 12, section 2, problem 2.
3. Boas Chapter 12, section 3, problem 3.
4. (a) Calculate

$$
\begin{equation*}
\int_{-1}^{1} \frac{P_{l}(x)}{\sqrt{1-2 x \cos \theta+\cos ^{2} \theta}} d x \tag{2}
\end{equation*}
$$

Hint: See Chapter 12 section 5, and use Chapter 12 Eq. (8.4).
5. Solve the differential equation

$$
\begin{equation*}
\frac{d^{13} y}{d x^{13}}=P_{13}(x) \tag{3}
\end{equation*}
$$

with the boundary conditions

$$
\begin{equation*}
\left.\frac{d^{12} y}{d x^{12}}\right|_{x=1}=\left.\frac{d^{11} y}{d x^{11}}\right|_{x=1}=\ldots=\left.\frac{d y}{d x}\right|_{x=1}=0 \tag{4}
\end{equation*}
$$

Hint: See Chapter 12 section 4.
6. Find the solution to the equation

$$
\begin{equation*}
\frac{d}{d x}\left(\left(1-x^{2}\right) \frac{d y}{d x}\right)+6 y=x \tag{5}
\end{equation*}
$$

with the conditions that the solution be finite everywhere for $-1 \leq x \leq 1$ and $y(x=0)=-1$.
Hint: Consider the homogeneous equation first, and then find a particular solution.

