```
Physics 120/240
Homework 5
Due 5/28/08
```

1. Consider the Rouse equation:

$$\frac{\partial r}{\partial t} - \frac{\partial^2 r}{\partial s^2} = \eta(s, t) \tag{1}$$

where s is arclength, t time, r(s, t) is position, and η is random noise with zero mean and autocorrelation function

$$\langle \eta(s,t)\eta(s',t')\rangle = \delta(s-s')\delta(t-t') .$$
⁽²⁾

Take r to be a scalar. The extension to the vector case is straightforward. This problem illustrates how to calculate $\langle (r(s,t)-r(0,t))^2 \rangle$, and $\langle (r(s,t)-r(s,0))^2 \rangle$.

- (a) Define the Fourier transform with respect to both s and t of r(s, t), Call it $\hat{r}(k, \omega)$. Write down the inverse, that is, how to express r(s, t)in terms of integrals of $\hat{r}(k, \omega)$. Do the same for η . Call the result $\hat{\eta}$.
- (b) Fourier transform equation 1 to obtain an algebraic equation.
- (c) Fourier transform eqn. 2 with respect to two sets of variables $s \to k$ and $s' \to k'$ and similarly for t and t'. Calculate $\langle \hat{\eta}(k,\omega)\hat{\eta}(k',\omega')\rangle$.
- (d) Solve for $\langle \hat{r}(k,\omega)\hat{r}(k',\omega')\rangle$.
- (e) Consider $\langle r'(s,t)r'(s',t)$, where $r' = \partial r/\partial s$. Relate this to $\langle (r(s,t) r(0,t))^2 \rangle$, through an integral formula.
- (f) Relate the Fourier transform of r'(s,t) to \hat{r} through the simple relation between the Fourier transform of a function and its derivative.
- (g) Because the Rouse equation is translationally invariant in time, we can set t = 0 and calculate instead $\langle r(k, t = 0)r(k', t = 0) \rangle$. Calculate this by expressing it in terms of integrals over ω and ω' .
- (h) Transform back to obtain $\langle r'(s, t = 0)r'(s', t = 0)\rangle$.
- (i) From this obtain $\langle (r(s,t=0) r(0,t=0))^2 \rangle$ using part 1e.
- (j) Compare this with the prediction for $\langle (r(s) r(0)^2 \rangle$ according to the equilibrium statistical mechanics of a random walk.
- (k) Follow a similar procedure to obtain $\langle (r(s,t) r(s,0))^2 \rangle$. Note that there is translational invariance in arclength also so that you can set s = 0.