
Practice problems for final

1. Solve the three dimensional wav eequation inside a cube0 < x, y, z < L
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with the boundary conditions thatu = 0 on the faces of the cube. Att = 0

u(x, y, z) = δ (x − L/2)δ (y − L/2)δ (z − L/2) and
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ev erywhere inside the cube.

2. Consider the diffusion equationfor T (x, t) in one dimension on the interval 0< x < L.

(a) Given that the boundaries are insulated, that is for all time,
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show that
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does not change with time.

(b) Suppose instead the boundaries are held fixed in temperature withT (x = 0, t) = 0 and

T (x = L, t) = 1. Find the temperature of the bar as a function of x in the limit of long

times.

3. Calculate the solution to∇2T (x, y) = 0 for an isosceles right triangle whose hypotenuse

is of length√2 and is held atT = 1. Theother two sides are held atT = 0. Hint: First

subtract 1from all temperatures in the problem. Now consider how the solution of this

problem can be obtained from a square. Use symmetry to argue that the temperature

along the diagonal of the square is0 and hence corresponds to a solution to the triangle

problem. Then solve the square problem using superposition and separation of variables.


