Physics 120/240 Homework 5 Due 5/28/08

1. Consider the Rouse equation:

$$
\begin{equation*}
\frac{\partial r}{\partial t}-\frac{\partial^{2} r}{\partial s^{2}}=\eta(s, t) \tag{1}
\end{equation*}
$$

where s is arclength, t time, $r(s, t)$ is position, and η is random noise with zero mean and autocorrelation function

$$
\begin{equation*}
\left\langle\eta(s, t) \eta\left(s^{\prime}, t^{\prime}\right)\right\rangle=\delta\left(s-s^{\prime}\right) \delta\left(t-t^{\prime}\right) . \tag{2}
\end{equation*}
$$

Take r to be a scalar. The extension to the vector case is straightforward. This problem illustrates how to calculate $\left\langle(r(s, t)-r(0, t))^{2}\right\rangle$, and $\langle(r(s, t)-$ $\left.r(s, 0))^{2}\right\rangle$.
(a) Define the Fourier transform with respect to both s and t of $r(s, t)$, Call it $\hat{r}(k, \omega)$. Write down the inverse, that is, how to express $r(s, t)$ in terms of integrals of $\hat{r}(k, w)$. Do the same for η. Call the result $\hat{\eta}$.
(b) Fourier transform equation 1 to obtain an algebraic equation.
(c) Fourier transform eqn. 2 with respect to two sets of variables $s \rightarrow k$ and $s^{\prime} \rightarrow k^{\prime}$ and similarly for t and t^{\prime}. Calculate $\left\langle\hat{\eta}(k, \omega) \hat{\eta}\left(k^{\prime}, \omega^{\prime}\right)\right\rangle$.
(d) Solve for $\left\langle\hat{r}(k, \omega) \hat{r}\left(k^{\prime}, \omega^{\prime}\right)\right\rangle$.
(e) Consider $\left\langle r^{\prime}(s, t) r^{\prime}\left(s^{\prime}, t\right)\right.$, where $r^{\prime}=\partial r / \partial s$. Relate this to $\langle(r(s, t)-$ $\left.r(0, t))^{2}\right\rangle$, through an integral formula.
(f) Relate the Fourier transform of $r^{\prime}(s, t)$ to \hat{r} through the simple relation between the Fourier transform of a function and its derivative.
(g) Because the Rouse equation is translationally invariant in time, we can set $t=0$ and calculate instead $\left\langle r(k, t=0) r\left(k^{\prime}, t=0\right)\right\rangle$. Calculate this by expressing it in terms of integrals over ω and ω^{\prime}.
(h) Transform back to obtain $\left\langle r^{\prime}(s, t=0) r^{\prime}\left(s^{\prime}, t=0\right)\right\rangle$.
(i) From this obtain $\left\langle(r(s, t=0)-r(0, t=0))^{2}\right\rangle$ using part 1 e .
(j) Compare this with the prediction for $\left\langle\left(r(s)-r(0)^{2}\right\rangle\right.$ according to the equilibrium statistical mechanics of a random walk.
(k) Follow a similar procedure to obtain $\left\langle(r(s, t)-r(s, 0))^{2}\right\rangle$. Note that there is translational invariance in arclength also so that you can set $s=0$.

