1. Solve the three dimensional wave equation inside a cube $0<x, y, z<L$

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} u}{\partial t^{2}}
$$

with the boundary conditions that $u=0$ on the faces of the cube. At $t=0$ $u(x, y, z)=\delta(x-L / 2) \delta(y-L / 2) \delta(z-L / 2)$ and

$$
\left.\frac{\partial u}{\partial t}\right|_{t=0}=0
$$

everywhere inside the cube.
2. Consider the diffusion equation for $T(x, t)$ in one dimension on the interval $0<x<L$.
(a) Given that the boundaries are insulated, that is for all time,

$$
\left.\frac{\partial T}{\partial x}\right|_{x=0}=\left.\frac{\partial T}{\partial x}\right|_{x=L}=0
$$

show that

$$
\int_{0}^{L} T(x, t) d x
$$

does not change with time.
(b) Suppose instead the boundaries are held fixed in temperature with $T(x=0, t)=0$ and $T(x=L, t)=1$. Find the temperature of the bar as a function of x in the limit of long times.
3. Calculate the solution to $\nabla^{2} T(x, y)=0$ for an isosceles right triangle whose hypotenuse is of length $\sqrt{2}$ and is held at $T=1$. The other two sides are held at $T=0$. Hint: First subtract 1 from all temperatures in the problem. Now consider how the solution of this problem can be obtained from a square. Use symmetry to argue that the temperature along the diagonal of the square is 0 and hence corresponds to a solution to the triangle problem. Then solve the square problem using superposition and separation of variables.

