Solutions to 1992 114B exam

1.

(a) Following hint, try $y = x^p$. Plugging into ODE:

$$p(p-1)x^{p-2} + \omega^2 x^{p-2} = 0$$

which implies $p(p-1) + \omega^2 = 0$. Solving quadratic equation yields

$$p_{\pm} = \frac{1 \pm \sqrt{1 - 4\omega^2}}{2}$$

- which we write (since $\omega > 1/2$) as $p_{\pm} = \frac{1 \pm i \sqrt{4\omega^2 1}}{2}$. (b) The general solution is then $y = C_+ x^{p_+} + C_- x^{p_-}$, and at x = 1, y=0. Using this we obtain $C_++C_-=0$. Therefore $y=C_+(x^{p_+}-x^{p_-})=0$ $C\sqrt{x}\sin(\sqrt{\omega^2-\frac{1}{4}\ln x}).$
 - 2. Write y(x,t) = X(x)T(t) and plugging into

$$\frac{1}{x^2} \frac{\partial^2 y}{\partial t^2} = \frac{\partial^2 y}{\partial x^2}$$

gives

$$\frac{T''}{T} = \frac{x^2 X}{X}$$

which then must equal a constant, call it $-\omega^2$. With the boundary condition from above, i.e. y(1) = 0, we have

$$T(t) = e^{\pm i\omega t}$$

and

$$X(x) = \sqrt{x}\sin(\sqrt{\omega^2 - \frac{1}{4}}\ln x).$$

- (b) At x = 2, y = 0, so $\sin(\sqrt{\omega^2 \frac{1}{4}} \ln 2) = 0$, which implies $\sqrt{\omega^2 \frac{1}{4}} \ln 2 = n\pi$.
- (c) Solving for ω , $\omega_n = \sqrt{(\frac{n\pi}{\ln 2})^2 + \frac{1}{4}}$ for $n = 1, 2, 3, \dots$
- (d) Summing over all solutions:

$$y = \sum_{n=1}^{\infty} (A_n \cos(\omega_n t) + B_n \sin(\omega_n t)) \sqrt{x} \sin(\frac{n\pi}{\ln 2} \ln x).$$

(e) n=1:

n=60:

3. $f(x,t) \equiv e^{-i\omega t} f(x)$ and

$$\frac{1}{x^2}\frac{\partial^2 y}{\partial t^2} = \frac{\partial^2 y}{\partial x^2} + F(x,t)$$

Try $y(x,t) = e^{-i\omega t}X(x)$. This implies

$$X''(x) + \frac{\omega^2}{r^2}X = f(x).$$

4. (a) From 1(b) $y = A(x')\sqrt{x}\sin(\sqrt{\omega^2 - \frac{1}{4}}\ln x)$ for x < x'. (b) Rescale x: $y = C_+(\frac{x}{2})^{p_+} + C_-(\frac{x}{2})^{p_-}$, with the boundary condition y(x/2) = 0. Therefore $C_+ + C_- = 0$, and so $y = B(x')((\frac{x}{2})^{p_+} - (\frac{x}{2})^{p_-}) = 0$ $B(x')\sqrt{x}\sin(\sqrt{\omega^2-\frac{1}{4}}\ln(x/2))$. for x>x'.

(c)
$$\int_{x'-\epsilon}^{x'+\epsilon} (G'' + \frac{\omega^2}{x^2}G)dx = \int_{x'-\epsilon}^{x'+\epsilon} \delta(x-x')dx$$

and taking $\lim_{\epsilon \to 0}$ gives

$$G'(x + \epsilon, x') - G'(x - \epsilon, x') = 1$$

(d)Define $D \equiv \sqrt{\omega^2 - \frac{1}{4}}$. From continuity $G'(x + \epsilon, x') = G'(x - \epsilon, x')$, so

$$A(x')\sin(D \ln x') = B(x')\sin(D \ln(x'/2)).$$

and from 4(c)

$$B(x')\cos(D\ln(x'/2)) - A(x')\cos(D\ln(x')) = \sqrt{x'}/D.$$

Solving for A and B gives

$$A(x') = \frac{\sqrt{x'}}{D} \frac{\sin(D \ln(x'/2))}{\sin(D \ln(2))}$$

and

$$B(x') = \frac{\sqrt{x'}}{D} \frac{\sin(D \ln(x'))}{\sin(D \ln(2))}$$

- (e) $y = \int_1^2 G(x, x') f(x') dx'$. 5. (a) The combination of 52 taken 5 at a time:

$$\binom{52}{5} = \frac{52!}{5!47!} = 2598960$$

(b) There are 4 Royal Flushes, so the probability of this happening is

$$\frac{4}{\binom{52}{5}} = 4/2598960 = 1/649740 \approx 1.54 \times 10^{-6}.$$